
Administrator’s Guide

TM
for Informix Dynamic Server®

Informix Dynamic Server
Informix Dynamic Server, Developer Edition
Informix Dynamic Server, Workgroup Edition
Version 7.3
February 1998
Part No. 000-4354

ii Administrator’s Guide
Published by INFORMIX Press Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025-1032

Copyright 1981-1998 by Informix Software, Inc. or its subsidiaries, provided that portions may be
copyrighted by third parties, as set forth in documentation. All rights reserved.

The following are worldwide trademarks of Informix Software, Inc., or its subsidiaries, registered in the
United States of America as indicated by “,” and in numerous other countries worldwide:

Answers OnLine; INFORMIX; Informix; Illustra; C-ISAM; DataBlade; Dynamic Server; Gateway;
NewEra

All other names or marks may be registered trademarks or trademarks of their respective owners.

Documentation Team: Bob Berry, Twila Booth, Lynne Casey, Diana Chase, Bonnie Vaughan

RESTRICTED RIGHTS/SPECIAL LICENSE RIGHTS

Software and documentation acquired with US Government funds are provided with rights as follows: (1) if
for civilian agency use, with Restricted Rights as defined in FAR 52.227-19; (2) if for Dept. of Defense use, with
rights as restricted by vendor's standard license, unless superseded by negotiated vendor license as prescribed
in DFAR 227.7202. Any whole or partial reproduction of software or documentation marked with this legend
must reproduce the legend.
 for Informix Dynamic Server

List of Chapters

List of
Chapters
Section I What Is Informix Dynamic Server?

Chapter 1 Introducing Informix Dynamic Server

Chapter 2 Overview of Database Server Administration

Section II Configuration

Chapter 3 Configuring the Database Server

Chapter 4 Client/Server Communications

Chapter 5 What Is Multiple Residency?

Chapter 6 Using Multiple Residency

Section III Modes and Initialization

Chapter 7 Managing Database Server Operating Modes

Chapter 8 Initializing the Database Server

iv Admin
Section IV Disk, Memory, and Process
Management

Chapter 9 What Is Informix Dynamic Scalable Architecture?

Chapter 10 Managing Virtual Processors

Chapter 11 Shared Memory

Chapter 12 Managing Shared Memory

Chapter 13 Where Is Data Stored?

Chapter 14 Managing Disk Space

Chapter 15 Overview of Table Fragmentation and PDQ

Section V Logging and Log Administration

Chapter 16 What Is Logging?

Chapter 17 Managing Database-Logging Status

Chapter 18 What Is the Logical Log?

Chapter 19 Managing Logical-Log Files

Chapter 20 What Is Physical Logging?
istrator’s Guide for Informix Dynamic Server

Chapter 21 Managing the Physical Log

Chapter 22 What Is Fast Recovery?

Section VI Fault Tolerance

Chapter 23 What Is Mirroring?

Chapter 24 Using Mirroring

Chapter 25 What Is High-Availability Data Replication?

Chapter 26 Using High-Availability Data Replication

Chapter 27 What Is Consistency Checking?

Chapter 28 Situations to Avoid

Section VII Monitoring

Chapter 29 Monitoring the Database Server

Section VIII Distributed Data

Chapter 30 Multiphase Commit Protocols

Chapter 31 Recovering Manually from Failed Two-Phase
Commit
List of Chapters v

vi Adm
Section IX Reference

Chapter 32 ON-Monitor for UNIX

Chapter 33 Configuration Parameters

Chapter 34 The sysmaster Database

Chapter 35 Utilities

Chapter 36 Message-Log Messages

Chapter 37 Interpreting Logical-Log Records

Chapter 38 Disk Structures and Storage
inistrator’s Guide for Informix Dynamic Server

Table of Contents

Table of
Contents
Introduction
About This Manual 3

Types of Users 3
Software Dependencies 4
Assumptions About Your Locale. 4
Demonstration Database 5

New Features . 6
Documentation Conventions 7

Typographical Conventions 8
Icon Conventions 8
Command-Line Conventions 10

Additional Documentation 13
On-Line Manuals 13
Printed Manuals 14
Error Message Files 14
Documentation Notes, Release Notes, Machine Notes 15

Compliance with Industry Standards 16
Informix Welcomes Your Comments 16

Section I What Is Informix Dynamic Server?

Chapter 1 Introducing Informix Dynamic Server
What Is Informix Dynamic Server? 1-3

Client/Server Architecture 1-4
Scalability 1-5
High Performance. 1-6
Fault Tolerance and High Availability 1-8
Dynamic System Administration 1-11
Distributed Data Queries 1-11
Database Server Security 1-12

viii Adm
Features Beyond the Scope of Dynamic Server 1-12
No Bad-Sector Mapping 1-12
No Scanning or Compression of TEXT and BYTE

Data Types 1-13

Chapter 2 Overview of Database Server Administration
Who Is the Database Server Administrator? 2-3
Initial Tasks . 2-4
Routine Tasks 2-5

Changing Database Server Operating Modes 2-5
Backing Up Data and Logical-Log Files 2-6
Monitoring Activity 2-6
Checking for Consistency 2-6

Configuration Tasks 2-7
Managing Disk Space 2-7
Managing Database-Logging Status 2-7
Logical-Log Administration 2-7
Physical-Log Administration. 2-8
Using Auditing 2-8
Using Mirroring 2-8
Using Data Replication. 2-9
Managing Shared Memory 2-9
Managing Virtual Processors. 2-10
Managing Parallel Database Query 2-10

Administration Tasks Summary 2-11

Section II Configuration

Chapter 3 Configuring the Database Server
Planning for the Database Server 3-3

Consider Your Priorities 3-3
Consider Your Resources 3-4

Configuring the Operating System 3-5
Operating-System Administration Facilities 3-5
Configuring Operating-System Resources 3-6

Installing the Database Server 3-7
Configuring the Database Server 3-7

Set Environment Variables 3-8
Prepare the ONCONFIG Configuration File 3-10
Allocate Disk Space 3-28
inistrator’s Guide for Informix Dynamic Server

Prepare the Connectivity Information 3-28
Prepare the ON-Archive Configuration File 3-29
Prepare for Global Language Support 3-29
Evaluate Operating-System Parameters 3-29
Start the Database Server and Initialize Disk Space 3-30
Create Dbspaces and Blobspaces 3-30
Perform Administrative Tasks 3-31

Chapter 4 Client/Server Communications
What Is Client/Server Architecture? 4-3

What Is a Network Protocol? 4-4
What Is a Network Programming Interface? 4-5
Windows NT Network Domains 4-5

What Is a Connection? 4-6
What Is a Multiplexed Connection? 4-7

What Connections Does the Database Server Support? 4-8
Network Connections 4-8
Local Connections 4-9
What Interface/Protocol Combinations Are Available on

Your Platform? 4-13
What Are Communications Support Services? 4-13

What Is a Communications Support Module? 4-14
How to Configure the DCE-GSS Communications

Support Module on UNIX 4-15
Connectivity Files 4-17

Network-Configuration Files 4-17
Network-Security Files 4-22
The $INFORMIXDIR/etc/concsm.cfg file. 4-25
The sqlhosts File or Registry 4-27

ONCONFIG Parameters for Connectivity 4-50
The DBSERVERNAME Configuration Parameter 4-51
The DBSERVERALIASES Configuration Parameter 4-51

Environment Variables for Network Connections 4-52
Examples of Client/Server Configurations 4-53

Using a Shared-Memory Connection 4-54
Using a Local Loopback Connection 4-55
Using a Network Connection 4-56
Using Multiple Connection Types 4-57
Accessing Multiple Database Servers 4-59
Using the Relay Module 4-60
Using a Post-6.0 Client Application with a 5.x

Database Server 4-63
Table of Contents ix

x Admin
Chapter 5 What Is Multiple Residency?
Benefits of Multiple Residency 5-3
How Multiple Residency Works 5-4

The Role of the ONCONFIG Environment Variable 5-5
The Role of the SERVERNUM Configuration Parameter . . . 5-5

Chapter 6 Using Multiple Residency
Planning for Multiple Residency 6-3
Preparing for Multiple Residency 6-4

Prepare a Configuration File 6-5
Set the ONCONFIG Environment Variable 6-5
Edit the New Configuration File 6-5
Add Connection Information 6-7
Update the sqlhosts File or Registry 6-7
Initialize Disk Space. 6-7
Prepare Dbspace and Logical-Log Backup Environment . . . 6-8
Update the Operating-System Boot File 6-9
Check Users’ INFORMIXSERVER Environment Variables. . . 6-9

Using instmgr.exe 6-10
Adding an Instance of the Database Server 6-10
Deleting an Instance of the Database Server 6-11

Section III Modes and Initialization

Chapter 7 Managing Database Server Operating Modes
Database Server Operating Modes 7-3
Changing Database Server Operating Modes 7-5

From Off-Line to Quiescent 7-5
From Off-Line to On-Line 7-6
From Quiescent to On-Line 7-6
Gracefully from On-Line to Quiescent 7-7
Immediately from On-Line to Quiescent 7-7
From Any Mode Immediately to Off-Line 7-8

Chapter 8 Initializing the Database Server
Types of Initialization 8-3
Initialization Commands 8-4
Initialization Steps 8-4

Process Configuration File 8-6
Create Shared-Memory Portions 8-7
istrator’s Guide for Informix Dynamic Server

Initialize Shared-Memory Structures 8-8
Initialize Disk Space 8-8
Start All Required Virtual Processors 8-8
Make Necessary Conversions 8-9
Initiate Fast Recovery. 8-9
Initiate a Checkpoint 8-9
Document Configuration Changes 8-9
Create the oncfg_servername.servernum File 8-10
Drop Temporary Tblspaces 8-10
Set Forced Residency If Specified. 8-10
Return Control to User 8-11
Prepare SMI Tables 8-11

After Initialization 8-12

Section IV Disk, Memory, and Process Management

Chapter 9 What Is Informix Dynamic Scalable Architecture?
What Is a Virtual Processor? 9-5

What Is a Thread? 9-5
Types of Virtual Processors 9-7
Advantages of Virtual Processors 9-9

How Virtual Processors Service Threads 9-12
Control Structures 9-13
Context Switching 9-14
Stacks . 9-15
Queues. 9-16
Multiple Virtual Processors on Windows NT. 9-19
Mutexes . 9-19

Virtual-Processor Classes 9-20
CPU Virtual Processors 9-20
Disk I/O Virtual Processors 9-24
Network Virtual Processors 9-28
Communications Support Module Virtual Processor 9-35
Optical Virtual Processor 9-35
Audit Virtual Processor 9-36
Miscellaneous Virtual Processor 9-36
Table of Contents xi

xii Admi
Chapter 10 Managing Virtual Processors
Setting Virtual-Processor Configuration Parameters 10-3

Setting Virtual-Processor Configuration Parameters with
a Text Editor 10-4

Setting Virtual-Processor Configuration Parameters
with ON-Monitor 10-5

Starting and Stopping Virtual Processors 10-7
Adding Virtual Processors in On-Line Mode 10-7
Dropping CPU Virtual Processors in On-Line Mode. 10-10

Chapter 11 Shared Memory
What Is Shared Memory? 11-5
How the Database Server Uses Shared Memory 11-6

How the Database Server Allocates Shared Memory 11-7
How Much Shared Memory Does the Database

Server Need? 11-9
What Action Should You Take If SHMTOTAL Is

Exceeded? 11-10
What Processes Attach to Shared Memory? 11-11

How a Client Attaches to the Communications Portion . . . 11-11
How Utilities Attach to Shared Memory 11-12
How Virtual Processors Attach to Shared Memory 11-12

Keeping Shared-Memory Segments Resident 11-17
The Resident Portion of Shared Memory 11-18

Shared-Memory Header 11-19
Shared-Memory Buffer Pool 11-19

The Virtual Portion of Shared Memory 11-25
How the Database Server Manages the Virtual Portion

of Shared Memory 11-25
The Virtual Portion of Shared Memory 11-26

The Communications Portion of Shared Memory 11-34
Concurrency Control 11-35

Shared-Memory Mutexes 11-35
Shared-Memory Buffer Locks 11-36

How Database Server Threads Access Shared Buffers 11-37
LRU Queues 11-37
Configuring the Database Server to Read Ahead 11-42
How a Database Server Thread Accesses a Buffer Page. . . . 11-43

How the Database Server Flushes Data to Disk 11-46
Flushing the Physical-Log Buffer 11-47
How the Database Server Synchronizes Buffer Flushing . . . 11-50
nistrator’s Guide for Informix Dynamic Server

How Write Types Describe Flushing Activity 11-51
Flushing the Logical-Log Buffer 11-53

How the Database Server Achieves Data Consistency 11-56
Critical Sections. 11-56
Checkpoints 11-57
Time Stamps 11-60

Buffering TEXT and BYTE Data Types 11-63
Writing TEXT and BYTE Data 11-63

Chapter 12 Managing Shared Memory
Setting Operating-System Shared-Memory

Configuration Parameters 12-3
Maximum Operating-System Shared-Memory

Segment Size 12-4
Maximum Number of Shared-Memory Identifiers 12-4
Shared-Memory Lower-Boundary Address 12-5
Maximum Amount of Shared Memory for One Process 12-5
Semaphores 12-6

Setting Database Server Shared-Memory
Configuration Parameters 12-6

Setting Parameters for Resident Shared Memory
with ON-Monitor 12-7

Setting Parameters for Resident Shared Memory
with a Text Editor 12-8

Setting Parameters for Virtual Shared Memory
with ON-Monitor 12-10

Setting Parameters for Virtual Shared Memory
with a Text Editor 12-11

Setting Parameters for Shared-Memory Performance
Options with ON-Monitor 12-12

Setting Parameters for Shared-Memory Performance
Options with a Text Editor 12-13

Reinitializing Shared Memory 12-14
Turning Residency On or Off for Resident Shared Memory 12-14

Turning Residency On or Off in On-Line Mode 12-14
Turning Residency On or Off for the Next Time You

Reinitialize Shared Memory 12-15
Adding a Segment to the Virtual Portion of Shared Memory 12-15
Forcing a Checkpoint 12-16
Table of Contents xiii

xiv Adm
Chapter 13 Where Is Data Stored?
Overview of Data Storage 13-3
What Are the Physical Units of Storage? 13-5

What Is a Chunk? 13-5
What Is a Page? 13-10
What are Blobpages? 13-11
What Is an Extent? 13-13

What Are the Logical Units of Storage? 13-16
What Is a Dbspace? 13-16
What Is a Blobspace? 13-21
What Is a Database? 13-22
What Is a Table? 13-23
What Is a Temporary Table? 13-24
What Is a Tblspace? 13-27

How Much Disk Space Do You Need to Store Your Data? 13-30
Calculate the Size of the Root Dbspace 13-30
Estimate Space That Databases Require 13-33

Disk-Layout Guidelines 13-33
Dbspace and Chunk Guidelines. 13-34
Table-Location Guidelines 13-36

Sample Disk Layouts 13-40
What Is a Logical-Volume Manager? 13-46

Chapter 14 Managing Disk Space
Allocating Disk Space 14-4

Do You Need to Specify an Offset? 14-5
Allocating a File for Disk Space on UNIX 14-7
Allocating a File for Disk Space on Windows NT 14-8
Allocating Raw Disk Space on UNIX 14-8
Allocating Raw Disk Space on Windows NT 14-9

Initializing Disk Space 14-10
Initializing Disk Space with oninit 14-11
Initializing Disk Space with ON-Monitor 14-11

Creating a Dbspace 14-11
Creating a Temporary Dbspace 14-12
Creating a Dbspace with onspaces 14-13
Creating a Dbspace with ON-Monitor 14-13

Adding a Chunk to a Dbspace 14-14
Adding a Chunk 14-14
inistrator’s Guide for Informix Dynamic Server

Creating a Blobspace 14-16
Determining Database Server Page Size 14-17
Creating a Blobspace with onspaces 14-17
Creating a Blobspace with ON-Monitor 14-17

Adding a Chunk to a Blobspace 14-18
Dropping a Chunk from a Dbspace with onspaces 14-18
Dropping a Chunk from a Blobspace 14-19
Dropping a Dbspace or Blobspace 14-19

Dropping a Dbspace or Blobspace with onspaces 14-20
Dropping a Dbspace or Blobspace with ON-Monitor 14-20

Optimizing Blobspace Blobpage Size 14-21
Determining Blobspace Storage Efficiency 14-21
Blobspace Storage Statistics. 14-21
Determining Blobpage Fullness with oncheck -pB 14-22

Chapter 15 Overview of Table Fragmentation and PDQ
What Is Fragmentation? 15-3

Fragmentation Goals 15-5
Whose Responsibility Is Fragmentation? 15-6
Fragmentation Strategies 15-6
Using SQL Statements to Perform Fragmentation Tasks 15-9

What Is PDQ? . 15-10
High Degree of Parallelism 15-11

When Should You Use PDQ? 15-12
OLTP Applications 15-13
Decision-Support Applications 15-14
Processing Decision-Support Queries 15-15

How Does the Database Server Allocate Resources with PDQ? . . . 15-16
Parameters Used for Controlling PDQ 15-16

How Does the Database Server Use PDQ? 15-18
SQL Operations That Take Advantage of PDQ 15-18
SQL Operations That Do Not Use PDQ 15-21
Update Statistics 15-21
Stored Procedures and Triggers 15-22
Correlated and Uncorrelated Subqueries 15-22
Remote Tables 15-23
Table of Contents xv

xvi Adm
Section V Logging and Log Administration

Chapter 16 What Is Logging?
Which Database Server Processes Require Logging? 16-3
What Database Server Activity Is Logged? 16-5

Activity That Is Always Logged 16-6
Activity Logged for Databases with Transaction Logging . . . 16-7
Are Blobs Logged? 16-7

What Is Transaction Logging? 16-8
The Database-Logging Status 16-8
When to Use Transaction Logging 16-10
When to Buffer Transaction Logging 16-11
Who Can Set or Change Logging Status? 16-11

Chapter 17 Managing Database-Logging Status
About Changing Logging Status 17-3
Modifying Database-Logging Status with ON-Archive 17-5

Turning On Transaction Logging with ON-Archive 17-5
Canceling a Logging Operation with ON-Archive 17-6
Ending Logging with ON-Archive 17-6
Changing Buffering Status with ON-Archive 17-7
Making a Database ANSI Compliant with ON-Archive . . . 17-7

Modifying Database-Logging Status with ontape 17-7
Turning On Transaction Logging with ontape 17-7
Ending Logging with ontape. 17-8
Changing Buffering Status with ontape 17-8
Making a Database ANSI Compliant with ontape 17-9

Modifying Database Logging Status with ON-Monitor 17-9

Chapter 18 What Is the Logical Log?
What Is the Logical Log? 18-3
What Is a Logical-Log File? 18-4
How Big Should the Logical Log Be? 18-5

Performance Considerations 18-5
Long-Transaction Consideration 18-6
Logical-Log Size Guidelines 18-6
Determining the Size of the Logical Log 18-7

Preserving Log Space for ON-Archive Tasks 18-8
Enabling the Logs-Full High-Water Mark 18-9
Emergency Log Backup 18-9

What Should Be the Size and Number of Logical-Log Files? . . . 18-11
inistrator’s Guide for Informix Dynamic Server

Where Should Logical-Log Files Be Located? 18-12
How Are Logical-Log Files Identified? 18-12
What Are the Status Flags of Logical-Log Files? 18-13
Point-In-Time Recovery 18-15
Why Do Logical-Log Files Need to Be Backed Up? 18-15
When Are Logical-Log Files Freed? 18-16

When Does the Database Server Attempt to Free
a Log File? 18-16

What Happens If the Next Logical-Log File Is Not Free?. . . . 18-16
Avoiding Long Transactions 18-18

What Are the Logical-Log Administration Tasks
Required for Blobspaces? 18-21

Switching Logical-Log Files to Activate Blobspaces 18-21
Switching Logical-Log Files to Activate New

Blobspace Chunks. 18-22
Backing Up Logical-Log Files to Free Blobpages 18-22

What Is the Logging Process? 18-25
Dbspace Logging 18-25
Blobspace Logging. 18-27

Chapter 19 Managing Logical-Log Files
Adding a Logical-Log File 19-4

Using ON-Monitor to Add a Log File 19-5
Using onparams to Add a Log File 19-5
Adding a Log File with a New Size 19-5

Dropping a Logical-Log File 19-6
Using ON-Monitor to Drop a Logical-Log File 19-7
Using onparams to Drop a Logical-Log File 19-7

Moving a Logical-Log File to Another Dbspace 19-8
An Example of Moving Logical-Log Files 19-8

Changing the Size of Logical-Log Files 19-9
Changing Logical-Log Configuration Parameters 19-10

Changing LOGSIZE or LOGFILES 19-10
Changing LOGSMAX, LTXHWM, or LTXEHWM 19-12

Freeing a Logical-Log File 19-13
Freeing a Log File with Status A 19-13
Freeing a Log File with Status U 19-14
Freeing a Log File with Status U-B 19-14
Freeing a Log File with Status U-C or U-C-L 19-14
Freeing a Log File with Status U-B-L 19-15

Switching to the Next Logical-Log File 19-15
Table of Contents xvii

xviii Adm
Chapter 20 What Is Physical Logging?
What Is Physical Logging? 20-3

What Is the Purpose of Physical Logging? 20-4
What Database Server Activity Is Physically Logged? 20-4

How Big Should the Physical Log Be? 20-5
Where Is the Physical Log Located? 20-8
Details of Physical Logging 20-9

Page Is Read into the Shared-Memory Buffer Pool 20-9
A Copy of the Page Buffer Is Stored in the

Physical-Log Buffer 20-10
Change Is Reflected in the Data Buffer 20-10
Physical-Log Buffer Is Flushed to the Physical Log 20-10
Page Buffer Is Flushed 20-11
When a Checkpoint Occurs 20-11
How the Physical Log Is Emptied 20-11

Chapter 21 Managing the Physical Log
Changing the Physical-Log Location and Size 21-3

Why Change Physical-Log Location and Size?. 21-4
Before You Make the Changes 21-4
Using ON-Monitor to Change Physical-Log

Location or Size 21-5
Using a Text Editor to Change Physical-Log

Location and Size 21-5
Using onparams to Change Physical-Log

Location or Size 21-6

Chapter 22 What Is Fast Recovery?
What Is Fast Recovery? 22-3

When Is Fast Recovery Needed? 22-4
When Does the Database Server Initiate Fast Recovery? . . . 22-4
Fast Recovery and Buffered Logging 22-4
Fast Recovery and No Logging 22-5

Details of Fast Recovery 22-5
Returning to the Last-Checkpoint State 22-6
Finding the Checkpoint Record in the Logical Log 22-6
Rolling Forward Logical-Log Records 22-7
Rolling Back Incomplete Transactions 22-8
inistrator’s Guide for Informix Dynamic Server

Section VI Fault Tolerance

Chapter 23 What Is Mirroring?
What Is Mirroring? 23-4

What Are the Benefits of Mirroring?. 23-4
What Are the Costs of Mirroring? 23-5
What Happens If You Do Not Mirror? 23-5
What Should You Mirror? 23-5
What Mirroring Alternatives Exist? 23-6

The Mirroring Process 23-7
What Happens When You Create a Mirrored Chunk?. 23-7
What Are Mirror Status Flags? 23-8
What Is Recovery? 23-8
What Happens During Processing? 23-9
What Happens If You Stop Mirroring? 23-11
What Is the Structure of a Mirrored Chunk? 23-11

Chapter 24 Using Mirroring
Steps Required for Mirroring Data 24-3
Enabling Mirroring 24-4
Allocating Disk Space for Mirrored Data 24-5
Starting Mirroring 24-6

Mirroring the Root Dbspace During Initialization 24-7
Starting Mirroring for Unmirrored Dbspaces 24-8
Starting Mirroring for New Dbspaces 24-8

Adding Mirrored Chunks 24-9
Changing the Mirror Status 24-10

Taking Down a Mirrored Chunk 24-10
Recovering a Mirrored Chunk. 24-11

Relinking a Chunk to a Device After a Disk Failure 24-12
Ending Mirroring 24-12

Ending Mirroring with ON-Monitor 24-13
Ending Mirroring with onspaces 24-13
Table of Contents xix

xx Admi
Chapter 25 What Is High-Availability Data Replication?
What Is Data Replication? 25-4

What Is High-Availability Data Replication? 25-4
How Does High-Availability Data Replication Work? 25-8

How Does Data Initially Replicate? 25-8
Reproducing Updates to the Primary Database Server 25-9
What Threads Handle High-Availability Data Replication? . . 25-13
Checkpoints Between Database Servers 25-14
How Is Data Synchronization Tracked? 25-14

HIgh-Availability Data-Replication Failures 25-15
What Are High-Availability Data-Replication Failures? . . . 25-15
How Are High-Availability Data-Replication

Failures Detected? 25-16
What Happens When a High-Availability

Data-Replication Failure Is Detected? 25-16
Considerations After High-Availability

Data-Replication Failure 25-17
Redirection and Connectivity for Data-Replication Clients 25-22

Designing Clients for Redirection 25-23
Automatic Redirection with DBPATH 25-23
Administrator-Controlled Redirection with the

Connectivity Information. 25-25
User-Controlled Redirection with INFORMIXSERVER 25-29
Handling Redirection Within an Application 25-30
Comparison of Different Redirection Mechanisms 25-33

Designing High-Availability Data-Replication Clients 25-34
Setting Lock Mode to Wait for Access to Primary

Database Server 25-34
Designing Clients to Use the Secondary Database Server . . . 25-35

Chapter 26 Using High-Availability Data Replication
Planning for High-Availability Data Replication 26-4
Configuring High-Availability Data Replication 26-5

Meeting Hardware and Operating-System Requirements . . . 26-5
Meeting Database and Data Requirements 26-6
Meeting Database Server Configuration Requirements 26-6
Configuring High-Availability Data-Replication

Connectivity 26-9
Starting High-Availability Data Replication for the First Time . . . 26-11
nistrator’s Guide for Informix Dynamic Server

Performing Basic Administration Tasks 26-15
Changing Database Server Configuration Parameters 26-15
Dbspace and Logical-Log File Backups. 26-16
Changing the Logging Status of Databases 26-16
Adding and Dropping Chunks, Dbspaces, and

Blobspaces 26-17
Using and Changing Mirroring of Chunks 26-17
Managing the Physical Log. 26-18
Managing the Logical Log 26-19
Managing Virtual Processors 26-19
Managing Shared Memory 26-19

Changing the Database Server Mode 26-20
Changing the Database Server Type 26-21

Changing the Type of the Primary Database Server 26-22
Changing the Type of the Secondary Database Server 26-22

Restoring Data If Media Failure Occurs 26-23
Restoring After Media Failure on the Primary

Database Server 26-23
Restoring After Media Failure on the Secondary

Database Server 26-24
Restarting High-Availability Data Replication After a Failure . . . 26-26

Restarting After Critical Data Is Damaged 26-26
Restarting If Critical Data Is Not Damaged 26-28

Chapter 27 What Is Consistency Checking?
Performing Periodic Consistency Checking 27-4

Verify Consistency 27-4
Monitor for Data Inconsistency 27-7
Retain Consistent Level-0 Dbspace 27-8

Dealing with Corruption 27-9
Symptoms of Corruption 27-9
Run oncheck First 27-9
I/O Errors on a Chunk 27-10

Collecting Diagnostic Information 27-11

Chapter 28 Situations to Avoid
Situations to Avoid in Administering the Database Server 28-3
Table of Contents xxi

xxii Adm
Section VII Monitoring

Chapter 29 Monitoring the Database Server
Information That You Can Monitor 29-5
Sources of Information for Monitoring the Database Server . . . 29-6

What Is the Message Log?. 29-7
Event Alarm 29-8
What Is the Console? 29-12
Monitoring with ON-Monitor 29-12
Monitoring with SMI Tables 29-12
Monitoring with onstat and oncheck Utilities 29-12
Monitoring with onperf 29-13
Monitoring with the onstat Banner Line 29-13

Monitoring Configuration Information 29-14
Monitoring Checkpoint Information 29-16
Monitoring Shared Memory 29-18

Monitoring Shared-Memory Segments 29-18
Monitoring Shared-Memory Profile 29-19
Monitoring Buffers 29-20
Monitoring Buffer-Pool Activity 29-23
Monitoring Latches 29-27
Monitoring Locks 29-29

Monitoring Active Tblspaces 29-32
Monitoring Virtual Processors 29-33
Monitoring Sessions and Threads 29-35
Monitoring PDQ Resources and Queries 29-40
Monitoring Transactions 29-41
Monitoring Databases 29-43
Monitoring Logging Activity 29-44

Monitoring Logical-Log Files 29-44
Monitoring the Physical-Log File 29-47
Monitoring the Physical-Log and Logical-Log Buffers 29-49

Monitoring the Database Server for Disabling I/O Errors 29-52
Using the Message Log to Monitor Disabling I/O Errors . . . 29-52
Using Event Alarms to Monitor Disabling I/O Errors 29-53

Monitoring Disk Usage 29-53
Monitoring Chunks 29-53
Monitoring Tblspaces and Extents 29-60
Monitoring TEXT and BYTE Data in a Blobspace 29-63
Monitoring TEXT and BYTE Data in a Dbspace 29-69

Monitoring High-Availability Data-Replication Status 29-71
inistrator’s Guide for Informix Dynamic Server

Section VIII Distributed Data

Chapter 30 Multiphase Commit Protocols
Two-Phase Commit Protocol 30-3

When Is the Two-Phase Commit Protocol Used? 30-3
What Goals Does the Two-Phase Commit

Protocol Achieve? 30-4
Two-Phase Commit Concepts 30-5
Phases of the Two-Phase Commit Protocol 30-6
Examples of Two-Phase Commit Transactions 30-8
How the Two-Phase Commit Protocol Handles Failures 30-10
Presumed-Abort Optimization 30-17

Independent Actions 30-18
What Initiates Independent Action? 30-19
Possible Results of Independent Action 30-19
The Heuristic Rollback Scenario 30-22
The Heuristic End-Transaction Scenario 30-26
Tracking a Global Transaction 30-28

Two-Phase Commit Protocol Errors 30-29
Two-Phase Commit and Logical-Log Records 30-30

Logical-Log Records When the Transaction Commits 30-31
Logical-Log Records Written During a Heuristic Rollback . . . 30-33
Logical-Log Records Written After a Heuristic End

Transaction 30-35
Configuration Parameters Used in Two-Phase Commits 30-37

Function of the DEADLOCK_TIMEOUT Parameter 30-37
Function of the TXTIMEOUT Parameter 30-37

Heterogeneous Commit Protocol 30-38
Which Gateways Can Participate in a Heterogeneous

Commit Transaction? 30-39
Enabling and Disabling Heterogeneous Commit 30-40
How Does Heterogeneous Commit Work 30-41
Implications of a Failed Heterogeneous Commit 30-43

Chapter 31 Recovering Manually from Failed Two-Phase Commit
Procedure to Determine If Manual Recovery Is Required 31-3

Determine If a Transaction Was Implemented
Inconsistently 31-4

Determine If the Distributed Database Contains
Inconsistent Data 31-6

Decide If Action Is Needed to Correct the Situation 31-9
Example of Manual Recovery 31-10
Table of Contents xxiii

xxiv Adm
Section IX Reference

Chapter 32 ON-Monitor for UNIX
Using ON-Monitor 32-3

Help and Navigation Within ON-Monitor 32-4
Executing Shell Commands from Within ON-Monitor 32-4

ON-Monitor Screen Options 32-4
Setting Configuration Parameters with ON-Monitor 32-12

Chapter 33 Configuration Parameters
ONCONFIG File Conventions 33-5
ONCONFIG Parameters 33-6
ADTERR, ADTMODE, ADTPATH, and ADTSIZE 33-8
AFF_NPROCS 33-9
AFF_SPROC . 33-10
ALARMPROGRAM 33-11
BAR_ACT_LOG, BAR_BSALIB_PATH, BAR_MAX_BACKUP,

BAR_NB_XPORT_COUNT, BAR_RETRY, and
BAR_XFER_BUF_SIZE 33-11

BUFFERS . 33-12
CKPTINTVL . 33-13
CLEANERS . 33-14
CONSOLE . 33-15
DATASKIP . 33-16
DBSERVERALIASES 33-17
DBSERVERNAME 33-18
DBSPACETEMP 33-19
DEADLOCK_TIMEOUT 33-21
DRAUTO . 33-22
DRINTERVAL 33-23
DRLOSTFOUND 33-24
DRTIMEOUT 33-25
DS_MAX_QUERIES 33-26
DS_MAX_SCANS 33-27
DS_TOTAL_MEMORY 33-28
DUMPCNT . 33-32
DUMPCORE 33-33
DUMPDIR . 33-34
DUMPGCORE 33-34
inistrator’s Guide for Informix Dynamic Server

DUMPSHMEM 33-35
FILLFACTOR . 33-36
HETERO_COMMIT 33-36
LBU_PRESERVE 33-37
LOCKS . 33-38
LOG_BACKUP_MODE 33-39
LOGBUFF . 33-40
LOGFILES . 33-41
LOGSIZE . 33-42
LOGSMAX . 33-43
LRUS . 33-44
LRU_MAX_DIRTY 33-45
LRU_MIN_DIRTY 33-45
LTAPEBLK . 33-46
LTAPEDEV . 33-47
LTAPESIZE . 33-48
LTXEHWM . 33-49
LTXHWM . 33-50
MAX_PDQPRIORITY 33-51
MIRROR . 33-52
MIRROROFFSET 33-53
MIRRORPATH 33-53
MSGPATH . 33-54
MULTIPROCESSOR 33-55
NETTYPE . 33-56
NOAGE . 33-60
NUMAIOVPS . 33-61
NUMCPUVPS 33-62
OFF_RECVRY_THREADS 33-63
ON_RECVRY_THREADS 33-64
ONDBSPACEDOWN 33-65
OPCACHEMAX 33-66
OPTCOMPIND 33-67
PHYSBUFF . 33-68
PHYSDBS . 33-69
PHYSFILE . 33-70
RA_PAGES . 33-71
RA_THRESHOLD 33-72
RESIDENT . 33-73
Table of Contents xxv

xxvi Adm
RESTARTABLE_RESTORE 33-74
ROOTNAME 33-75
ROOTOFFSET 33-75
ROOTPATH . 33-76
ROOTSIZE . 33-77
SERVERNUM 33-78
SHMADD . 33-79
SHMBASE . 33-80
SHMTOTAL . 33-81
SHMVIRTSIZE 33-82
SINGLE_CPU_VP 33-83
STACKSIZE . 33-84
STAGEBLOB 33-85
TAPEBLK . 33-86
TAPEDEV . 33-87
TAPESIZE . 33-89
TXTIMEOUT 33-90
USEOSTIME . 33-91

Chapter 34 The sysmaster Database
What Is the sysmaster Database? 34-3
Using the System-Monitoring Interface 34-5

What Are the SMI Tables? 34-5
Accessing SMI Tables 34-6

The System-Monitoring Interface Tables 34-8
sysadtinfo 34-9
sysaudit . 34-10
syschkio . 34-11
syschunks 34-11
sysconfig 34-13
sysdatabases 34-14
sysdbslocale 34-15
sysdbspaces 34-15
sysdri . 34-17
sysextents 34-18
syslocks . 34-18
syslogs . 34-19
inistrator’s Guide for Informix Dynamic Server

sysprofile . 34-20
sysptprof . 34-23
syssesprof. 34-24
syssessions 34-26
sysseswts . 34-28
systabnames 34-29
sysvpprof . 34-30

The SMI Tables Map 34-30
Using SMI Tables to Obtain onstat Information 34-33

Chapter 35 Utilities
The -V Option . 35-4
Multibyte Characters 35-4
oncheck: Check, Repair, or Display 35-5
ondblog: Change Logging Mode 35-18
oninit: Initialize Dynamic Server 35-20
onlog: Display Logical-Log Contents 35-23
onmode: Mode and Shared-Memory Changes 35-28
onparams: Modify Log-Configuration Parameters 35-43
onspaces: Manage Database Spaces 35-48
onstat: Monitor Database Server Operation 35-62
ontape: Logging, Archives, and Restore 35-95

Chapter 36 Message-Log Messages
How the Messages Are Ordered in This Chapter 36-3
Message Categories 36-4
Messages: A-B 36-4
Messages: C . 36-6
Messages: D-E-F 36-14
Messages: G-H-I 36-19
Messages: J-K-L-M 36-20
Messages: N-O-P 36-26
Messages: Q-R-S 36-33
Messages: T-U-V 36-38
Messages: W-X-Y-Z 36-42
Messages: Symbols 36-43
Table of Contents xxvii

xxviii Ad
Chapter 37 Interpreting Logical-Log Records
Reading Logical-Log Records 37-3

Transactions That Drop a Table or Index 37-4
Transactions That Are Rolled Back 37-4
Checkpoints with Active Transactions 37-5
Distributed Transactions 37-5

Logical-Log Record Structure 37-6
Logical-Log Record Header 37-6
Logical-Log Record Types and Additional Columns. 37-7

Chapter 38 Disk Structures and Storage
Dbspace Structure and Storage 38-4

Structure of the Root Dbspace 38-4
Structure of a Regular Dbspace 38-15
Structure of a Mirrored Chunk 38-17
Structure of the Chunk Free-List Page 38-18
Structure of the Tblspace Tblspace 38-19
Structure of the Database Tblspace. 38-24
Structure of a Dbspace Bit-Map Page 38-25
Structure and Allocation of an Extent 38-27
Structure and Storage of a Dbspace Page 38-34
Structure of B-Tree Index Pages 38-48

Blobspace Structure and Storage 38-59
Structure of a Blobspace 38-59
TEXT and BYTE Data Storage and the Descriptor 38-61
Structure of a Dbspace Blobpage 38-62
Blobspace Page Types 38-64
Structure of a Blobspace Blobpage 38-65

Database and Table Creation: What Happens on Disk 38-68
Creating a Database 38-68
Creating a Table 38-69

Appendix A Files That the Database Server Uses

Appendix B Trapping Errors

Index
ministrator’s Guide for Informix Dynamic Server

Introduction

Introduction
About This Manual 3
Types of Users 3
Software Dependencies 4
Assumptions About Your Locale 4
Demonstration Database 5

New Features . 6

Documentation Conventions 7
Typographical Conventions 8
Icon Conventions 8

Comment Icons 9
Feature, Product, and Platform Icons 9

Command-Line Conventions 10
How to Read a Command-Line Diagram 12

Additional Documentation 13
On-Line Manuals 13
Printed Manuals 14
Error Message Files 14
Documentation Notes, Release Notes, Machine Notes 15

Compliance with Industry Standards 16

Informix Welcomes Your Comments 16

2 Admin
istrator’s Guide for Informix Dynamic Server

R eadthis introduction for an overview of the information provided
in this manual and for an understanding of the documentation conventions
used.

About This Manual
This manual is a complete guide to the features that make up Informix
Dynamic Server. This book is both a user guide and a reference manual. The
first eight sections cover important basic information about the product. The
last section contains reference material for using Dynamic Server.

This manual is intended to help you understand, install, configure, and use
Dynamic Server to meet your needs.

Types of Users
This manual is for the following users:

■ Database users

■ Database administrators

■ Database server administrators

■ Programmers in the following categories

❑ Application developers

❑ DataBlade-module developers

❑ Authors of user-defined routines
Introduction 3

Software Dependencies
This manual assumes that you have the following background:

■ A working knowledge of your computer, your operating system,
and the utilities that your operating system provides

■ Some experience working with relational databases or exposure to
database concepts

■ Some experience with database server administration, operating-
system administration, or network administration

If you have limited experience with relational databases, SQL, or your
operating system, refer to Getting Started with Informix Dynamic Server for a
list of supplementary titles.

Software Dependencies
This manual assumes that your database server is one of the following
products:

■ Informix Dynamic Server, Version 7.3

■ Informix Dynamic Server, Developer Edition, Version 7.3.

■ Informix Dynamic Server, Workgroup Edition, Version 7.3.

Assumptions About Your Locale
Informix products can support many languages, cultures, and code sets. All
culture-specific information is brought together in a single environment,
called a GLS (Global Language Support) locale.

This manual assumes that you are using the default locale, en_us.8859-1. This
locale supports U.S. English format conventions for dates, times, and
currency. In addition, this locale supports the ISO 8859-1 code set, which
includes the ASCII code set plus many 8-bit characters such as é, è, and ñ.
4 Administrator’s Guide for Informix Dynamic Server

Demonstration Database
If you plan to use nondefault characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale(s). For instructions on
how to specify a nondefault locale, additional syntax, and other consider-
ations related to GLS locales, see the Informix Guide to GLS Functionality.

Demonstration Database
The DB-Access utility, which is provided with your Informix database server
products, includes a demonstration database called stores7 that contains
information about a fictitious wholesale sporting-goods distributor. You can
use SQL scripts provided with DB-Access to derive a second database, called
sales_demo. This database illustrates a dimensional schema for data-
warehousing applications. Sample command files are also included for
creating and populating these databases.

Many examples in Informix manuals are based on the stores7 demonstration
database. The stores7 database is described in detail and its contents are
listed in the Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside
in the $INFORMIXDIR/bin directory on UNIX platforms and the
%INFORMIXDIR%\bin directory on Windows NT platforms. For a complete
explanation of how to create and populate the stores7 demonstration
database, refer to the DB-Access User Manual. For an explanation of how to
create and populate the sales_demo database, refer to the Informix Guide to
Database Design and Implementation.
Introduction 5

New Features
New Features
Most of the new features for Version 7.3 of Informix Dynamic Server fall into
five major areas:

■ Performance

■ Reliability, availability, and serviceability

■ Manageability

■ Windows NT-specific features

■ Application migration

Several additional features affect connectivity, replication, and the optical
subsystem. For a comprehensive list of new features, see the release notes for
the database server.

This manual includes information about the following new features:

■ Manageability

❑ Informix Enterprise Command Center provides the ability to
manage your database environment on both UNIX and
Windows NT from a single Windows NT console.

❑ On UNIX, you can interface to the DCE-GSS communication
support module to provide user authentication, message
integrity and message privacy.

■ Reliability, availability, and serviceability

❑ New RESTARTABLE_RESTORE configuration parameter enables
the database server, with ON-Bar, to perform a restart of a failed
restore.

❑ New oncheck options, -R and w, provide flexibility, the option of
faster execution, and greater access to tables.

■ Performance

Using the SET (TABLE or INDEX) statement, users can request that
one or more fragments of a table or index remain resident in shared
memory, thereby reducing disk I/O and improving access time for
the table.
6 Administrator’s Guide for Informix Dynamic Server

Documentation Conventions
■ Windows NT-specific features

❑ You can now create and run multiple instances of the database
server on Windows NT.

❑ You can now allocate raw disk space, in addition to NTFS file
space, for database server disk space.

❑ You can now store TEXT and BYTE data on an optical subsystem.

■ Multiplexed Connections

You can configure the database server to use shared connection
threads so that the connection threads are able to service multiple
database connections over a single network connection.

■ Optical Subsystem

Informix Dynamic Server now provides shared library support for
the Informix Optical Subsystem; you no longer need to order the
Optical Subsystem as a separate product.

■ Enterprise Replication

The g option in the sqlhosts file or registry enables you to group
multiple database server entries as one logical entity. Enterprise
Replication uses groups to declare database servers for replication.

Documentation Conventions
This section describes the conventions that this manual uses. These conven-
tions make it easier to gather information from this and other Informix
manuals.

The following conventions are covered:

■ Typographical conventions

■ Icon conventions

■ Command-line conventions
Introduction 7

Typographical Conventions
Typographical Conventions
This manual uses the following standard set of conventions to introduce new
terms, illustrate screen displays, describe command syntax, and so forth.

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after you type the indicated information on your
keyboard. When you are instructed to “type” the text or to “press” other keys, you do
not need to press RETURN.

Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Convention Meaning

KEYWORD All keywords appear in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics.
Within syntax diagrams, values that you are to specify appear
in italics.

boldface Identifiers (names of classes, objects, constants, events,
functions, program variables, forms, labels, and reports),
environment variables, database names, filenames, table
names, column names, icons, menu items, command names,
and other similar terms appear in boldface.

monospace Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of feature-, product-, platform-,
or compliance-specific information within a table or section.

➞ This symbol indicates a menu item. For example, “Choose
Tools➞Options” means choose the Options item from the
Tools menu.
8 Administrator’s Guide for Informix Dynamic Server

Icon Conventions
Comment Icons

Comment icons identify warnings, important notes, or tips. This information
is always displayed in italics.

Feature, Product, and Platform Icons

Feature, product, and platform icons identify paragraphs that contain
feature-specific, product-specific, or platform-specific information.

Icon Description

The warning icon identifies vital instructions, cautions, or
critical information.

The important icon identifies significant information about
the feature or operation that is being described.

The tip icon identifies additional details or shortcuts for the
functionality that is being described.

Icon Description

Identifies information that relates to the Informix GLS
feature.

Identifies information that is specific to Dynamic Server
and its editions. However, in some cases, the identified
section applies only to Informix Dynamic Server and not to
Informix Dynamic Server, Workgroup and Developer
Editions. Such information is clearly identified.

 (1 of 2)

GLS

IDS
Introduction 9

Command-Line Conventions
These icons can apply to a row in a table, one or more paragraphs, or an entire
section. If an icon appears next to a section heading, the information that
applies to the indicated feature, product, or platform ends at the next heading
at the same or higher level. A ♦ symbol indicates the end of the feature-,
product-, or platform-specific information that appears within a table or a set
of paragraphs within a section.

Command-Line Conventions
This section defines and illustrates the format of commands that are available
in Informix products. These commands have their own conventions, which
might include alternative forms of a command, required and optional parts
of the command, and so forth.

Dynamic Server supports a variety of command-line options. Each valid
command-line option is illustrated in a diagram in Chapter 35, “Utilities.”

Each diagram displays the sequences of required and optional elements that
are valid in a command. A diagram begins at the upper-left corner with a
command. It ends at the upper-right corner with a vertical line. Between
these points, you can trace any path that does not stop or back up. Each path
describes a valid form of the command. You must supply a value for words
that are in italics.

Identifies information that is specific to the UNIX platform.

Identifies information that is specific to Informix Dynamic
Server, Workgroup and Developer Editions.

Identifies information that is specific to the Windows NT
environment.

Icon Description

 (2 of 2)

UNIX

W/D

WIN NT
10 Administrator’s Guide for Informix Dynamic Server

Command-Line Conventions
You might encounter one or more of the following elements on a command-
line path.

Element Description

command This required element is usually the product name or
other short word that invokes the product or calls the
compiler or preprocessor script for a compiled Informix
product. It might appear alone or precede one or more
options. You must spell a command exactly as shown
and use lowercase letters.

variable A word in italics represents a value that you must
supply, such as a database, file, or program name. A table
following the diagram explains the value.

-flag A flag is usually an abbreviation for a function, menu, or
option name or for a compiler or preprocessor argument.
You must enter a flag exactly as shown, including the
preceding hyphen.

.ext A filename extension, such as .sql or .cob, might follow
a variable that represents a filename. Type this extension
exactly as shown, immediately after the name of the file.
The extension might be optional in certain products.

(. , ; + * - /) Punctuation and mathematical notations are literal
symbols that you must enter exactly as shown.

' ' Single quotes are literal symbols that you must enter as
shown.

A reference in a box represents a subdiagram. Imagine
that the subdiagram is spliced into the main diagram at
this point. When a page number is not specified, the
subdiagram appears on the same page.

A reference to IMG in this manual refers to the Informix
Migration Guide. Imagine that the subdiagram is spliced
into the main diagram at this point.

A reference to ABG in this manual refer to the Archive and
Backup Guide for Informix Dynamic Server. Imagine that
the subdiagram is spliced into the main diagram at this
point.

 (1 of 2)

Privileges
p. 5-17

Privileges

Change Database
Format with
onmode -b
see IMG

Archive database
server

see ABG
Introduction 11

Command-Line Conventions
How to Read a Command-Line Diagram

Figure 1 shows a command-line diagram that uses some of the elements that
are listed in the previous table.

A shaded option is the default action.

Syntax within a pair of arrows indicates a subdiagram.

The vertical line terminates the command.

A branch below the main path indicates an optional
path. (Any term on the main path is required, unless
a branch can circumvent it.)

A loop indicates a path that you can repeat. Punctuation
along the top of the loop indicates the separator symbol
for list items.

A gate () on a path indicates that you can only use
that path the indicated number of times, even if it is part
of a larger loop. Here you can specify size no more than
three times within this statement segment.

Element Description

 (2 of 2)

ALL

ON

-f OFF

variable

,

size3

, 3

Figure 1
Example of a Command-Line Diagram

pathname

compilersetenv INFORMIXC
12 Administrator’s Guide for Informix Dynamic Server

Additional Documentation
To construct a command correctly, start at the top left with the command.
Then follow the diagram to the right, including the elements that you want.
The elements in the diagram are case sensitive.

Figure 1 diagrams the following steps:

1. Type the word setenv.

2. Type the word INFORMIXC.

3. Supply either a compiler name or pathname.

After you choose compiler or pathname, you come to the terminator.
Your command is complete.

4. Press RETURN to execute the command.

Additional Documentation
For additional information, you might want to refer to the following types of
documentation:

■ On-line manuals

■ Printed manuals

■ Error message files

■ Documentation notes, release notes, and machine notes

On-Line Manuals
An Answers OnLine CD that contains Informix manuals in electronic format
is provided with your Informix products. You can install the documentation
or access it directly from the CD. For information about how to install, read,
and print on-line manuals, see the installation insert that accompanies
Answers OnLine.
Introduction 13

Printed Manuals
Printed Manuals
To order printed manuals, call 1-800-331-1763 or send email to
moreinfo@informix.com. Please provide the following information when
you place your order:

■ The documentation that you need

■ The quantity that you need

■ Your name, address, and telephone number

Error Message Files
Informix software products provide ASCII files that contain all of the
Informix error messages and their corrective actions. For a detailed
description of these error messages, refer to Informix Error Messages in
Answers OnLine.

To read the error messages under UNIX, you can use the following
commands.

♦

To read error messages and corrective actions under Windows NT, use the
Informix Find Error utility. To display this utility, choose
Start➞Programs➞Informix from the Task Bar. ♦

Command Description

finderr Displays error messages on line

rofferr Formats error messages for printing

UNIX

WIN NT
14 Administrator’s Guide for Informix Dynamic Server

Documentation Notes, Release Notes, Machine Notes
Documentation Notes, Release Notes, Machine Notes
In addition to printed documentation, the following sections describe the on-
line files that supplement the information in this manual. Please examine
these files before you begin using your database server. They contain vital
information about application and performance issues.

On UNIX platforms, the following on-line files appear in the
$INFORMIXDIR/release/en_us/0333 directory.

♦

The following items appear in the Informix folder. To display this folder,
choose Start➞Programs➞Informix from the Task Bar.

Machine notes do not apply to Windows NT platforms. ♦

On-Line File Purpose

ADMINDOC_7.3 The documentation-notes file for your version of this manual
describes features that are not covered in this manual or that
have been modified since publication.

SERVERS_7.3 The release-notes file describes feature differences from earlier
versions of Informix products and how these differences might
affect current products. This file also contains information about
any known problems and their workarounds.

IDS_7.3 The machine-notes file describes any special actions that are
required to configure and use Informix products on your
computer. Machine Notes are named for the product described.

 Item Description

Documentation Notes This item includes additions or corrections to manuals,
along with information about features that may not be
covered in the manuals or that have been modified since
publication.

Release Notes This item describes feature differences from earlier
versions of Informix products and how these differ-
ences might affect current products. This file also
contains information about any known problems and
their workarounds.

UNIX

WIN NT
Introduction 15

Compliance with Industry Standards
Compliance with Industry Standards
The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. Informix SQL-based products are fully compliant
with SQL-92 Entry Level (published as ANSI X3.135-1992), which is identical
to ISO 9075:1992. In addition, many features of Informix database servers
comply with the SQL-92 Intermediate and Full Level and X/Open SQL CAE
(common applications environment) standards.

Informix Welcomes Your Comments
Please tell us what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about corrections or clari-
fications that you would find useful. Include the following information:

■ The name and version of the manual that you are using

■ Any comments that you have about the manual

■ Your name, address, and phone number

Write to us at the following address:

Informix Software, Inc.
SCT Technical Publications Department
4100 Bohannon Drive
Menlo Park, CA 94025

If you prefer to send email, our address is:

doc@informix.com

Or send a facsimile to the Informix Technical Publications Department at:

650-926-6571

We appreciate your feedback.
16 Administrator’s Guide for Informix Dynamic Server

on
 I
What Is Informix Dynamic

Server?
Se
ct

i

1
Chapter
Introducing Informix Dynamic
Server
What Is Informix Dynamic Server? 1-3
Client/Server Architecture 1-4

Client Application Types 1-4
Connecting Clients and Database Servers 1-5

Scalability. 1-5
High Performance 1-6

Unbuffered Disk Management 1-6
Dynamic Shared-Memory Management 1-7
Dynamic Thread Allocation 1-7
Fragmentation and Parallelization 1-8

Fault Tolerance and High Availability 1-8
Dbspace and Logical-Log Backups of Transaction

Records 1-9
Fast Recovery 1-9
Mirroring 1-10
High-Availability Data Replication. 1-10
Point-in-Time Recovery 1-10

Dynamic System Administration. 1-11
Distributed Data Queries 1-11
Database Server Security 1-12

Features Beyond the Scope of Dynamic Server 1-12
No Bad-Sector Mapping. 1-12
No Scanning or Compression of TEXT and BYTE Data Types . . . 1-13

1-2 Adm
inistrator’s Guide for Informix Dynamic Server

This chapter introduces Informix Dynamic Server. This chapter
includes the following information:

■ What is Informix Dynamic Server?

■ Dynamic Server features

■ Features beyond the scope of Dynamic Server

These sections provide an overview of the database server and direct you to
more detailed information in this document or in other documents.

What Is Informix Dynamic Server?
Informix Dynamic Server is a multithreaded relational database server that
exploits symmetric multiprocessor (SMP) and uniprocessor architectures.

Dynamic Server provides the following features:

■ Client/server architecture

■ Scalability

■ High performance

■ Fault tolerance and high availability

■ Dynamic system administration

■ Distributed data queries

■ Database server security

Each of these features is explained in the following sections.
Introducing Informix Dynamic Server 1-3

Client/Server Architecture
Client/Server Architecture
Dynamic Server is a database server that processes requests for data from client
applications. The client is an application program that you run to request
information from a database.

The database server accesses the requested information from its databases
and sends back the results to the client applications. Accessing the database
includes activities such as coordinating concurrent requests from multiple
clients, performing read and write operations to the databases, and enforcing
physical and logical consistency on the data.

Client applications use Structured Query Language (SQL) to send requests
for data to the database server. Client programs include the DB-Access utility
and programs that you write using an Informix API such as
INFORMIX-ESQL/C or INFORMIX-CLI.

Client Application Types

There are two major classes of applications that operate on data that is in a
relational database:

■ On-line transaction processing (OLTP) applications

■ Decision-support system (DSS) applications

OLTP Applications

OLTP applications are often used to capture new data or update existing data.
These operations typically involve quick, indexed access to a small number
of rows. An order-entry system is a typical example of an OLTP application.
OLTP applications are often multiuser applications with acceptable response
times measures in fractions of seconds. OLTP applications have the following
characteristics:

■ Simple transactions that involve small amounts of data

■ Indexed access to data

■ Many users

■ Frequent requests

■ Fast response times
1-4 Administrator’s Guide for Informix Dynamic Server

Scalability
DSS Applications

DSS applications are often used to report on or consolidate data that has been
captured through OLTP operations over time. These applications provide
information that is often used for accounting, strategic planning, and
decision-making. Data within the database is typically queried but not
updated during DSS operations. Typical DSS applications include payroll,
inventory, and financial reports.

Connecting Clients and Database Servers

A client application communicates with the database server through the
connection facilities that the database server provides.

At the source-code level, a client connects to the database server through an
SQL statement. Beyond that, the client’s use of connection facilities is
transparent to the application.

As the database administrator, you specify the types of connections that the
database server supports in a connectivity-information file called sqlhosts.
The sqlhosts file contains the names of each of the database servers, and any
aliases, to which the clients on a computer can connect. The connections
facilities as well as sqlhosts are fully described in Chapter 4, “Client/Server
Communications.”

Scalability
Informix dynamic scalable architecture (DSA) describes the capability of an
Informix database server to scale its resources to the demands that
applications place on it. A key element of DSA is the virtual processors that
manage central processing, disk I/O, networking, and optical functions in
parallel.

The dynamic-scalable architecture is described in Chapter 9, “What Is
Informix Dynamic Scalable Architecture?” To understand how the database
server manages shared memory to scale performance, see Chapter 11,
“Shared Memory.” For tuning and performance information, refer to your
Performance Guide.
Introducing Informix Dynamic Server 1-5

High Performance
High Performance
 Dynamic Server achieves high performance through the following
mechanisms:

■ Raw disk management

■ Dynamic shared-memory management

■ Dynamic thread allocation

■ Parallelization

Each of these mechanisms is explained in the following paragraphs.

Unbuffered Disk Management

The database server uses unbuffered disk access to improve the speed of I/O
operations. UNIX platforms provide unbuffered access with character-special
devices (also known as raw disk devices). Windows NT platforms provide
unbuffered access through both unbuffered files and raw disk devices. For
more information about character-special devices, refer to your UNIX
operating-system documentation. For more information about unbuffered
files on Windows NT platforms, refer to your Windows NT operating-system
documentation.

When you store tables on raw disks or unbuffered files, the database server
can manage the physical organization of data and minimize disk I/O. When
you store tables in this manner, you can receive the following performance
advantages:

■ The database server optimizes table access by guaranteeing that
rows are stored contiguously.

■ The database server bypasses operating-system I/O overhead by
performing direct data transfers between disk and shared memory.

On UNIX, if performance is not a primary concern, you can configure the
database server to stored data in regular (buffered) operating-system files
(which are also known as cooked files). When the database server uses
buffered filed, the database server manages the file contents, but the
operating system manages the disk I/O. ♦

UNIX
1-6 Administrator’s Guide for Informix Dynamic Server

High Performance
In the Windows NT environment, regular buffered files correspond to cooked
files on UNIX. However, the database server uses unbuffered files rather than
buffered files. Informix recommends that you use unbuffered files to simplify
disk administration. ♦

For more information about how the database server uses disk space, see
Chapter 13, “Where Is Data Stored?”

Dynamic Shared-Memory Management

All applications that use a single instance of a database server share data in
the memory space of the database server. After one application reads data
from a table, other applications can access whatever data is already in
memory. Through shared-memory management, the database server
minimizes disk access and the associated impact on performance.

Shared memory contains both data from the database and control
information. Because the data needed by various applications is located in a
single, shared portion of memory, all control information needed to manage
access to that data can be located in the same place. Dynamic Server adds
memory dynamically as it needs it, and you, as the administrator, can also
add segments to shared memory if necessary. For information on how to add
a segment to shared memory, refer to Chapter 12, “Managing Shared
Memory.”

Dynamic Thread Allocation

The database server supports multiple client applications using a relatively
small number of processes called virtual processors. A virtual processor is a
multithreaded process that can serve multiple clients and, where necessary,
run multiple threads to work in parallel for a single query. In this way, the
database server provides a flexible architecture that provides dynamic load
balancing for both on-line transaction processing (OLTP) and for decision-
support applications.

WIN NT
Introducing Informix Dynamic Server 1-7

Fault Tolerance and High Availability
On Windows NT platforms, a virtual processor is implemented as a Windows
NT thread rather than as a process. Therefore, on Windows NT both the
operating system and the database server are multithreaded such that
database server threads run within Windows NT threads.

Important: To keep the distinction clear between database server threads and
Windows NT threads, this manual uses the term process to refer to both a UNIX
process and a Windows NT thread. ♦

For a description of the Dynamic Server dynamic scalable architecture, refer
to Chapter 9, “What Is Informix Dynamic Scalable Architecture?”

Fragmentation and Parallelization

The database server uses local table partitioning (also called fragmentation) to
intelligently distribute tables across disks to improve performance. If you
have very large databases (VLDBs), the ability to fragment data is important
if you want to efficiently manage the data.

The database server can allocate multiple threads to work in parallel on a
single query. This feature is known as the parallel database query (PDQ)
feature.

The PDQ feature is most effective when you use it with the fragmentation
feature. For an overview of fragmentation and PDQ, refer to Chapter 15,
“Overview of Table Fragmentation and PDQ.”

Fault Tolerance and High Availability
The database server uses the following logging and recovery mechanisms to
protect data integrity and consistency in the event of an operating-system or
media failure:

■ Dbspace and logical-log backups of transaction records

■ Fast recovery

■ Mirroring

■ Data replication

■ Point-in-time recovery

WIN NT/95
1-8 Administrator’s Guide for Informix Dynamic Server

Fault Tolerance and High Availability
Dbspace and Logical-Log Backups of Transaction Records

Dynamic Server provides you with the ability to back up the data that it
manages and also store changes to the database server and data since the
backup was performed. The changes are stored in logical-log files.

As explained in the Backup and Restore Guide (for ON-Bar) and in the Archive
and Backup Guide (for ON-Archive and ontape), the database server allows
you to create backup tapes and logical-log backup tapes while users are
accessing databases. You can also use on-line archiving to create incremental
backups. Incremental backups enable you to back up only data that has
changed since the last backup, which reduces the amount of time that a
backup would otherwise require.

After a media failure, if critical data was not damaged (and Dynamic Server
remains in on-line mode), you can restore only the data that was on the failed
media, leaving other data available during the restore.

Fast Recovery

When the database server starts up, it checks if the physical log is empty
because that implies that it shut down in a controlled fashion. If the physical
log is not empty, the database server automatically performs an operation
called fast recovery. Fast recovery automatically restores databases to a state of
physical and logical consistency after a system failure that might have left
one or more transactions uncommitted. During fast recovery, the database
server uses its logical log and physical log to perform the following operations:

■ Restore the databases to their state at the last checkpoint

■ Roll forward all committed transactions since the last checkpoint

■ Roll back any uncommitted transactions

The database server spawns multiple threads to work in parallel during fast
recovery. Fast recovery is explained in detail in Chapter 22, “What Is Fast
Recovery?”
Introducing Informix Dynamic Server 1-9

Fault Tolerance and High Availability
Mirroring

When you use disk mirroring, the database server writes data to two
locations. Mirroring eliminates data losses due to media (hardware) crashes.
If mirrored data becomes unavailable for any reason, the mirror of the data is
accessed immediately and transparently to users. Mirroring is explained in
Chapter 23, “What Is Mirroring?”

High-Availability Data Replication

If your organization requires a high degree of availability, you can replicate
the database server and its databases, running simultaneously on a second
computer. Replicating the database server and its databases provides you
with a backup system in the event of a catastrophic failure; if one site
experiences a disaster, applications can be directed immediately to use the
second database server in the pair. For more information about data
replication, refer to Chapter 25, “What Is High-Availability Data
Replication?”

Running data replication also allows you to balance read-only applications
(for example, decision-support applications) across both database servers in
the data-replication pair.

Point-in-Time Recovery

Dynamic Server allows you to restore data from backup media to a specified
point in time following the time of the backup. This feature enables you to
restore a corrupted database to a point in time at which you know that the
data was reliable. If you use ON-Bar for your backup and restore tool, refer to
your Backup and Restore Guide for more information about this feature. If you
use ON-Archive, refer to your Archive and Backup Guide.
1-10 Administrator’s Guide for Informix Dynamic Server

Dynamic System Administration
Dynamic System Administration
Distributed databases require dynamic system administration tools to
monitor and tune the database server. The database server provides many
administration tools to help you perform these tasks easily. These tools
includes the system monitoring interface (SMI), the onperf performance
utility, command-line utilities, and the Informix Enterprise Command
Center.

IECC is a graphical interface, which runs on Windows NT, for administering
Dynamic Server on both UNIX and Windows NT platforms. IECC enables you
to create and modify databases, tables, synonyms, views, stored procedures,
and triggers. It also enables you to perform system management, event
management, and data management tasks, including backups and restores.
For more information about IECC, see the Informix Enterprise Command Center
User Guide.

Distributed Data Queries
Dynamic Server allows users to query (and update) more than one database
across multiple database servers within a single transaction. The database
servers can reside on a single host computer or on the same network. For a
list of the types of networks that the database server supports, refer to
Chapter 4, “Client/Server Communications.”

A two-phase commit protocol ensures that transactions are uniformly
committed or rolled back across multiple database servers. You can use
Informix database servers with INFORMIX-Enterprise Gateway products to
manipulate data in non-Informix databases. The heterogeneous commit
protocol ensures that updates to one or more Informix databases and one
non-Informix database in a single transaction are uniformly committed or
rolled back. These protocols are described in detail in Chapter 30,
“Multiphase Commit Protocols.”

You can also use Dynamic Server in a heterogeneous environment that
conforms to X/Open. For more information about using Dynamic Server
within an X/Open environment, refer to the TP/XA Programmer’s Manual. ♦

UNIX
Introducing Informix Dynamic Server 1-11

Database Server Security
Database Server Security
Dynamic Server enforces access privileges to databases and tables through
the use of the SQL statements GRANT and REVOKE. Database and table
privileges are explained in the Informix Guide to SQL: Tutorial and the Informix
Guide to SQL: Syntax.

In addition to this type of security, Dynamic Server offers the ability to audit
database events on a database server-wide basis. Auditing, described in your
Trusted Facility Manual, enables you to track which users performed which
actions to which objects at what time. You can use this information to monitor
database activity for suspicious use, deter unscrupulous users, or even act as
evidence of database server abuse.

Features Beyond the Scope of Dynamic Server
As a Dynamic Server administrator, you need to know the boundaries of
Dynamic Server capabilities. This section describes the tasks that lie outside
the scope of the database server but are provided by your host computer,
operating system, or some other product.

No Bad-Sector Mapping
Dynamic Server relies on the operating system of your host computer for
bad-sector mapping. The database server learns of a bad sector or a bad track
when it receives a failure return code from a system call. When this situation
occurs, the database server retries the access several times to ensure that the
condition is not spurious. If the condition is confirmed, the database server
marks as down the chunk where the read or write was attempted.

The database server cannot take any action to identify the bad cylinder, track,
or sector location because the only information available is the byte
displacement within the chunk where the I/O operation was attempted.

If the database server detects an I/O error on a chunk that is not mirrored, it
marks the chunk as down. If the down chunk contains logical-log files, the
physical log, or the root dbspace, the database server immediately initiates an
abort. Otherwise, the database server can continue to operate, but
applications cannot access the down chunk until its dbspace is restored.
1-12 Administrator’s Guide for Informix Dynamic Server

No Scanning or Compression of TEXT and BYTE Data Types
No Scanning or Compression of TEXT and BYTE Data Types
Dynamic Server receives TEXT and BYTE data into an existing table in the
following ways:

■ From the DB-Access LOAD statement

■ From the dbload utility

■ From INFORMIX-ESQL/C programs

For information on how to write TEXT and BYTE data to a database from an
application program, refer to the INFORMIX-ESQL/C Programmer’s Manual.

The database server does not contain any mechanisms for scanning TEXT and
BYTE data and inserting the data into a file, or for compression, after the data
has been scanned.
Introducing Informix Dynamic Server 1-13

2
Chapter
Overview of Database Server
Administration
Who Is the Database Server Administrator? 2-3

Initial Tasks . 2-4

Routine Tasks. 2-5
Changing Database Server Operating Modes 2-5
Backing Up Data and Logical-Log Files 2-6
Monitoring Activity 2-6
Checking for Consistency 2-6

Configuration Tasks 2-7
Managing Disk Space 2-7
Managing Database-Logging Status. 2-7
Logical-Log Administration 2-7
Physical-Log Administration 2-8
Using Auditing 2-8
Using Mirroring 2-8
Using Data Replication 2-9
Managing Shared Memory 2-9
Managing Virtual Processors 2-10
Managing Parallel Database Query 2-10

Administration Tasks Summary 2-11

2-2 Adm
inistrator’s Guide for Informix Dynamic Server

As a database server administrator, you need to be aware of the
tasks and responsibilities that fall into your domain. This chapter describes
the three types of tasks you need to perform as an administrator of an
Informix database server:

■ Initial installation and configuration tasks

■ Routine tasks that you perform on a regular basis

■ Configuration tasks that you perform less frequently

If you are familiar with database server administration tasks and only need a
quick review, see “Administration Tasks Summary” on page 2-11.

Who Is the Database Server Administrator?
Most database server administrative tasks require you to have the privileges
accorded to the database server administrator. On UNIX systems, you must
log in as user informix to acquire the privileges of the database server
administrator. On Windows NT platforms, you must belong to the Informix-
Admin group to administer the database server.

Important: This manual uses the term user informix to refer to the database server
administrator for both UNIX and Windows NT platforms. For a Windows NT
platform, user informix means that you must be a member of the Informix-Admin
group. Similarly, when this manual refers to user root, it means that you must be the
user administrator on a Windows NT platform.
Overview of Database Server Administration 2-3

Initial Tasks
Initial Tasks
When you first acquire your database server, you need to perform the
following initial installation and configuration tasks:

■ Plan for the database server

■ Configure the operating system

■ Install the database server

■ Configure the database server

■ Initialize the database server

If you are migrating from another Informix database server, refer to the
Informix Migration Guide.

The following list explains each task in more detail.

1. Planning for the database server

When you plan for the installation and use of a database server, you
need to examine your priorities and resources. Refer to “Planning for
the Database Server” on page 3-3 to review a list of topics.

2. Altering your Operating System

Before you install the product, you might need to define the install
directories and operating-system consoles. Refer to “Configuring the
Operating System” on page 3-5 to determine if you need to alter your
operating-system configuration prior to the installation of the
database server product.

3. Installing the Product

For information about how to install the product, see your
Installation Guide.

If you are installing another database server instance on the same
physical machine, see Chapter 6, “Using Multiple Residency.”

After you install the database server, review the release notes for the
operating-system version, patches to install, and other operating
system information.
2-4 Administrator’s Guide for Informix Dynamic Server

Routine Tasks
4. Configure the database server

When you install the database server, many of the parameters that
define the database server, such as database space, tape devices, logs,
and so on, are already set to the Informix database server defaults. At
this point in time, you need to configure the database server with
your specific parameters, which includes defining connectivity. The
database server uses sqlhosts to specify how clients connect to the
database server. For more information on how to configure the
database server, refer to Chapter 3, “Configuring the Database
Server.” For more information on how to define connectivity, see
Chapter 4, “Client/Server Communications.”

5. Initialize the database server

When you initialize the database server, you initialize disk space and
shared memory. For complete instructions on how to initialize the
database server, refer to Chapter 8, “Initializing the Database
Server.”

Routine Tasks
Depending on the needs of your organization, you might be responsible for
performing the periodic tasks described in the following paragraphs. Not all
of these tasks are appropriate for every installation. For example, if your
database server is available 24 hours a day, 7 days a week, you might not
bring the database server to off-line mode, so database server operating
mode changes would not be a routine task.

Changing Database Server Operating Modes
As the database server administrator, your responsibilities include starting
and shutting down the database server, as well as for placing it in
administration mode when necessary. Chapter 7, “Managing Database
Server Operating Modes,” explains how to change database server modes.
Overview of Database Server Administration 2-5

Backing Up Data and Logical-Log Files
Backing Up Data and Logical-Log Files
Frequent backing up of data and logical-log files ensures that the database
server can be recovered in case of a failure. The manual for your backup and
restore system provides you with advice and guidelines for scheduling and
coordinating dbspace and logical-log backup activity. The following table
lists the manuals available to help you backup and restore your system.

Monitoring Activity
The Informix database server design lets you monitor every aspect of the
database server such as shared-memory information, virtual processors,
sessions and threads, logging activity, disk usage, and so on. Chapter 29,
“Monitoring the Database Server,” provides you with descriptions of the
available information, instructions for how to obtain information, and
suggestions for its use.

You can also use IECC to monitor database activity. For more information, see
the Informix Enterprise Command Center User Guide.

Checking for Consistency
The database server design detects database server malfunctions or problems
caused by hardware or operating-system errors. It detects problems by
performing assertions in many of its critical functions. An assertion is a
consistency check that verifies that the contents of a page, structure, or other
entity match what would otherwise be assumed. Informix recommends that
you perform occasional checks for data consistency. Chapter 27, “What Is
Consistency Checking?” describes these checks.

Tool Manual

ON-Bar Backup and Restore Guide

ON-Archive Archive and Backup Guide

ontape utility “ontape: Logging, Archives, and Restore” on page 35-95
2-6 Administrator’s Guide for Informix Dynamic Server

Configuration Tasks
Configuration Tasks
Configuration tasks are generally either setup tasks that involve initiating
and maintaining functionality or performance adjustments that might
become necessary as the usage pattern of your database server varies.

Managing Disk Space
If you plan to use more than one database server instance on the same
computer, be aware of the issues explained in Chapter 14, “Managing Disk
Space.”

You are responsible for planning and implementing the layout of information
managed by the database server on disks. The way you distribute the data
can greatly impact the performance of the database server.

Chapter 13, “Where Is Data Stored?” explains the advantages and drawbacks
of different disk configurations. Chapter 14, “Managing Disk Space,”
describes the actual disk-management tasks.

Managing Database-Logging Status
As a database server administrator, you can control whether a database uses
transaction logging or not, and if the logging is buffered or unbuffered. You
can also specify that a database is to be ANSI compliant.

Information about what these different logging options mean is in
Chapter 16, “What Is Logging?” Information on how to change logging
options is in Chapter 17, “Managing Database-Logging Status.”

Logical-Log Administration
Although backing up logical-log files is a routine task, logical-log
administration (the placement and sizing of log files, specifying high-water
marks) is required even when none of your databases use transaction
logging. Logical-log administration is in Chapter 18, “What Is the Logical
Log?”
Overview of Database Server Administration 2-7

Physical-Log Administration
Instructions for creating and modifying the logical-log configuration are in
Chapter 19, “Managing Logical-Log Files.”

Information on backing up the logical log is included in the manuals that
document the backup and restore systems. See “Backing Up Data and
Logical-Log Files” on page 2-6 for a list of the manuals.

Physical-Log Administration
You can change the size and location of the physical log as part of effective
disk management. For more information about the physical log, refer to
Chapter 21, “Managing the Physical Log.”

Using Auditing
If you use database server secure auditing, you might need to adjust a
number of aspects of the auditing configuration (where audit records are
stored, how to handle error conditions, and so on). You also might want to
change how users are audited when you suspect that they are abusing their
access privileges. These tasks, and others related to auditing, are explained in
your Trusted Facility Manual.

Using Mirroring
Mirroring is described in Chapter 23, “What Is Mirroring?” Informix
recommends that you mirror at least your root dbspace. Instructions for
mirroring are provided in Chapter 24, “Using Mirroring.”
2-8 Administrator’s Guide for Informix Dynamic Server

Using Data Replication
Using Data Replication
Informix database servers supports high-availability data replication and
Informix Enterprise Replication. High-availability data replication replicates
an entire database to another database server, providing a hot standby in case
of a computer crash or catastrophic failure. Enterprise Replication supports
asynchronous data replication and allows you to select the exact data you
require for replication. For more information on high-availability data
replication, see Chapter 25, “What Is High-Availability Data Replication?”
and Chapter 26, “Using High-Availability Data Replication.” For
information on Enterprise Replication, see the Guide to Informix Enterprise
Replication.

Managing Shared Memory
When you manage shared memory, you might perform any or all of the
following tasks:

■ Change the size or number of buffers (change the size of the logical-
log or physical-log buffer, or change the number of buffers in the
shared-memory buffer pool)

■ Change the values of shared-memory parameters (change the
values)

■ Change forced residency (on or off, temporarily or for this session)

■ Tune checkpoint intervals

■ Add segments to virtual shared memory

Use of shared memory is described in Chapter 11, “Shared Memory.”
Chapter 12, “Managing Shared Memory,” describes the procedures to
manage shared memory.
Overview of Database Server Administration 2-9

Managing Virtual Processors
Managing Virtual Processors
The number and type of virtual processors that allow your database server to
perform optimally depend on your hardware and on the type of database
activity that your database server supports.

Chapter 9, “What Is Informix Dynamic Scalable Architecture?” explains
what virtual processors are, and Chapter 10, “Managing Virtual Processors,”
explains how to change the virtual-processor configuration.

Managing Parallel Database Query
You can control the resources that the database uses to perform decision-
support queries in parallel. You need to balance the requirements of decision-
support queries against those of on-line transaction processing (OLTP)
queries. The resources that you need to consider are shared memory, threads,
temporary table space, and scan bandwidth. For information on parallel
database query (PDQ) and how fragmentation affects the performance of
PDQ, refer to your Performance Guide.
2-10 Administrator’s Guide for Informix Dynamic Server

Administration Tasks Summary
Administration Tasks Summary
The following tables list the initial, routine, and configuration tasks you
perform to administer the database server. Figure 2-1 lists the initial tasks.

Figure 2-1
Initial Tasks Summary

Figure 2-2 lists the routine tasks.

Figure 2-2
Routine Tasks Summary

Initial Tasks Information location

Plan for database server “Planning for the Database Server” on page 3-3

Pre-installation operating system changes “Configuring the Operating System” on page 3-5

Install the database server Your Installation Guide for Windows NT

Your Installation Guide for UNIX

Configure the database server “Configuring the Database Server” on page 3-7

Define connectivity Chapter 4, “Client/Server Communications”

Initialize the database server Chapter 8, “Initializing the Database Server”

Routine Tasks Information location

Change database server modes Chapter 7, “Managing Database Server Operating Modes.”

Backup data and logical log files:

■ ON-Bar

■ ON-Archive

■ ontape utility

Your Backup and Restore Guide

Your Archive and Backup Guide

“ontape: Logging, Archives, and Restore” on page 35-95

Monitor activity Chapter 29, “Monitoring the Database Server”

Check for data consistency Chapter 27, “What Is Consistency Checking?”
Overview of Database Server Administration 2-11

Administration Tasks Summary
Figure 2-3 lists the configuration tasks.

Figure 2-3
Configuration Tasks Summary

Configuration Tasks Information location

Manage disk space Chapter 14, “Managing Disk Space”

Analyze disk configuration Chapter 13, “Where Is Data Stored?”

Administer the logical log:

■ Size and placement of logical logs

■ Modify logical log configuration

■ Backup logical log

Chapter 18, “What Is the Logical Log?”

Chapter 19, “Managing Logical-Log Files”

Backup and Restore Guide

Administer the physical log Chapter 21, “Managing the Physical Log”

Administer auditing Trusted Facility Manual

Manage mirroring Chapter 23, “What Is Mirroring?”

Chapter 24, “Using Mirroring”

Replicate Data Chapter 25, “What Is High-Availability Data Replication?”

Chapter 26, “Using High-Availability Data Replication”

Guide to Informix Enterprise Replication

Manage Shared Memory Chapter 11, “Shared Memory”

Chapter 12, “Managing Shared Memory”

Manage Virtual Processors Chapter 10, “Managing Virtual Processors”

Manage Parallel Data Query (PDQ) Performance Guide
2-12 Administrator’s Guide for Informix Dynamic Server

n
II
Configuration
Se
ct

io

3
Chapter
Configuring the Database
Server
Planning for the Database Server 3-3
Consider Your Priorities 3-3
Consider Your Resources 3-4

Configuring the Operating System 3-5
Operating-System Administration Facilities 3-5
Configuring Operating-System Resources 3-6

Installing the Database Server 3-7

Configuring the Database Server 3-7
Set Environment Variables 3-8

Other Environment Variables 3-9
Prepare the ONCONFIG Configuration File 3-10

Preparing the ONCONFIG FIle on UNIX 3-11
Preparing the ONCONFIG FIle on Windows NT 3-11
Required and Optional Parameters 3-12
Overview of Configuration Parameters 3-13

Allocate Disk Space 3-28
Prepare the Connectivity Information 3-28
Prepare the ON-Archive Configuration File 3-29
Prepare for Global Language Support 3-29
Evaluate Operating-System Parameters 3-29
Start the Database Server and Initialize Disk Space 3-30

Starting and Initializing on UNIX 3-30
Starting and Initializing on Windows NT 3-30

Create Dbspaces and Blobspaces 3-30

3-2 Adm
Perform Administrative Tasks 3-31
Prepare Operating-System Startup and Shutdown

Scripts 3-31
Make Arrangements for Tape Management 3-33
Make Sure Users Have the Correct Environment

Variables 3-33
Warn System Administrator About cron Jobs 3-34
inistrator’s Guide for Informix Dynamic Server

Implementing a database-management system requires many
decisions, such as where to store the data, how to access the data, and how to
protect the data. How you implement an Informix database server can
greatly affect the performance of database operations.

The purpose of this chapter is to help you quickly start the database server
with a simple configuration and provide a point of orientation for a more
studied configuration process. The following topics appear in this chapter:

■ Planning for the database server

■ Configuring the operating system

■ Installing the database server

■ Configuring the database server

Planning for the Database Server
When you are planning for the database server, consider both your priorities
and your resources.

Consider Your Priorities
As you prepare the initial configuration and plan your backup and archiving
strategies, keep in mind the characteristics of your database server:

■ What is your highest priority, transaction speed or safety of the data?

■ Will the database server usually handle many short transactions or
fewer long transactions?

■ Will applications on other computers use this database server
instance?
Configuring the Database Server 3-3

Consider Your Resources
■ What is the maximum number of users that you can expect?

■ How much help or supervision will the users require? To what extent
do you want to control their database server environments?

■ Are you limited by resources for space, CPU, or availability of
operators?

■ How much does the database server instance need to do without
supervision?

Consider Your Resources
Before you start the initial database server configuration, collect as much of
the required information as possible. You need the following information:

■ How many disk drives are available? What are their device names?
Are some of the disk drives faster than others? How many disk
controllers are available?

The first time you initialize the database server, all tables, log files,
and indexes are stored in a the root dbspace on one disk drive. After
the database server is running, you can move different objects to
different drives. For example, you should put the most frequently
used tables on the fastest drives. For more information on how to
manage disk space, see Chapter 14, “Managing Disk Space.”

■ How many tape drives are available? What are their device names?
When is an operator available to change tapes?

You need to select the number and size of the logical-log files so that
they do not fill up before a tape backup can be made. The database
server keeps statistics that help you adjust these parameters after it
has been running for a while. Your backup strategy also needs to take
into account availability of tape drives. If you use ON-Bar as your
backup and restore tool, refer to your Backup and Restore Guide for
more information. For information on creating an archive, refer to
your Archive and Backup Guide.
3-4 Administrator’s Guide for Informix Dynamic Server

Configuring the Operating System
■ How much shared memory is available? How much of it can you use
for the database server?

The machines-notes file indicates which parameters are applicable
for each platform.

■ What are the host names and IP addresses of other computers on
your network?

Does your system run Network Information Service (NIS)?

Review the machine-notes file to determine the correct parameters
for each operating system.

Configuring the Operating System
You must perform several tasks to prepare your operating system for the
database server. You might need the assistance of the system administrator to
perform these tasks:

■ Identify operating-system administration facilities

■ Set up administration of the operating system

■ Configure shared memory and other operating-system resources

Operating-System Administration Facilities
Each operating system has its own set of tools for administration of multiple
computers and users. For example, these tools include a central console and
possibly the kerberos utility or various platform support programs. Your
operating-system administration guide indicates which of these tools are
applicable for database server system administration on your hardware
platform.
Configuring the Database Server 3-5

Configuring Operating-System Resources
If your operating system uses a central console, you can use that console to
manage and maintain the system from a central location. Some operating
systems refer to the console as a central-control workstation. Other operating
systems refer to it as an administrative workstation.

A database server system administrator can log in to the console from any
other computer to perform system management and monitoring tasks.

For details on how to set up your system console, refer to your operating-
system administration guide.

Configuring Operating-System Resources
Your database server product arrives with a machine-notes files that contains
recommended values that you use to configure operating-system resources.
Use these recommended values when you configure the operating system on
each computer within your operating environment.♦

You can specify the amount of shared memory for the database server on
some operating systems. The amount of available memory influences the
values that you can choose for the shared-memory parameters. In general,
increasing the space available for shared memory enhances performance.
You might also need to specify the number of locks and semaphores.

For background information on the role of operating-system kernel
parameters in your database server, see Chapter 11, “Shared Memory.”

In the Windows NT environment, Informix database servers require New
Technology File Systems (NTFS). If you have an existing File Allocation Table
(FAT) partition, you need to convert the partitions to NTFS. You can use the
Windows NT convert utility as shown in the following example:

convert /fs:ntfs

♦

UNIX

WIN NT
3-6 Administrator’s Guide for Informix Dynamic Server

Installing the Database Server
Installing the Database Server
Installation refers to the process of loading files from the product distribution
media onto your computer and running the installation script to set up the
product files.

In the Windows NT environment, Informix places the system files in
subdirectories under the root directory. If your computer has only
Windows NT installed, the root directory is WINNT. If your computer has
Windows NT and Windows 95 installed, the root is directory is WINDOWS. ♦

For information about how to install the database server, see your Installation
Guide.

If you run more than one instance of the database server on the same
computer, it is called multiple residency. To prepare to use multiple instances
of the database server, first install and configure one database server. Then
refer to Chapter 6, “Using Multiple Residency.”

Warning: You prepare multiple residency by initializing multiple instances of the
database server. Do not try to install the same version of database server more than
once from the install media.

Configuring the Database Server
After the database server is installed, it must be configured before it can be
brought on-line. Most of your configuration parameters are set to the default
setting during the installation of the product. However, you will want to
change the configuration parameters to customize the database server for
your data-processing environment.

In the Windows NT environment, the installation procedure prepares a file,
setenv.cmd, that sets the environment variables to their correct values. The
setenv.cmd file is stored in the %INFORMIXDIR% directory. You must
execute setenv.cmd before you can use any of the command-line utilities. If
you select Command Line utilities from the Informix Enterprise Command
Center, the file executes automatically. You can also execute setenv.cmd from
the command line. ♦

WIN NT

WIN NT
Configuring the Database Server 3-7

Set Environment Variables
To configure the database server

1. Set environment variables (page 3-8).

2. Prepare the ONCONFIG configuration file (page 3-10).

3. Allocate disk space (page 3-28).

4. Prepare the connectivity configuration file (page 3-28).

5. If you will be using ON-Archive for backups, prepare the
ON-Archive configuration file (page 3-29).

6. Prepare for Global Language Support (page 3-29). ♦
7. Evaluate operating-system parameters (page 3-29).

8. Start the database server and initialize disk space (page 3-30).

9. Create dbspaces and blobspaces, if desired (page 3-30).

10. Perform administrative tasks (page 3-31).

Set Environment Variables
All users must set the following environment variables before they access the
database server. For more information about the Informix environment
variables, see the Informix Guide to SQL: Reference.

■ INFORMIXDIR

The INFORMIXDIR environment variable specifies the directory
where the product files are installed. Set INFORMIXDIR to the
directory that you created for your Informix database server.

■ PATH

The PATH environment variable tells the shell the directories to
search for executable files. PATH must include the directory where
local copies of database server utilities and are stored. The following
table lists this directory for each platform.

Platform Directory

UNIX $INFORMIXDIR/bin

Windows NT %INFORMIXDIR%\bin

GLS
3-8 Administrator’s Guide for Informix Dynamic Server

Set Environment Variables
■ INFORMIXSERVER

The INFORMIXSERVER environment variable specifies the name of
the default database server.

■ ONCONFIG

The ONCONFIG environment variable specifies the name of the
active ONCONFIG configuration file. After you prepare the
ONCONFIG configuration file, set the ONCONFIG environment
variable to the name of the file. If the ONCONFIG environment
variable is not present, the database server uses configuration values
from one of the files that are listed in the following table.

Tip: Informix recommends that you set these environment variables in the appro-
priate start-up file for your shell or graphical-user interface.

Other Environment Variables

All users who use database server utilities such as onstat must set the
ONCONFIG environment variable to the name of the ONCONFIG
configuration file. For additional environment variables, see the Informix
Guide to SQL: Reference.

Users might need additional environment variables, such as LC_COLLATE, to
describe their environment fully.

To set additional environment variables for each database server user, the
database administrator can prepare an environment-configuration file,
named $INFORMIXDIR/etc/informix.rc on UNIX or
%INFORMIXDIR%\etc\informix.rc on Windows NT.

On UNIX, to override environment variables that have been automatically set
for users, each user can use a private environment-variable file, ~/.informix,
or assign new values to environment variables individually. ♦

Platform ONCONFIG File

UNIX $INFORMIXDIR/etc/onconfig

Windows NT %INFORMIXDIR%\etc\onconfig.std

UNIX
Configuring the Database Server 3-9

Prepare the ONCONFIG Configuration File
Certain environment variables are not required for initialization, but you
must set them before you can connect a client application to the database
server.

On UNIX, the following variables are required to connect applications:

■ TERMINFO

■ INFORMIXTERM

The TERMINFO and INFORMIXTERM environment variables specify the
type of terminal interface. You might need assistance from the UNIX system
administrator to set these system-dependent variables. ♦

For information about the environment variable files, see the Informix Guide
to SQL: Reference.

Prepare the ONCONFIG Configuration File
The onconfig.std file contains initial setting for the configuration parameters
and serves as a template for all other configuration files that you create. The
following table lists the directories into which onconfig.std is loaded during
installation.

A sample onconfig.std file appears in Appendix A.

You can create and modify the ONCONFIG configuration file using a standard
text editor or the ON-Monitor utility. Directions for using ON-Monitor appear
in Chapter 32, “ON-Monitor for UNIX.”

Platform ONCONFIG File

UNIX $INFORMIXDIR/etc/onconfig

Windows NT %INFORMIXDIR%\etc\onconfig.std

UNIX
3-10 Administrator’s Guide for Informix Dynamic Server

Prepare the ONCONFIG Configuration File
Preparing the ONCONFIG FIle on UNIX

To prepare the ONCONFIG configuration file with a text editor, perform the
following steps:

1. Make a copy of the standard ONCONFIG file. This file is named
$INFORMIXDIR/etc/onconfig.std. Store the new file in the same
directory as the standard file, but do not modify the standard file
itself. Instead, set your ONCONFIG environment variable to the
name of your new ONCONFIG file.

2. Edit your new ONCONFIG file to modify the configuration
parameters that you decide to change.

Preparing the ONCONFIG FIle on Windows NT

You can prepare the ONCONFIG configuration file with the regedt32 tool or
with a text editor.

To use the regedt32 tool

1. Start the regedt32 tool.

2. Edit the ONCONFIG: REG_SZ :ONCONFIG.1 file in the following
folder:

HKEY_LOCAL_MACHINES\SOFTWARE\Informix\OnLine
\CurrentVersion\Environment

3. Edit variables.

For existing variables, double-click the variable value and change the
value in the String Editor window.

For new variables, follow these steps:

a. Choose Edit➞ Add Value.

b. Select REG_SZ as the data type.

c. Add the variable value in the String Editor window.

To use a text editor

1. Copy the file etc\onconfig.std to etc\%ONCONFIG%.

2. Edit the new file and change the configuration parameters.

WIN NT
Configuring the Database Server 3-11

Prepare the ONCONFIG Configuration File
Required and Optional Parameters

Some configuration parameters must be reviewed before you initialize the
database server. For an overview of all configuration parameters, see
“Overview of Configuration Parameters” on page 3-13.

The following parameters must be reviewed and changed if necessary:

■ ROOTPATH page 33-77

■ SERVERNUM page 33-79

■ DBSERVERNAME page 33-18

If you are using multiple communication protocols, you must set the
DBSERVERALIASES configuration parameter. (See page 33-17.)

Check the following parameters if you are using the ontape archiving tool, or
the onunload and onload utilities:

■ TAPEDEV page 33-88

■ LTAPEDEV page 33-48

Tip: If you are using ON-Archive or ON-Bar, LTAPEDEV cannot be set to /dev/null.

For information about ontape and ON-Archive, refer to your Archive and
Backup Guide. For information about ON-Bar, refer to your Backup and Restore
Guide. For information about onunload and onload, see the Informix
Migration Guide.

Verify that the following parameters have valid pathnames:

■ MSGPATH page 33-55

■ CONSOLE page 33-15

After your database server is configured and running, review the
configuration parameters. “Monitoring Configuration Information” on
page 29-14 discusses different ways that you can examine your
configuration.
3-12 Administrator’s Guide for Informix Dynamic Server

Prepare the ONCONFIG Configuration File
Overview of Configuration Parameters

This section discusses the parameters of the ONCONFIG configuration file,
grouped by function. It gives short descriptions of the parameters and refers
you to more detailed discussions.

Root Dbspace

The first piece of storage that you allocate is called the root database space, or
root dbspace. It stores all the basic information that describes your database
server. The parameters that describe the root dbspace are as follows.

Configuration
Parameter Page Description

ROOTNAME 33-76 You can choose any descriptive name for the ROOTNAME,
but it is usually called rootdbs, which is its initial setting.

ROOTPATH 33-77 The ROOTPATH is the pathname of the storage allocated to
the root dbspace. For information on how to choose and
allocate the storage, see Chapter 14, “Managing Disk
Space.”

ROOTSIZE 33-78 ROOTSIZE is the amount of space allocated to the root
dbspace. For information on how to choose an appropriate
size for the root dbspace, see “Calculate the Size of the Root
Dbspace” on page 13-30.

ROOTOFFSET 33-76 For information about when you need to set ROOTOFFSET,
refer to “Allocating Raw Disk Space on UNIX” on
page 14-8.
Configuring the Database Server 3-13

Prepare the ONCONFIG Configuration File
Disk Space Management Parameters

The following parameters specify how the database server should manage
particular types of disk space.

Configuration
Parameter Page Description

DBSPACETEMP 33-19 DBSPACETEMP specifies a list of dbspaces that the
database server uses to spread out the storage of
temporary tables and the associated I/O across
multiple disks.

FILLFACTOR 33-36 FILLFACTOR specifies how full index-pages to fill
index pages when indexes are created.

ONDBSPACEDOWN 33-66 ONDBSPACEDOWN defines how the database server
treats a disabled dbspace that is not a critical dbspace.
3-14 Administrator’s Guide for Informix Dynamic Server

Prepare the ONCONFIG Configuration File
Database Server Identification Parameters

The identification parameters provide the unique identification of the
database server. The parameters are as follows.

Configuration
Parameter Page Description

DBSERVERNAME 33-18 DBSERVERNAME specifies the name of the database
server. You use the dbservername in sqlhosts and with
the INFORMIXSERVER environment variable. For a
complete description of DBSERVERNAME, see “The
DBSERVERNAME Configuration Parameter” on
page 4-51.

DBSERVERALIASES 33-17 DBSERVERALIASES specifies a list of alternative
dbservernames used to denote multiple
communication protocols. For information about
DBSERVERALIASES, refer to “The DBSERVERALIASES
Configuration Parameter” on page 4-51

SERVERNUM 33-79 SERVERNUM specifies a unique integer for each
database server instance. It must be unique for each
database server on your local computer but does not
need to be unique across your network. For more infor-
mation about SERVERNUM, refer to “The Role of the
SERVERNUM Configuration Parameter” on page 5-5.
Configuring the Database Server 3-15

Prepare the ONCONFIG Configuration File
Mirroring Parameters

Mirroring allows very fast recovery from a disk crash while the database
server remains in on-line mode. When mirroring is active, the same data is
stored on two disks simultaneously. If one disk fails, the data is still available
on the other disk. The following parameters describe mirroring of the root
dbspace.

For more information on the performance implications of mirroring, see
Chapter 23, “What Is Mirroring?”

Configuration
Parameter Page Description

MIRROR 33-53 MIRROR defines whether mirroring is enabled or disabled.

MIRRORPATH 33-54 MIRRORPATH specifies the full pathname of the chunk that
mirrors the initial chunk of the root dbspace.

MIRROROFFSET 33-54 MIRROROFFSET specifies the offset into the device that
servers as the mirror for the initial root dbspace chunk.
3-16 Administrator’s Guide for Informix Dynamic Server

Prepare the ONCONFIG Configuration File
Logical Logging Parameters

The logical log contains a record of changes made to a database server
instance. The logical-log records are used to roll back transactions, recover
from system failures, and so on. The following parameters describe logical
logging.

Configuration
Parameter Page Description

LOGBUFF 33-41 The LOGBUFF parameter determines the amount of shared
memory reserved for the buffers that hold the logical-log
records until they are flushed to disk. You can use the initial
setting for LOGBUFF unless your database server has an
unusually large number of transactions. For information on
how to tune the logical-log buffer, see “Logical-Log Buffer”
on page 11-22.

LOGFILES 33-42 The logical-log records are stored on disk in logical-log files
until they are backed up to tape. LOGFILES specifies the
number of logical-log files.

LOGSIZE 33-43 LOGSIZE is the size of each logical-log file.

LOGSMAX 33-44 LOGSMAX is the maximum (not the actual) number of log
files that you expect to have. The number and size of the
logical-log files needed depends on the activity of your
database server and the frequency of log-file backups. For
more information about these parameters, refer to “What
Should Be the Size and Number of Logical-Log Files?” on
page 18-11.

LTXHWM 33-51 The long-transaction high-water mark parameter specifies
the percentage of the available logical log that can be used
before the database server takes moderate action to avoid the
undesirable effects of reaching the point of LTXEHWM, the
long-transaction exclusive-access high-water mark.

LTXEHWM 33-50 LTXEHWM is the point at which the database server takes
drastic action. For more information on high-watermark
parameters, see “Avoiding Long Transactions” on
page 18-18.
Configuring the Database Server 3-17

Prepare the ONCONFIG Configuration File
Physical Logging Parameters

The physical log contains images of all pages (units or storage) changed since
the last checkpoint. The physical log is combined with the logical log to allow
fast recovery from a system failure. The following parameters describe the
physical log.

Archiving and Logical-Log Backup Parameters

To create dbspace backups and make logical log backups for data managed
by the database server, you can use ON-Bar or ON-Archive, as well as the
ontape utility. For information on ON-Bar, see your Backup and Restore Guide.
For information on ON-Archive, see your Archive and Backup Guide. If you use
the ontape utility, use the following parameters to archive data and logical
log backups.

Configuration
Parameter Page Description

PHYSFILE 33-71 PHYSFILE specifies the size of the physical log.

PHYSDBS 33-70 PHYSDBS specifies the name of the dbspace where the
physical log resides. When disk space is first initialized, the
physical log must reside in the root dbspace. For more infor-
mation, see Chapter 20, “What Is Physical Logging?”

PHYSBUFF 33-69 The PHYSBUFF parameter determines the amount of shared
memory reserved for the buffers that serve as temporary
storage space for pages about to be modified.

Configuration
Parameter Page Description

TAPEDEV 33-88 TAPEDEV specifies tape devices.

TAPEBLK 33-87 TAPEBLLK specifies the block size of the tape device.

TAPESIZE 33-90 TAPESIZE specifies the maximum amount of data that should
be written to each tape.

(1 of 2)
3-18 Administrator’s Guide for Informix Dynamic Server

Prepare the ONCONFIG Configuration File
Message-Log Parameters

The database server message logs provide information about how the
database server is functioning. The following parameters give the pathnames
of the message logs.

LTAPEDEV 33-48 LTAPEDEV specifies tape devices.

LTAPEBLK 33-47 LTAPEBLK specifies the block size of the tape device.

LTAPESIZE 33-49 LTAPESIZE specifies the maximum amount of data that
should be written to each tape.

Configuration
Parameter Page Description

CONSOLE 33-15 CONSOLE specifies the pathname destination for console
messages.

MSGPATH 33-55 MSGPATH is the pathname of the database server message
log. The database server writes status messages and
diagnostic messages to the log. Monitor this file regularly.

Configuration
Parameter Page Description

(2 of 2)
Configuring the Database Server 3-19

Prepare the ONCONFIG Configuration File
Shared-Memory Parameters

The following shared-memory parameters are important to database server
performance. Use these parameters to control how the database server
allocates space in shared memory.

Configuration
Parameter Page Description

BUFFERS 33-12 BUFFERS is the number of shared-memory buffers
available to the database server. For more information
about shared-memory buffers, refer to “Shared-Memory
Buffer Pool” on page 11-19.

LBU_PRESERVE 33-38 LBU_PRESERVE specifies the logs-full high-water mark.
This feature preserves log space for administrative tasks.
For more information about the logs-full high-water mark,
refer to “Preserving Log Space for ON-Archive Tasks” on
page 18-8.

LOCKS 33-39 LOCKS specifies the maximum number of locks available to
user processes during transaction processing. You can use
the initial setting for LOCKS.

RESIDENT 33-74 Some systems allow you to specify that the resident
portion of shared memory must stay (be resident) in
memory at all times. The RESIDENT parameter specifies
whether shared-memory residency is enforced. If forced
residency is not an option on your computer, this
parameter is ignored. For more information about
residency, see “Setting Operating-System Shared-Memory
Configuration Parameters” on page 12-3.

STACKSIZE 33-85 STACKSIZE specifies the stack size for user threads. The use
of stacks is discussed in “Stacks” on page 11-32.

CKPTINTVL 33-13 CKPTINTVL is the maximum time allowed to elapse before
a checkpoint. Use the initial settings for the initial
configuration.
3-20 Administrator’s Guide for Informix Dynamic Server

Prepare the ONCONFIG Configuration File
Shared-Memory Buffer Pool Parameters

Use the following parameters to control the shared-memory buffer pool.

Configuration
Parameter Page Description

LRUS 33-45 The LRUS (Least Recently Used) queues manage the
shared-memory pool of pages (memory spaces) used by
the database server.

LRU_MAX_DIRTY 33-46 LRU_MAX_DIRTY specifies the percentage of modified
pages in the LRU queues that, when reached, flags the
queue to be cleaned.

LRU_MIN_DIRTY 33-46 LRU_MIN_DIRTY specifies the percentage of modified
pages in the LRU queues that, when reached, flags the
page cleaners that cleaning is no longer mandatory.

CLEANERS 33-14 CLEANERS controls the number of threads used to flush
pages to disk and return the pages to the shared-memory
pool.

RA_PAGES 33-72 RA_PAGES specifies the number of disk pages to attempt
to read ahead during sequential scans of data or index
records.

RA_THRESHOLD 33-73 RA_THRESHOLD is used with RA_PAGES when the
database server reads during sequential scans of data
and index records.
Configuring the Database Server 3-21

Prepare the ONCONFIG Configuration File
Shared-Memory Size-Allocation Parameters

Use the following parameters to control how and where the database server
allocates shared memory.

Configuration
Parameter Page Description

SHMADD 33-80 SHMADD specifies the increment of memory that is
added (if possible) when the database server requests
more memory.

SHMBASE 33-81 SHMBASE is the shared-memory base address and is
computer dependent. Do not change its value.

SHMTOTAL 33-82 SHMTOTAL specifies the maximum amount of
memory that the database server is allowed to use.

SHMVIRTSIZE 33-83 SHMVIRTSIZE specifies the size of the first piece of
memory attached by the database server.
3-22 Administrator’s Guide for Informix Dynamic Server

Prepare the ONCONFIG Configuration File
Fragmentation and Parallel Data Query Parameters

Use the following parameters to control which queries are processed as
decision-support queries and also to control the amount of resources that the
database server allocates to decision-support queries.

For detailed information on fragmentation and PDQ, see your Performance
Guide.

Configuration
Parameter Page Description

DATASKIP 33-16 Use DATASKIP to control whether the database server
skips an unavailable table fragment.

DS_MAX_QUERIES 33-26 DS_MAX_QUERIES is the maximum number of
queries that can run concurrently.

DS_MAX_SCANS 33-27 DS_MAX_SCANS limits the number of PDQ scan
threads that the database server can execute
concurrently.

DS_TOTAL_MEMORY 33-28 DS_TOTAL_MEMORY specifies the amount of memory
available for PDQ queries.

MAX_PDQPRIORTY 33-52 MAX_PDQPRIORITY imposes limits on the amount of
resources that a query can use.

OPTCOMPIND 33-68 OPTCOMPIND advises the optimizer on an appro-
priate join strategy for your applications.
Configuring the Database Server 3-23

Prepare the ONCONFIG Configuration File
Virtual Processor Parameters

Use the following parameters to control how database server processes work
on a multiprocessor computer.

Configuration
Parameter Page Description

AFF_NPROCS 33-9 AFF_NPROCS specifies the number of CPUS to which
the database server can bind CPU virtual processors
on computers that support processor affinity.

AFF_SPROC 33-10 AFF_SPROC specifies the CPU, starting with 0, on
which the database server starts binding CPU virtual
processors to CPUs.

MULTIPROCESSOR 33-56 MULTIPROCESSOR specifies the appropriate type of
locking.

NETTYPE 33-57 NETTYPE provides tuning options for each communi-
cations protocol.

NOAGE 33-61 NOAGE specifies whether priority aging should be in
effect

NUMAIOVPS 33-62 NUMAIOVPS specifies the number of virtual
processors for AIO class threads.

NUMCPUVPS 33-63 NUMCPUVPS specifies the number of virtual
processors for CPU class threads.

SINGLE_CPU_VP 33-84 SINGLE_CPU_VP can specify that the database server
is using only one processor and allow the database
server to optimize for that situation.
3-24 Administrator’s Guide for Informix Dynamic Server

Prepare the ONCONFIG Configuration File
Time Interval Parameters

Use the following parameters to control the time intervals the database
server uses in processing transactions.

Restore Parameters

Use the following parameters to control the number of threads that the
database server allocates to off-line and on-line logical memory.

Configuration
Parameter Page Description

DEADLOCK_TIMEOUT 33-21 DEADLOCK_TIMEOUT specifies the amount of time
that the database server waits for a shared-memory
resource during a distributed transaction.

TXTIMEOUT 33-91 TXTIMEOUT is the amount of time a participant the
database server waits to receive a commit
instruction during a two-phase commit.
TXTIMEOUT and DEADLOCK_TIMEOUT apply only
to transactions that are taking place over a network.

USEOSTIME 33-92 USEOSTIME controls the granularity of the time
reported by the database server.

Configuration
Parameter Page Description

OFF_RECVRY_THREADS 33-64 OFF_RECVRY_THREADS is the number of recovery
threads used in logical recovery when the
database server is off-line (during a cold restore).
This number of threads is also used to roll forward
logical-log records in fast recovery.

ON_RECVRY_THREADS 33-65 ON_RECVRY_THREADS is the maximum number
of recovery threads that the database server uses
for logical recovery when the database server is
on-line (that is, during a warm restore).
Configuring the Database Server 3-25

Prepare the ONCONFIG Configuration File
High-Availability Data Replication Parameters

The high-availability data replication parameters control the behavior of a
pair of high-availability data replication servers. The following parameters
refer to data replication.

Configuration
Parameter Page Description

DRAUTO 33-22 DRAUTO determines how a secondary database server
reacts to a high-availability data-replication failure.

DRINTERVAL 33-23 DRINTERVAL specifies the maximum time interval in
seconds between flushing of the data-replication buffer.

DRLOSTFOUND 33-24 DRLOSTFOUND specifies the pathname to a file that
contains transactions committed on the primary database
server but not committed on the secondary database
server when the primary database server experiences a
failure.

DRTIMEOUT 33-25 Use DRTIMEOUT to specify how long in seconds a
database server in a data-replication pair waits for a
transfer acknowledgment from the other database server
in the pair.
3-26 Administrator’s Guide for Informix Dynamic Server

Prepare the ONCONFIG Configuration File
Error Dump Parameters

The following parameters control the types and location of core dumps that
are made if the database server fails.

Event Alarm Parameter

The database server can execute a file if a noteworthy event occurs. The
location of the executable file is specified by the ALARMPROGRAM
parameter.

Configuration
Parameter Page Description

DUMPCNT 33-32 DUMPCNT specifies the number of assertion failures for
which a single thread dumps shared memory or
generates a core file by calling the gcore utility.

DUMPCORE 33-33 DUMPCORE controls whether assertion failures cause a
virtual processor to dump core.

DUMPDIR 33-34 DUMPDIR specifies a directory where dumps of shared
memory, gcore files, or messages from a failed assertion
are placed.

DUMPGCORE 33-34 DUMPGCORE is used with operating systems that
support the gcore utility.

DUMPSHMEM 33-35 DUMPSHMEM indicates that shared memory should be
dumped on an assertion failure.

Configuration
Parameter Page Description

ALARMPROGRAM 33-11 Set ALARMPROGRAM to the full pathname of an
executable file that you write and that the database
server executes when noteworthy events occur.
Configuring the Database Server 3-27

Allocate Disk Space
Optical Subsystem Parameters

The STAGEBLOB parameter is used only by the Optical Subsystem.

Allocate Disk Space
Before you allocate the disk space, study the information about disk space in
Chapter 13, “Where Is Data Stored?” For information about allocating raw
disk space, refer to “Allocating Raw Disk Space on UNIX” on page 14-8. If
you want to use cooked disk space, you can follow the instructions from
“Allocating a File for Disk Space on UNIX” on page 14-7.

Prepare the Connectivity Information
On UNIX platforms, the sqlhosts file contains connectivity information that
allows an Informix client application to connect to any Informix database
server on the network. On Windows NT platforms, the sqlhosts entry in the
HKEY_LOCAL_MACHINE registry contains the same connectivity infor-
mation. In both cases, the sqlhosts data for a particular database server
includes the database server name, the type of connection a client can use to
connect to it, the name of the host computer or node on which it runs, and the
service name by which is known.

You must prepare the sqlhosts file or registry even if both the client
application and the database server are on the same computer or node.

Before you continue to step 5, define your connectivity with the instructions
in Chapter 4, “Client/Server Communications.”

Configuration
Parameter Page Description

OPCACHEMAX 33-67 OPCACHEMAX specifies the size of the memory cache for
the Optical Subsystem.

STAGEBLOB 33-86 Use this parameter only if you are storing TEXT or BYTE
DATA TYPES on optical storage with Optical Subsystem.
3-28 Administrator’s Guide for Informix Dynamic Server

Prepare the ON-Archive Configuration File
Prepare the ON-Archive Configuration File
If you use ON-Archive to back up and restore database server data, you must
set parameters in the ON-Archive configuration file, config.arc. It describes,
among other things, the devices used for different archiving and backup
tasks. Your Archive and Backup Guide describes the parameters for the
config.arc file. Appendix A of this book describes additional ON-Archive
configuration files.

Prepare for Global Language Support
GLS lets you create databases using the diacritics, collating sequences, and
monetary and time conventions of the language you select. GLS does not
have any ONCONFIG configuration parameters, but you must set the
appropriate environment variables. For more information about GLS, see the
Informix Guide to GLS Functionality.

Evaluate Operating-System Parameters
Your database server product arrives with Machine Notes that contain
recommended values for operating system configuration parameters.
Compare the values in this file with your current operating-system
configurations. ♦

The amount of memory available influences the values you can choose for
the shared-memory parameters. In general, increasing the space available for
shared memory enhances performance. You might also need to increase the
number of locks and semaphores.

If the recommended values for the database server differ significantly from
your current environment, consider modifying your operating-system
settings.

For additional information that describes the role of the operating-system
kernel parameters in the database server, see “Setting Operating-System
Shared-Memory Configuration Parameters” on page 12-3.

GLS

UNIX
Configuring the Database Server 3-29

Start the Database Server and Initialize Disk Space
Start the Database Server and Initialize Disk Space
Warning: When you initialize disk space, all existing data in the database server is
destroyed. Initialize disk space only when you are starting a new database server.

Starting and Initializing on UNIX

To bring the database server to on-line mode, type the following command at
the system prompt:

oninit

If you are starting a new instance of

a database server, use the oninit command with an -i flag to initialize the disk
space and bring the database server into on-line mode.

You can also initialize disk space using ON-Monitor. For more information
about ON-Monitor, refer to Chapter 32, “ON-Monitor for UNIX.”

For a description of the types of initialization and associated commands, see
“Managing Database Server Operating Modes” on page 7-1.

Starting and Initializing on Windows NT

In Windows NT, the database server runs as a service. Use the Service control
application to bring the database server to on-line mode. For a description of
the types of initialization and the associated commands, see “Managing
Database Server Operating Modes” on page 7-1.

Create Dbspaces and Blobspaces
Now that the database server is initialized, you can create dbspaces and
blobspaces as desired. For a description of dbspaces and blobspaces, see
Chapter 13, “Where Is Data Stored?” For information on how to allocate and
manage dbspaces and blobspaces, see Chapter 14, “Managing Disk Space.”

UNIX

WIN NT
3-30 Administrator’s Guide for Informix Dynamic Server

Perform Administrative Tasks
Perform Administrative Tasks
After you initialize the database server, you need to perform the following
administrative tasks:

■ Prepare the operating-system registry or scripts to automatically
start and stop the database server.

■ Make arrangements for tape management.

■ Make sure users have the correct environment variables.

■ Warn the operating-system administrator about cron jobs.

Prepare Operating-System Startup and Shutdown Scripts

You can modify your startup script to initialize the database server
automatically when your computer enters multiuser mode. You can also
modify your shutdown script to shut down the database server in a
controlled manner whenever the operating system shuts down.

Preparing for Database Server Automatic Startup on Windows NT

Windows NT does not support multiple users on one computer.

To start the database server automatically when Windows NT starts, perform
the following actions from the Service control application window:

1. In the Status Type dialog box, select Automatic.

2. In the Log On As dialog box, select This Account and verify that
informix is in the text box.

Inform the Service control application of a new Informix password.

Preparing the UNIX Startup and Shutdown Scripts

To prepare the UNIX startup script, add UNIX and database server utility
commands to the UNIX startup script, so that the script performs the
following steps.

WIN NT

UNIX
Configuring the Database Server 3-31

Perform Administrative Tasks
To prepare the UNIX startup script

1. Set the INFORMIXDIR environment variable to the full pathname of
the directory in which the database server is installed.

2. Set the PATH environment variable to include the
$INFORMIXDIR/bin directory.

3. Set the ONCONFIG environment variable to the desired
configuration file.

4. Set the INFORMIXSERVER environment variable so that the
sysmaster database can be updated (or created, if needed).

5. Execute oninit, which starts the database server and leaves it in on-
line mode.

6. If you plan to initialize multiple versions of the database server
(multiple residency), you must reset ONCONFIG and
INFORMIXSERVER and re-execute oninit for each instance of the
database server.

7. If you are using ON-Archive, you might want to start oncatlgr. For
more information about ON-Archive, refer to your Archive and Backup
Guide.

If different versions of the database server are installed in different
directories, you must reset INFORMIXDIR and repeat the preceding steps for
each database server that you want to install.

To shut down the database server in a controlled manner whenever UNIX
shuts down, add UNIX and database server utility commands to the UNIX
shutdown script, so that the script performs the following steps.

To prepare the UNIX shutdown script

1. Set the INFORMIXDIR environment variable to the full pathname of
the directory in which the database server is installed.

2. Set the PATH environment variable to include the
$INFORMIXDIR/bin directory.
3-32 Administrator’s Guide for Informix Dynamic Server

Perform Administrative Tasks
3. Set the ONCONFIG environment variable to the desired
configuration file.

4. Execute onmode -ky, which initiates Immediate-Shutdown and
takes the database server off-line.

If you are running multiple versions of the database server (multiple
residency), you must reset ONCONFIG and re-execute onmode -ky
for each instance of the database server.

If different versions of the database server are installed in different
directories, you must reset INFORMIXDIR and repeat the preceding steps for
each different version.

In the UNIX shutdown script, the database server shutdown commands
should execute after all client applications have completed their transactions
and exited.

Make Arrangements for Tape Management

When you plan your data dbspace and logical-log backup schedule, as
discussed in your Archive and Backup Guide, take into account the availability
of tape devices to manage the data and the availability of operators to
perform backups. If you use ON-Archive, you can take advantage of its
ability to perform unattended operations.

Make Sure Users Have the Correct Environment Variables

Make sure that every user of an Informix product has the correct
environment variables. Environment variables are discussed in the Informix
Guide to SQL: Reference.

Each user must set the following environment variables before accessing the
database server:

■ INFORMIXSERVER

■ INFORMIXDIR

■ PATH

In addition, all users who use utilities such as onstat must set the ONCONFIG
environment variable to the name of the ONCONFIG configuration file.
Configuring the Database Server 3-33

Perform Administrative Tasks
Warn System Administrator About cron Jobs

The database server creates the .inf.servicename and/or VP.servername.xxC
files in the /INFORMIXTMP directory. Some operating systems run cron jobs
that routinely delete all files from the /INFORMIXTMP directory. For
information about these files, see Appendix A. ♦

To run cron jobs under Windows NT, use the at command from the command
line. ♦

UNIX

WIN NT
3-34 Administrator’s Guide for Informix Dynamic Server

4
Chapter
Client/Server Communications
What Is Client/Server Architecture? 4-3
What Is a Network Protocol? 4-4
What Is a Network Programming Interface? 4-5
Windows NT Network Domains 4-5

What Is a Connection?. 4-6
What Is a Multiplexed Connection? 4-7

What Connections Does the Database Server Support? 4-8
Network Connections 4-8
Local Connections 4-9

Shared-Memory Connections 4-10
Stream-Pipe Connections 4-11
Named-Pipe Connections 4-11
Local Loopback Network Connections 4-12

What Interface/Protocol Combinations Are Available on
Your Platform? 4-13

What Are Communications Support Services? 4-13
What Is a Communications Support Module? 4-14
How to Configure the DCE-GSS Communications

Support Module on UNIX. 4-15
Installing and Configuring DCE Components for the

DCE-GSS CSM 4-15
Describing and Specifying the CSM 4-16

Connectivity Files 4-17
Network-Configuration Files 4-17

TCP/IP Connectivity Files on UNIX 4-17
TCP/IP Connectivity Files on Windows NT 4-19
IPX/SPX Connectivity Files 4-22

4-2 Adm
Network-Security Files 4-22
The hosts.equiv File 4-22
The .netrc File 4-23

The $INFORMIXDIR/etc/concsm.cfg file 4-25
The sqlhosts File or Registry 4-27

The sqlhosts File 4-27
The sqlhosts Registry 4-28
sqlhosts File and Registry Fields. 4-30
The dbservername Field and Key Name Field 4-31
The nettype and Protocol Field 4-31
The hostname and host Field 4-34
The servicename and Service Field 4-40
The options Field 4-43

ONCONFIG Parameters for Connectivity 4-50
The DBSERVERNAME Configuration Parameter 4-51
The DBSERVERALIASES Configuration Parameter 4-51

Environment Variables for Network Connections 4-52

Examples of Client/Server Configurations 4-53
Using a Shared-Memory Connection 4-54
Using a Local Loopback Connection. 4-55
Using a Network Connection 4-56
Using Multiple Connection Types 4-57
Accessing Multiple Database Servers 4-59
Using the Relay Module 4-60

A Relay Module Configuration with Three
Database Servers 4-62

Using a Post-6.0 Client Application with a 5.x
Database Server 4-63
inistrator’s Guide for Informix Dynamic Server

This chapter explains the concepts and terms that you need to
configure client/server communications. The chapter is divided into the
following parts:

■ Description of client/server architecture

■ Database server connection types

■ Communications services

■ Connectivity files

❑ Network-configuration files

❑ Network-security files

■ sqlhosts information

■ Description of ONCONFIG connectivity parameters

■ Examples of client/server configurations

What Is Client/Server Architecture?
Informix products conform to a software design model called client/server.
The client/server model allows you to place an application or client on one
computer and the database server on another computer, although they can
also reside on the same computer. Client applications issue requests for
services and data from the server. The server responds by providing the
services and data that the client requested.

You use a network protocol together with a network programming interface to
connect and transfer data between the client and the database server. These
terms are defined in detail in the following sections.
Client/Server Communications 4-3

What Is a Network Protocol?
What Is a Network Protocol?
A network protocol is a set of rules that govern how data is transferred
between applications and, in this context, between a client and a server.
These rules specify, among other things, what format data takes when it is
sent across the network. An example of a network protocol is TCP/IP.

The rules of a protocol are implemented in a network-protocol driver. A
network-protocol driver contains the code that formats the data according to
the rules of a protocol when it is sent from client to server and from server to
client.

Clients and database servers gain access to a network driver by way of a
network programming interface. A network programming interface contains
system calls or library routines that provide access to network-communica-
tions facilities. An example of a network programming interface for UNIX is
TLI (Transport Layer Interface). An example of a network programming
interface for Windows NT is WINSOC (sockets programming interface).

The power of a network protocol lies in its ability to enable client/server
communication even though the client and server reside on different
computers with different architectures and operating systems.

You can configure the database server to support more than one protocol, but
consider this option only if some clients use TCP/IP and some use IPX/SPX.

To determine the supported protocols for your operating system, see “What
Interface/Protocol Combinations Are Available on Your Platform?” on
page 4-13.

To specify which protocol the database server uses, set the PROTOCOL field
in the sqlhosts file or registry. For more information, see “The sqlhosts File or
Registry” on page 4-27.
4-4 Administrator’s Guide for Informix Dynamic Server

What Is a Network Programming Interface?
What Is a Network Programming Interface?
A network programming interface is an application-programming interface
(API) that contains a set of communications routines or system calls. An
application can call these routines to communicate with another application
that resides on the same or on different computers. In the context of this
discussion, the client and the server are the applications that call the routines
in the sockets or TLI application-programming interface. Clients and
database servers both make use of network programming interfaces to send
and receive the data according to a communications protocol.

Both client and database server environments must be configured with the
same protocol if client/server communication is to succeed. However, some
network protocols can be accessed through more than one network
programming interface. For example, TCP/IP can be accessed through either
TLI or sockets, depending on which programming interface is available on
the operating-system platform. Therefore, a client using TCP/IP through TLI
on one computer can communicate with a database server using TCP/IP with
sockets on another server, or vice versa.

Windows NT Network Domains
Windows NT network technology enables you to create network domains. A
domain is a group of connected Windows NT computers that share user
account information and a security policy. A domain controller manages the
user account information for all domain members.

The domain controller facilitates network administration. By managing one
account list for all domain members, the domain controller relieves the
network administrator of the requirement to synchronize the account lists on
each of the domain computers. In other words, when the network adminis-
trator creates or changes a user account, he or she needs to update only the
account list on the domain controller rather than the account lists on each of
the computers in the domain.

WIN NT
Client/Server Communications 4-5

What Is a Connection?
To log in to a Windows NT server, a user on another Windows NT computer
must belong to either the same domain or a trusted domain. A trusted domain
is one that has established a trust relationship with another domain. In a trust
relationship, user accounts are located only in the trusted domain, but users
can log on to the trusting domain.

Important: The Informix trusted client mechanism has nothing to do with the trust
relationship that you can establish between Windows NT domains. Therefore, even if
a client connects from a trusted Windows NT domain, Informix requires the user to
have an account in the domain on which the database server is running. For more
information on how the database server authenticates clients, see “What Are
Communications Support Services?” on page 4-13 and “Network-Security Files” on
page 4-22.

What Is a Connection?
A connection is a logical association between two applications; in this context,
between a client application and a database server. A connection must be
established between client and server before data transfer can take place. In
addition, the connection must be maintained for the duration of the transfer
of data.

Tip: The Informix internal communications facility is called Association Service
Facility (ASF). If you see an error message that refers to ASF, you have a problem with
your connections.

A client application establishes a connection with a database server with
either the CONNECT or DATABASE SQL statement. For example, to connect to
the database server my_server, your application might contain this form of
the CONNECT statement:

CONNECT TO '@myserver'

For more information on the CONNECT and DATABASE statements, see the
Informix Guide to SQL: Syntax.
4-6 Administrator’s Guide for Informix Dynamic Server

What Is a Multiplexed Connection?
What Is a Multiplexed Connection?
A multiplexed connection uses a single network connection between the
database server and a client to handle multiple database connections from the
client. Client applications can establish multiple connections to the database
server to access more than one database on behalf of a single user. If the
connections are not multiplexed, each database connection establishes a
separate network connection to the database server. Each additional network
connection consumes additional computer memory and CPU time, even for
connections that are not active. Multiplexed connections enable the database
server to create multiple database connections without consuming the
additional computer resources that are required for additional network
connections.

To configure the database server to support mulitplexed connections, you
must include in the ONCONFIG file a special NETTYPE parameter that has a
value of SQLMUX. To configure the automatic use of multiplexed connections
by clients, you must also specify an option value of m=1 on the sqlhosts
parameter for the database server connection. The client program does not
need to make any special SQL calls to enable connections multiplexing.
Connection multiplexing is enabled automatically when the ONCONFIG file
and the sqlhosts file or registry are configured appropriately. For information
on the NETTYPE parameter, refer to “NETTYPE” on page 33-57. For infor-
mation on the sqlhosts parameter for a database server connection, refer to
“The sqlhosts File or Registry” on page 4-27.

The following limitations apply to multiplexed connections:

■ Multithreaded client connections are not supported.

■ Shared-memory connections are not supported.

■ Connections to subordinate database servers (for distributed queries
or data replication, for example) are not multiplexed.

■ The ESQL/C sqlbreak() function is not supported.

■ You can activate database server support for multiplexed connec-
tions only when the database server starts.

If any of these conditions exist when an application attempts to establish a
connection, the database server establishes a standard connection. The
database server does not return an SQL error.
Client/Server Communications 4-7

What Connections Does the Database Server Support?
What Connections Does the Database Server
Support?
The database server supports the following types of connections to commu-
nicate between client applications and database servers.

You can make local connections with Sockets and TLI by creating a local
loopback connection. For information on local loopback connections, refer to
“Local Loopback Network Connections” on page 4-12.

The following sections describe database server connection types in more
detail.

Network Connections
To establish a connection between a client on one computer and a database
server on another computer, you must use a combination of a network
interface and a network protocol to create a network connection.

Connection Type Windows NT UNIX Local Network

Sockets X X X X

TLI (transport layer interface) X X X

Shared memory X X

 Stream pipe X X

Named pipe X X
4-8 Administrator’s Guide for Informix Dynamic Server

Local Connections
The database server supports the following types of interface/protocol
combinations for network connections.

On Windows NT, Informix uses the Sockets interface to support the TCP/IP
communication protocol for client-to-server and server-to-server connec-
tions. ♦

For information on how to implement a network connection, refer to
“Connectivity Files” on page 4-17, “ONCONFIG Parameters for Connec-
tivity” on page 4-50, and “Environment Variables for Network Connections”
on page 4-52.

Local Connections
A local connection is a connection between a client and the database server on
the same computer. The following table illustrates the types of local connec-
tions that a client can establish with the database server.

The following sections describe these types of local connections.

Interface Network Protocol Windows NT UNIX

Sockets TCP/IP X X

TLI (transport layer interface) TCP/IP X

TLI (transport layer interface) IPX/SPX X

Local Connection Type Windows NT UNIX

Shared memory X

Stream pipe X

Named pipe X

Local loopback X X

WIN NT
Client/Server Communications 4-9

Local Connections
Shared-Memory Connections

A shared-memory connection uses an area of shared-memory as the channel
through which the client and server communicate with each other. Figure 4-1
illustrates a shared-memory connection.

Shared memory provides very fast access to a database server, but it poses
some security risks. Errant or untrusted applications could destroy or view
message buffers of their own or of other local users. Shared-memory commu-
nication is also vulnerable to programming errors if the client application
performs explicit memory addressing or overindexes data arrays. Such
errors do not affect the application if you use network communication.

For information about the portion of shared memory that the database server
uses for client/server communications, refer to “The Communications
Portion of Shared Memory” on page 11-34. For additional information, you
can also refer to “Where the Client Attaches to the Communications Portion”
on page 11-11.

UNIX

Figure 4-1
A Shared-Memory Connection

Computer

Shared
memory

Client

Client application Database server

Dynamic Server
4-10 Administrator’s Guide for Informix Dynamic Server

Local Connections
Stream-Pipe Connections

A stream pipe is a UNIX interprocess communication (IPC) facility that allows
processes on the same computer to communicate with each other. You can
use stream-pipe connections any time that the client and the database server
are on the same computer. You can also use stream-pipe connections for
distributed database operations when both database servers are on the same
computer.

Advantages of Stream-Pipe Connections

Stream-pipe connections have the following advantages:

■ Unlike shared-memory connections, stream pipes do not pose the
security risk of being overwritten or read by other programs that
explicitly access the same portion of shared memory.

■ Stream-pipe connections allow distributed transactions between
database servers that are on the same computer.

Disadvantages of Stream-Pipe Connections

Stream-pipe connections have the following disadvantages:

■ Stream-pipe connections might be slower than shared-memory
connections on some computers.

■ Stream pipes are not available on all platforms.

Named-Pipe Connections

Named pipes are application-programming interfaces (APIs) for bidirectional
interprocess communication (IPC) on Windows NT. Named-pipe connections
provide a high-level interface to the network by making transport-layer
operations transparent. Named pipes store data in memory, and retrieve it
when requested, in a way that is similar to reading and writing from a file
system.

Informix supports named pipes for local connections to database servers on
Windows NT.

UNIX

WIN NT
Client/Server Communications 4-11

Local Connections
For information on how to specify a named-pipe connection, refer to “The
sqlhosts File or Registry” on page 4-27. For additional information, regarding
the impact of the NETTYPE configuration parameter, refer to “NETTYPE” on
page 33-57.

Local Loopback Network Connections

A network connection between a client application and a database server on
the same computer is called a local loopback connection. The networking facil-
ities used are the same as if the client application and the database server
were on different computers. You can make a local loopback connection
provided your computer is equipped to process network transactions. Local
loopback connections are not as fast as shared-memory connections, but they
do not pose the security risks of shared memory.

Figure 4-2 shows how a local loopback connection appears to the client appli-
cation and to the database server. Data appears to pass from the client
application, out to the network, and then back in again to the database server.
Data can also pass from the database server to the client application in a
similar manner. That is, the data passes from the database server, out to the
network, and then back in again to the client application.

You can think of a local loopback connection as shown in Figure 4-2, but the
diagram in Figure 4-3 on page 4-13 is a more accurate representation of local
loopback. Figure 4-3, which illustrates a local loopback connection, differs
from the shared-memory diagram in Figure 4-1 on page 4-10 only in the type
of connection between the client application and the database server.

Figure 4-2
Conceptual

Illustration of Local
Loopback

Connection

Network
programming
interface

Network

Client

Database server
4-12 Administrator’s Guide for Informix Dynamic Server

What Interface/Protocol Combinations Are Available on Your Platform?
What Interface/Protocol Combinations Are Available on
Your Platform?
On many UNIX platforms, the database server supports multiple network
programming interfaces. To check which interface/protocol combinations
the database server supports for your operating system, check the machine
notes. The section “Machine Specific Notes” describes interface/protocol
combinations that are available on your platform, similar to the following
example.

What Are Communications Support Services?
Communication support services include connectivity-related services such as
the following:

■ Authentication

■ Message integrity

■ Message privacy

Communications support services can also include other processing such as
data compression or traffic-based accounting, for example.

Figure 4-3
A Simple Local

Loopback
ConnectionClient Database server

UNIX

Machine Specific Notes:
=======================

1. The following interface/protocol combinations(s) are supported for
this platform:

Berkeley sockets using TCP/IP
Client/Server Communications 4-13

What Is a Communications Support Module?
Authentication is the process of verifying the identity of a user or an appli-
cation. The most common form of authentication is to require the user to
enter a name and password to obtain access to a computer or an application.
The database server provides a default method of authentication, which is
described in the section “Network-Security Files” on page 4-22. You do not
need to perform any procedures to use the default authentication policy. The
database server uses the default authentication policy when you do not
specify a communications support module.

Message integrity ensures that communication messages are intact and
unaltered when they arrive at their destination.

Message privacy protects messages, usually by encryption and decryption,
from viewing by unauthorized users during transmission.

Important: Communications support services apply only to the connection between
the database server and a client application. Communication support services do not
apply to a connection between the database server and another Informix database
server for operations such as distributed queries.

What Is a Communications Support Module?
On UNIX, Informix Dynamic Server lets you add external communications
support services in the form of a communications support module (CSM).
Dynamic Server includes a CSM, called DCE-GSS, which provides access to
the DCE 1.1 security service for user authentication, message integrity and
message privacy. For information on whether the DCE-GSS CSM is available
on your platform, refer to the machine-notes file, which is described in
“Documentation Notes, Release Notes, Machine Notes” on page 15.

The DCE-GSS CSM uses the DCE 1.1 security service to provide communica-
tions support services. Informix recommends that you consult with the
manufacturer for your operating system about obtaining DCE 1.1. If the
manufacturer for your operating system does not provide DCE 1.1, you might
need to obtain it from a third-party vendor.

The DCE-GSS CSM is a shared library that the database server loads dynami-
cally. The library is installed in the $INFORMIXDIR/lib/csm directory as
libixdce.XX. The .XX extension is the platform-specific shared-library
filename extension. If the actual extension for a shared library is .so, for
example, the name of the file would be libixdce.so.

UNIX
4-14 Administrator’s Guide for Informix Dynamic Server

How to Configure the DCE-GSS Communications Support Module on UNIX
The following section describes how to configure the communications
support module.

How to Configure the DCE-GSS Communications Support
Module on UNIX
To use the DCE-GSS CSM, perform the following basic steps:

1. Install and configure the DCE components according to the third-
party documentation.

2. Describe the communications support module in the concsm.cfg file.
For more information on how to describe the concsm.cfg file, refer to
“Describing and Specifying the CSM” on page 4-16.

3. Create an entry in the options field of the sqlhosts file to specify that
the connection will use the communications support module. For
more information on specifying the communications support
module in the options field of the sqlhosts file, refer to “The Commu-
nications Support Module Option” on page 4-45

Installing and Configuring DCE Components for the DCE-GSS CSM

Follow these basic steps to install and configure the DCE components:

1. Install and configure the DCE clients and servers properly.

2. Create a DCE principal name for each database user and for each
database server name. DCE security can only authenticate DCE
principals. Consequently, database users and database server names
must correspond to DCE principal names. Informix recommends, for
consistency, that you obtain this coordination by assigning principal
names that match database user (UNIX) names and database server
names. For more information on assigning principal names, refer to
the DCE documentation.

UNIX
Client/Server Communications 4-15

How to Configure the DCE-GSS Communications Support Module on UNIX
3. Create a keytab file for database server principals, and set the INFOR-
MIXKEYTAB environment variable to specify the location of the file.
For more information about the INFORMIXKEYTAB environment
variable, see the Informix Guide to SQL: Reference.

The keytab file is a DCE security-related file. The keytab file contains
key tables that store keys, each of which contains a principal name,
type, version, and value. For more information on keytab files, refer
to the third-party DCE documentation.

The database server requires the INFORMIXKEYTAB environment
variable and the keytab file to find the key to register the server and
acquire the credential for it. A client application requires the INFOM-
RMIXKEYTAB environment variable and the keytab file if the user
did not login with the current operating-system user name as the
principal name prior to starting the application or did not explicitly
provide a credential. In these cases, the keytab file provides a way to
find the key and acquire the credential for the user.

Describing and Specifying the CSM

You must describe the CSM in the concsm.cfg file. The concsm.cfg file resides
in the $INFORMIXDIR/etc directory by default. If you want to store the file
somewhere else, you can override the default location by setting the INFOR-
MIXCONCSMCFG environment variable to the full pathname of the new
location. For information on setting the INFORMIXCONCSMCFG
environment variable, refer to the Informix Guide to SQL: Reference.

For information on how to describe the CSM in the concsm.cfg file, refer to
“The $INFORMIXDIR/etc/concsm.cfg file” on page 4-25. For information
on specifying the CSM for a connection in the sqlhosts file, refer to “The
options Field” on page 4-43.
4-16 Administrator’s Guide for Informix Dynamic Server

Connectivity Files
Connectivity Files
The connectivity files contain the information that enables client/server
communication. These files also enable a database server to communicate
with another database server. The connectivity configuration files can be
divided into three groups:

■ Network-configuration files

■ Network-security files

■ The sqlhosts file or registry

Network-Configuration Files
This section identifies and explains the use of network-configuration files on
TCP/IP and IPX/SPX networks.

TCP/IP Connectivity Files on UNIX

When you configure the database server to use the TCP/IP network protocol,
you use information from the network-configuration files /etc/hosts and
/etc/services to prepare the sqlhosts file. The /etc/hosts and /etc/services are
UNIX files that the network administrator maintains. When you add a host,
or a software service such as a database server, you need to inform the
network administrator so that he or she can make sure the information in
these files is accurate.

The /etc/hosts and /etc/services files must be present on each computer that
runs an Informix client/server product, or on the NIS server if your network
uses Network Information Service (NIS).

UNIX
Client/Server Communications 4-17

Network-Configuration Files
The /etc/hosts File

The /etc/hosts file needs a single entry for each network-controller card that
connects a computer running an Informix client/server product on the
network. Each line in the file contains the following information:

■ Internet address

■ Host name

■ Host aliases (optional)

Although the length of the host name is not limited in the /etc/hosts file, it is
limited to 255 characters in the sqlhosts file. Figure 4-8 on page 4-35 includes
a sample hosts file.

The /etc/services File

The /etc/services file contains an entry for each service available through
TCP/IP. Each entry is a single line that contains the following information:

■ Service name

■ Port number and protocol

■ Aliases (optional)

The service name and port number are arbitrary. However, they must be
unique within the context of the file and must be identical on all computers
that are running Informix client/server products. The aliases field is
optional. For example, an /etc/services file might include the following entry
for a database server:

server2 1526/tcp

This entry makes server2 known as the service name for TCP port 1526. A
database server can then use this port to service client-application connection
requests. Figure 4-13 on page 4-41 includes a sample services file.

Warning: On systems that use NIS, the /etc/hosts and /etc/services files are
maintained on the NIS server. The /etc/hosts and /etc/services files that reside on
your local computer might not be used and might not be up to date. To view the
contents of the NIS files, enter the following command line:

ypcat hosts ; ypcat services.
4-18 Administrator’s Guide for Informix Dynamic Server

Network-Configuration Files
For information about the /etc/hosts and /etc/services files, refer to the UNIX
manual pages for hosts and services.

TCP/IP Connectivity Files on Windows NT

Perform the following steps to configure the database server to use the
TCP/IP network protocol on Windows NT:

1. Configure the network interface (or adapter) card.

2. Install and configure the Windows NT TCP/IP network software
package.

3. Create an entry in the sqlhosts registry.

For information on installing a network interface card for TCP/IP, consult
your computer hardware documentation. To configure the network card and
to install and configure the TCP/IP network software, use the Network appli-
cation in the Windows NT Control Panel. For specific directions on
configuring the adapter and installing the TCP/IP network software, see your
Windows NT documentation.

You use information from the hosts and services network-configuration files
to prepare the sqlhosts registry for the TCP/IP network protocol:

■ %WINDIR%\system32\drivers\etc\hosts

■ %WINDIR%\system32\drivers\etc\services

This chapter refers to these files as \etc\hosts and \etc\services,
respectively.

Whenever you add a computer or a software service such as Informix
Dynamic Server, you need to inform the network administrator so that he or
she can make sure that the information in these files is accurate.

WIN NT
Client/Server Communications 4-19

Network-Configuration Files
The \etc\hosts File

The \etc\hosts file needs a single entry for each computer on the network
that uses an Informix client/server product. Alternately, you can configure
TCP/IP to use the Domain Name Service (DNS) for host name resolutions. For
information about these files, refer to your operating-system documentation.
Each line in the \etc\hosts file contains the following information:

■ Internet address (or ethernet card IP address)

The Dynamic Host Configuration Product (DHCP) assigns IP
addresses dynamically from a pool of addresses instead of using IP
addresses that are explicitly assigned to each workstation. If your
system uses DHCP, you must also have installed Windows Internet
Name Service (WINS). DCHP should be transparent to the database
server.

■ Host name

Although the length of the host name is not limited in the \etc\hosts
file, it is limited to 255 characters in the sqlhosts registry.

■ Host aliases (optional)

The \etc\services File

The \etc\services file contains an entry for each service that is available
through TCP/IP. Each entry is a single line that contains the following
information:

■ Service name

The sqlhosts registry uses this name to determine the port number
and protocol.

■ Port number and protocol

The port number is the computer port, and the protocol for TCP/IP is
tcp.

■ Aliases (optional)

For example, an \etc\services file might include the following entry for an
instance of the database server:

server2 1526\tcp
4-20 Administrator’s Guide for Informix Dynamic Server

Network-Configuration Files
This entry makes server2 known as the service name for TCP port 1526. The
database server can then use this port to handle client-application connection
requests.

Tip: You can replace the host name with the corresponding IP addresses from the
hosts file, and you can replace the service name with the appropriate port number
from the services file. This action might result in faster connection times for client
applications.

Configuring Multiple Ports for TCP/IP

To take advantage of multiple ethernet cards, add two entries in the sqlhosts
registry for TCP/IP connections.

To configure multiple ports for TCP/IP

1. Make an entry in the \etc\services file for a port of each ethernet
card, as in the following example:

soc1 21/tcp
soc2 22/tcp

All ports in use on a single ethernet card must be unique. Separate
ethernet cards can utilize the same or different port numbers. You
might want to use the same port number on each ethernet card
because you are connecting to the same database server (in this
scenario, the service name is the same).

2. Put one entry per ethernet card in the \etc\hosts file with a separate
address, as in the following example:

192.147.104.19 svc8
192.147.104.20 svc81

3. In the sqlhosts registry, put one entry per ethernet card, as in the
previous example.

4. In the onconfig file, enter DBSERVERNAME for one of the ethernet
card sqlhosts entries and a DBSERVERALIASES for the other ethernet
card sqlhosts entry.

Once this configuration is in place, the application communicates through
the ethernet card assigned to the DBSERVERNAME that the
INFORMIXSERVER environment variable provides.
Client/Server Communications 4-21

Network-Security Files
IPX/SPX Connectivity Files

To configure the database server to use the IPX/SPX protocol on a UNIX
network, you must purchase IPX/SPX software and install it on the database
server computer. Your choice of IPX/SPX software depends on the operating
system that you are using. For some operating systems, the IPX/SPX software
is bundled with software products based on NetWare for UNIX or Portable
NetWare. In addition, for each of the UNIX vendors that distributes IPX/SPX
software, you might find a different set of configuration files.

For advice on how to set configuration files for these software products,
consult the manuals that accompany your IPX/SPX software.

Network-Security Files
Informix products follow standard security procedures that are governed by
information contained in the network-security files. For a client application
to connect to a database server on a remote computer, the user of the client
application must have a valid user ID on the remote computer.

The hosts.equiv File

The hosts.equiv file lists the remote hosts and users that are trusted by the
computer on which the database server resides. Trusted users, and users who
log in from trusted hosts, can access the computer without supplying a
password. The operating system uses the hosts.equiv file to determine
whether a user should be allowed access to the computer without specifying
a password. Informix requires a hosts.equiv file for its default authentication
policy.

If a client application supplies an invalid account name and password, the
database server rejects the connection even if the hosts.equiv file contains an
entry for the client computer. You should use the hosts.equiv file only for
client applications that do not supply a user account or password.

On UNIX platforms, this file resides in the /etc directory. On Windows NT
platforms, this file resides in the %WINDIR%\system32\drivers\etc
directory.

UNIX
4-22 Administrator’s Guide for Informix Dynamic Server

Network-Security Files
On some networks, the host name that a remote host uses to connect to a
particular computer might not be the same as the host name that the
computer uses to refer to itself. For example, the network host name might
contain the full domain name, as the following example shows:

viking.informix.com

By contrast, the computer might refer to itself with the local host name, as the
following example shows:

viking

If this situation occurs, make sure that you specify both host name formats in
the host.equiv file.

To determine whether a client is trusted, execute the following statement on
the client computer:

rlogin hostname

If you log in successfully without receiving a password prompt, the client is
a trusted computer.

As an alternative, an individual user can list hosts from which he or she can
connect as a trusted user in the .rhosts file. This file resides in the user’s home
directory on the computer on which the database server resides. ♦

A user who attempts to log in to a Windows NT computer that is a member
of a domain can either do so using a local login and profile or a domain login
and profile. However, if the user is listed as a trusted user or the computer
from which the user attempts to log in is listed as a trusted host, the user can
be granted login access without a profile.

Important: A client application can only connect to an Informix database server if
there is an account for the user ID in the Windows NT domain in which the database
server runs. This rule also applies to trusted domains. ♦

The .netrc File

The .netrc file is an optional file, located in the user’s home directory, that
specifies identity data. If a user is not a trusted user, or not on a computer that
is trusted by the database server, you can use this file to supply a name and
password that are trusted. A user who has a different user account and
password on a remote computer can also use this file.

UNIX

WIN NT
Client/Server Communications 4-23

Network-Security Files
If you do not explicitly provide the user password in an application for a
remote server (that is, through the USER clause of the CONNECT statement or
the user name and password prompts in DB-Access), the client application
looks for the user name and password in the .netrc file if the file is available.
If the user has explicitly specified the password in the application, or if the
database server is not remote, the .netrc file is not consulted.

The database server uses the .netrc file regardless of whether it uses the
default authentication policy or, on a UNIX platform, a communications sup-
port module.

For information about the specific content of this file, refer to your operating-
system documentation.

On Windows NT, a home directory is not automatically assigned when the
Windows NT administrator creates a user identity. The administrator can add
a home directory to a user’s profile with the User Manager application. ♦

User Impersonation

For certain client queries or operations, the database server must imper-
sonate the client to run a process or program on the client’s behalf. In order
to impersonate the client, the database server must receive a password for
each client connection. Clients can provide a user ID and password through
the CONNECT statement or a .netrc file.

The following example show how you can provide a password to imper-
sonate a client.

Tip: Windows 3.1 clients can also use the setnet utility to provide a password.

File or Statement Example

.netrc file machine trngpc3 login bruce password im4golf

CONNECT
STATEMENT

CONNECT TO ol_trngpc3 USER bruce USING "im4golf"

informix.ini file A client running on a Windows 3.1 computer that connects
through INFORMIX-NET can use the setnet utility to store a user
name and password in the informix.ini file.

WIN NT
4-24 Administrator’s Guide for Informix Dynamic Server

The $INFORMIXDIR/etc/concsm.cfg file
The $INFORMIXDIR/etc/concsm.cfg file
The concsm.cfg file describes the communications support module and is
required only if you use the communications support module. An entry in
the file is limited to 1024 characters. If the options parameter in the sqlhosts
file does not designate the communications support module for the specified
database server, the database server uses the default authentication policy.

The concsm.cfg file entry has the following format:

csmname("lib-path", "csm-global-option",
"csm-connection-options")

The csmname variable is the name that you assign to the communications
support module. The lib-path parameter is the full pathname, including the
file name, of the shared library that is the communications support module.
The csm-global option is not used at this time. The following section describes
the csm-connection option for the DCE-GSS CSM.

The following example illustrates the parameter that you must enter in the
concsm.cfg file to define the DCE-GSS communications support module.

dcegss("/usr/informix/lib/csm/libixdce.so")

This parameter assigns the name dcegss to the CSM and specifies that the
shared-library pathname is /usr/informix/lib/csm/libixdce.so.

The concsm.cfg Connection Options Field for the DCE-GSS CSM

The CSM connection-options field for the DCE-GSS CSM has the following
format:

letter = value

UNIX
Client/Server Communications 4-25

The $INFORMIXDIR/etc/concsm.cfg file
The following table describes the csm-connection option for the DCE-GSS CSM.

For option names c, d, and i, a value of 1 enables the service and a value of
0 (zero) disables the service.

Use the p option if the DCE principal name of the database server is not the
same as the dbservername.

If you want to specify a principal name for the database server that is
different than the dbservername, you can specify the p csm-connection option,
as in the following example:

dcegss("/usr/informix/lib/csm/libixdce.so", "", "p=myserver")

You can combine several options in the options string. The options must be
separated by commas, and no spaces are allowed. You can include the
options in any order. The following example enables confidentiality and
integrity and specifies a principal name for the database server:

dcegss("/usr/informix/lib/csm/libixdce.so", "", "c=1,i=1,p=myserver")

For an overview of the communications support services, refer to “What Is a
Connection?” on page 4-6. For the specific name of the CSM shared library,
refer to the machine-notes file that is referenced in the section “Documen-
tation Notes, Release Notes, Machine Notes” on page -15. For information on
how to specify a communications support module in the sqlhosts file, refer
to “The Communications Support Module Option” on page 4-45.

Option Option name Option Value Default

confidentiality c 1 or 0 0

dbserver principal name p string (no quotes) dbservername

delegation d 1 or 0 (zero) 0

integrity i 1 or (zero) 0
4-26 Administrator’s Guide for Informix Dynamic Server

The sqlhosts File or Registry
The sqlhosts File or Registry
Informix client/server connectivity information resides in the sqlhosts file or
registry. The sqlhosts file or registry contains information that enables a
client application to find and connect to any Informix database server on the
network.

The sqlhosts File

On UNIX, the sqlhosts file resides, by default, in the $INFORMIXDIR/etc
directory. As an alternative, you can set the INFORMIXSQLHOSTS
environment variable to the full pathname and filename of a file that contains
the sqlhosts file information.

You can enter information in the sqlhosts file by using a standard text editor.

Figure 4-4 shows a sample sqlhosts file.

Figure 4-4
Sample sqlhosts File

dbservername nettype hostname servicename options

menlo onipcshm valley shm_file

menlo2 ontlitcp valley menlo_on

newyork ontlitcp hill dynsrvr2

pittsburgh onsoctcp canyon 1536

sales ontlispx knight sales k=0,r=0

payroll onsoctcp dewar py1 s=2,b=5120

personnel ontlitcp 37.1.183.92 sales_ol

texas_srvr ontlitcp *texas pd1_on

UNIX
Client/Server Communications 4-27

The sqlhosts File or Registry
The sqlhosts Registry

When you install the database server, the setup program creates the
following key in the Windows NT registry:

HKEY_LOCAL_MACHINE\SOFTWARE\INFORMIX\SQLHOSTS

This branch of the HKEY_LOCAL_MACHINE subtree stores the sqlhosts
registry. The name of the database server is a key on the
\SOFTWARE\INFORMIX\SQLHOSTS branch. If you click the database server
name, the registry displays the values of the HOST, OPTIONS, PROTOCOL, and
SERVICE fields for that particular database server.

Figure 4-5 illustrates the location and content of the sqlhosts registry for the
sample database server ol_nile.

When the client application runs on the same computer as the database
server, they share a single sqlhosts registry.

WIN NT

Figure 4-5
sqlhosts Information in

the Windows NT Registry
HKEY_LOCAL_MACHINE on Local Machine

HARDWARE

SAM
SECURITY
SOFTWARE

Classes

Description
INFORMIX

OnLine
ESQL/C

SQLHOSTS

Microsoft
ol_nile

HOST:REG_SZ:nile
OPTIONS:REG_SZ:
PROTOCOL:REG_SZ:olsoctcp
SERVICE:REG_SZ:turbo
4-28 Administrator’s Guide for Informix Dynamic Server

The sqlhosts File or Registry
The Location of the sqlhosts Registry

When you install the database server, you have the option of specifying the
name of the computer where you want to store the sqlhosts registry. You can
specify one of the following two options:

■ The local computer where you are installing the database server

■ Another computer in the network that serves as a central, shared
repository of sqlhosts information for multiple database servers in
the network

Using a shared sqlhosts registry relieves you of the necessity to maintain the
same sqlhosts information on multiple computers.

If you specify a shared sqlhosts registry, you must set the INFORMIXSQL-
HOSTS environment variable on your local computer to the name of the
Windows NT computer that stores the registry. The database server looks for
the sqlhosts registry on the INFORMIXSQLHOSTS computer first. If the
database server does not find an sqlhosts registry on the INFORMIXSQL-
HOSTS computer, or if INFORMIXSQLHOSTS is not set, it looks for an
sqlhosts registry on the local computer.

You must comply with Windows NT network-access conventions and file
permissions to ensure that the local computer has access to the shared
sqlhosts registry. For information about network-access conventions and file
permissions, see your Windows NT documentation.

Changing the sqlhosts Registry

You must use the Windows NT program regedt32 to change an entry in the
sqlhosts registry.

To change an entry

1. Run regedt32.

2. In the Registry Editor window, select the window for the
HKEY_LOCAL_MACHINE subtree.

3. Click the folder icons to select the \SOFTWARE\INFORMIX\
SQLHOSTS branch.

4. Click the folder icon for the name of the database server.
Client/Server Communications 4-29

The sqlhosts File or Registry
5. Double-click the sqlhosts value that you want to edit (HOST,
OPTIONS, and so on).

6. In the String Editor box, type the new value for the key that you
selected and click OK.

7. Repeat steps 5 and 6 for each value that you want to change.

8. Exit the Registry Editor.

sqlhosts File and Registry Fields

The sqlhosts file (on UNIX) and the sqlhosts registry (on Windows NT) use
the same fields to identify connectivity information; however, some of the
field names are different.

The fields can be delimited by spaces or by tabs. You cannot include any
spaces or tabs within a field. You can put comments in the sqlhosts file by
starting a line with the comment character (#). Additional syntax rules for
each of the fields are provided in the following sections, which describe the
entries in the sqlhosts file or registry.

If you install INFORMIX-Enterprise Gateway with DRDA in the same
directory as the database server, your sqlhosts file or registry will also
contain entries for the Gateway and non-Informix database servers.
However, this manual covers only the entries for the database server. For
information about other entries in the sqlhosts file, see the INFORMIX-
Enterprise Gateway with DRDA User Manual.

sqlhosts File sqlhosts Registry

dbservername key name

nettype protocol

hostname host

servicename service

options options
4-30 Administrator’s Guide for Informix Dynamic Server

The sqlhosts File or Registry
The dbservername Field and Key Name Field

The dbservername or key name field provides the name of the database
server for which the connectivity information is being specified. Each
database server across all of your associated networks must have a unique
dbservername. The dbservername or key name field must match the name
of a database server in the network, as specified by the DBSERVERNAME and
DBSERVERALIASES configuration parameters in the ONCONFIG configu-
ration file. These configuration parameters are discussed in “ONCONFIG
Parameters for Connectivity” on page 4-50. If the sqlhosts file or registry has
multiple entries with the same dbservername, only the first one is used.

The database server looks up this information whenever you initialize the
database server and when client applications attempt to connect to a
database server.

The dbservername field can include any printable character other than an
uppercase character, a field delimiter, a newline character, or a comment
character. It is limited to 18 characters.

The nettype and Protocol Field

The nettype field describes the type of interface/protocol combination that
should be made between the client application and the database server. The
field is a series of eight letters composed of three subfields, as illustrated in
Figure 4-6.

The subfields of nettype are as follows.

Figure 4-6
Format of the
nettype Fieldd d i i i p p p

Database
server product

Interface type Network protocol
or IPC mechanism
Client/Server Communications 4-31

The sqlhosts File or Registry
Database Server Name

The first two letters of nettype represent the database server product, as
follows:

Interface Type

The middle three letters of nettype represent the network programming
interface that enables communications (see “What Is a Network
Programming Interface?” on page 4-5).

Interprocess communications (IPC) are UNIX-based connections used only for
communications between two processes running on the same computer. For
more information on supported network programming interfaces, see “What
Interface/Protocol Combinations Are Available on Your Platform?” on
page 4-13.

on Dynamic Server

ol Dynamic Server

dr INFORMIX-Enterprise Gateway with DRDA

Interface
Subfield Type of Interface

ipc IPC (interprocess communications)

soc Sockets

tli TLI (transport layer interface)UNIX
4-32 Administrator’s Guide for Informix Dynamic Server

The sqlhosts File or Registry
Network Protocol

The final three letters of nettype represent the network protocol or specific
IPC mechanism.

IPC connections use shared memory or, on UNIX, stream pipes. The database
server supports two network protocols: TCP/IP and IPX/SPX. For more infor-
mation on the protocols that the database server supports, see “What
Connections Does the Database Server Support?” on page 4-8.

Figure 4-7 summarizes the nettype values for the database server. However,
the database server might not support all these nettype values for your
platform. For information on how to find out which nettype values the
database server supports on your platform, see “What Interface/Protocol
Combinations Are Available on Your Platform?” on page 4-13.

Figure 4-7
Summary of nettype Values

Protocol
Subfield Type of Protocol

shm Shared-memory communication

str Stream-pipe communication ♦

nmp Named pipe communication ♦

tcp TCP/IP network protocol

spx IPX/SPX network protocol

nettype Description
Connection
Type

onipcshm The database server using shared-memory
communication

IPC

onipcstr The database server using stream-pipe communication IPC ♦

onipcnmp The database server using named-pipe communication IPC ♦

(1 of 2)

UNIX

WIN NT

UNIX

WIN NT
Client/Server Communications 4-33

The sqlhosts File or Registry
The hostname and host Field

The hostname or host field contains the name of the computer where the
database server resides. The hostname or host fields can include any
printable character other than a field delimiter, a newline character, or a
comment character. The hostname or host field is limited to 256 characters.

The following sections explain how client applications derive the values used
in the hostname field.

Shared-Memory and Stream-Pipe Communication

When you use shared memory or stream pipes for client/server communica-
tions, the hostname field must contain the actual host name of the computer
on which the database server runs.

Network Communication With TCP/IP

When you use the TCP/IP network protocol, the hostname field serves as a
key to the hosts file, which provides the network address of the computer.
The hostname that you use in the sqlhosts file must correspond to the
hostname in the hosts file.

ontlitcp The database server using TLI with TCP/IP protocol Network ♦

onsoctcp The database server using sockets with TCP/IP protocol Network

ontlispx The database server using TLI with IPX/SPX protocol Network ♦

nettype Description
Connection
Type

(2 of 2)

UNIX

UNIX

UNIX
4-34 Administrator’s Guide for Informix Dynamic Server

The sqlhosts File or Registry
Using an IP Address with TCP/IP Connections

For TCP/IP connections (both TLI and sockets), you can use the actual
Internet IP address in the hostname field instead of the host name or alias
found in the hosts file. The IP address is always composed of four sets of one
to three integers, separated by periods. Figure 4-8 shows a sample hosts file
with IP addresses and host names. The host aliases are optional and can be
omitted.

Using the IP address for knight from Figure 4-8, the following two sqlhosts
entries are equivalent.

Using an IP address might speed up connection time in some circumstances.
However, because computers are usually known by their host name, using IP
addresses in the sqlhosts file or registry makes it less convenient to identify
the computer with which an entry is associated.

You can find the IP address from the net address field of the /etc/hosts file or
by using the UNIX arp or ypmatch command. ♦

 You can configure Windows NT to use either of the following mechanisms to
resolve Internet Domain Addresses (mymachine.informix.com) to Internet
Protocol addresses (149.8.73.14):

■ Windows Internet Name Service

■ Domain Name Server ♦

Internet IP Address Host Name Host Alias(es) Figure 4-8
A Sample hosts File

157.111.192.127 smoke

49.192.4.63 odyssey

37.1.183.92 knight sales

servername nettype hostname servicename

sales ontlitcp 37.1.183.92 sales_ol

sales ontlitcp knight sales_ol

UNIX

WIN NT
Client/Server Communications 4-35

The sqlhosts File or Registry
Wildcard Addressing with TCP/IP Connections

You can use wildcard addressing in the hostname field of the sqlhosts file or
registry when both of the following conditions are met:

■ You are using TCP/IP connections.

■ The computer where the database server resides has multiple
network-interface cards (for example, three ethernet cards).

If the preceding conditions are met, you can use an asterisk (*) as a wildcard
in the sqlhosts file or registry used by the database server. When you enter
an asterisk in the hostname field, the database server can accept connections
at any valid IP address on its host computer.

Each IP address is associated with a unique host name. When a computer has
multiple network-interface cards, as in Figure 4-9 on page 4-37, the hosts file
must have an entry for each interface card. For example, the hosts file for the
texas computer might include these entries.

You can use the wildcard (*) alone or as a prefix for a host name or IP address,
as shown in Figure 4-10 on page 4-38. The wildcard in the hostname field is
meaningful only to the database server. If a client application uses an
sqlhosts entry that contains a wildcard, the client application simply ignores
the wildcard and searches for a host name after the wildcard.

If the client application and database server share an sqlhosts file or registry,
you can specify both the asterisk and a host name or IP address in the
hostname field (for example, *texas1 or *123.34.6.81). The client application
ignores the asterisk and uses the host name (or IP address) to make the
connection, and the database server uses the wildcard (*) to accept a
connection from any IP address.

Internet IP Address Host Name

Card 1 123.34.6.81 texas1

Card 2 123.34.6.82 texas2
4-36 Administrator’s Guide for Informix Dynamic Server

The sqlhosts File or Registry
The wildcard format allows the listen thread of the database server to wait
for client connection using the same service port number on each of the valid
network-interface cards. However, waiting for connections at multiple IP
addresses might require slightly more CPU time than waiting for connections
with a specific host name or IP address.

Using Wildcard Addressing

Figure 4-9 shows a database server on a computer (texas) that has two
network-interface cards. The two client sites use different network cards to
communicate with the database server.

Figure 4-9
Using Multiple Network-Interface Cards

iowa

texas

Network
programming
interface

kansas

Client

Client

texas_srvr
Client/Server Communications 4-37

The sqlhosts File or Registry
The sqlhosts file or registry for the texas_srvr database server can include
any one of the entries in Figure 4-10.

Figure 4-10
Possible Entries sqlhosts for the texas_srvr Database Server

Important: You can include only one of these entries in your sqlhosts file or registry.

If any of the preceding lines are in its sqlhosts file or registry, the texas_srvr
database server can accept client connections from either of the network
cards. The database server finds the wildcard in the hostname field and
ignores the explicit host name.

Tip: For clarity and ease of maintenance, Informix recommends that you include a
host name when you use the wildcard in the hostname field (that is, use *host
instead of simply *).

The sqlhosts file used by a client application must contain an explicit host
name or IP address. The client application on iowa can use any one of the
entries shown in Figure 4-11 on page 4-39 in its sqlhosts file or registry.

servername nettype hostname servicename

texas_srvr ontlitcp *texas1 pd1_on

texas_srvr ontlitcp *123.34.6.81 pd1_on

texas_srvr ontlitcp *texas2 pd1_on

texas_srvr ontlitcp *123.34.6.82 pd1_on

texas_srvr ontlitcp * pd1_on
4-38 Administrator’s Guide for Informix Dynamic Server

The sqlhosts File or Registry
Figure 4-11
Possible Entries in the sqlhosts File for the Client Application on iowa

Important: You can include only one of these entries in your sqlhosts file.

The client application ignores the wildcard in the hostname field.

The client application on kansas can use any one of the entries shown in
Figure 4-12 in its sqlhosts file or registry.

Figure 4-12
Possible Entries in the sqlhosts File for the Client Application on kansas

Important: You can include only one of these entries in your sqlhosts file or registry.

servername nettype hostname servicename

texas_srvr ontlitcp *texas1 pd1_on

texas_srvr ontlitcp *123.34.6.81 pd1_on

texas_srvr ontlitcp texas1 pd1_on

texas_srvr ontlitcp 123.34.6.81 pd1_on

servername nettype hostname servicename

texas_srvr ontlitcp *texas2 pd1_on

texas_srvr ontlitcp *123.34.6.82 pd1_on

texas_srvr ontlitcp texas2 pd1_on

texas_srvr ontlitcp 123.34.6.82 pd1_on
Client/Server Communications 4-39

The sqlhosts File or Registry
Network Communication with IPX/SPX

When you use the IPX/SPX network protocol, the hostname field of the
sqlhosts file must contain the name of the NetWare file server. The name of
the NetWare file server is usually the UNIX hostname of the computer.
However, this is not always the case. You might need to ask the NetWare
administrator for the correct NetWare file-server names.

Tip: NetWare installation and administration utilities might display the NetWare
file-server name in capital letters; for example, VALLEY. However, in the sqlhosts
file, you can enter the name in either uppercase or lowercase letters.

The servicename and Service Field

The interpretation of the servicename field depends on the type of
connection that the nettype field specifies.

The servicename and service fields can include any printable character other
than a field delimiter, a newline character, or a comment character. The
servicename and service fields are limited to 128 characters.

Shared-Memory and Stream-Pipe Communication

When the nettype field specifies a shared-memory connection (onipcshm) or
a stream-pipe connection (onipcstr), the database server uses the value in the
servicename entry internally to create a file that supports the connection. For
both onipcshm and onipcstr connections, the servicename can be any short
group of letters that is unique in the environment of the host computer where
the database server resides. Informix recommends that you use the
dbservername as the servicename for stream-pipe connections.

Named-Pipe Communication

When the nettype field specifies a named-pipe connection (onipcnmp), the
servicename entry contains the name that the user specified for the pipe,
using the universal name convention (UNC) to specify the name. For
example, if the user specified the name of the pipe as somepipe, the servi-
cename entry would be as follows:

\\.PIPE\somepipe

UNIX

UNIX

WIN NT
4-40 Administrator’s Guide for Informix Dynamic Server

The sqlhosts File or Registry
The period following the double backward slashes means that the named-
pipe connection is local.

Network Communication With TCP/IP

When you use the TCP/IP connection protocol, the servicename must corre-
spond to a servicename entry in the services file. The port number in the
services file tells the network software how to find the database server on the
specified host. It does not matter what service name you choose, as long as
you agree on a name with the network administrator.

Figure 4-13 shows the relationship between the sqlhosts file or registry and
the hosts file, as well as the relationship of sqlhosts to the services file.

Figure 4-13
Relationship of
sqlhosts File or

Registry to hosts
and services Files

sqlhosts entry to connect by TCP/IP

dbservername nettype hostname servicename options

sales onsoctcp knight sales_ol

hosts file

IP address hostname alias

37.1.183.92 knight

services file

service name port#/protocol

sales_ol 1543/tcp
Client/Server Communications 4-41

The sqlhosts File or Registry
Using the Port Number with TCP/IP Connections

For the TCP/IP network protocol, you can use the actual TCP listen port
number in the servicename field. The TCP port number is in the port# field of
the services file.

Using the port number from the services file in Figure 4-13 on page 4-41, the
servicename field of the sqlhosts entry could also be written as in the
following example.

Using the actual port number might save time when you make a connection
in some circumstances. However, as with the IP address in the hostname
field, using the actual port number might make administration of the
sqlhosts file or registry less convenient.

Network Communication With IPX/SPX

A service on an IPX/SPX network is simply a program that is prepared to do
work for you, such as the database server. For an IPX/SPX connection, the
value in the servicename field can be an arbitrary string, but it must be
unique among the names of services available on the IPX/SPX network. It is
convenient to use the dbservername in the servicename field.

servername nettype hostname servicename

sales ontlitcp knight 1536

UNIX
4-42 Administrator’s Guide for Informix Dynamic Server

The sqlhosts File or Registry
The options Field

The options field of the sqlhosts file provides additional flexibility in speci-
fying connections.

The options field includes entries for the following features.

When you change the options in the sqlhosts file or registry, those changes
affect the next connection that a client application makes. You do not need to
stop and restart the client application to allow the changes to take effect;
however, a database server reads only its own sqlhosts entry during initial-
ization. If you change the options for the database server, you must
reinitialize the database server to allow the changes to take effect.

Option Name Option Letter

Buffer size b

Communication support module csm ♦

End of group e

Group g

Identifier i

Keep-alive k

Security s (database server)

r (client)

UNIX
Client/Server Communications 4-43

The sqlhosts File or Registry
Syntax Rules for the options Field

Each item in the options field has the following format:

letter=value

You can combine several items in the options field, and you can include them
in any order. The maximum length of the options field is 256 characters.

Important: The database server evaluates the option field as a series of columns. A
comma or white space in the options field represents an end of a column. Client and
database server applications check each column to determine whether the option is
supported. If an option is not supported, you are not notified. It is merely ignored.

The following examples show both valid and invalid syntax.

The Buffer-Size Option

Use the buffer-size option (b=) to specify in bytes the size of the communica-
tions buffer space. The buffer-size option applies only to connections that use
the TCP/IP network protocol. Other types of connections ignore the buffer-
size setting. You can use this option when the default size is not efficient for
a particular application. The database server default buffer size for TCP/IP is
4,096 bytes.

Adjusting the buffer size allows you to use system and network resources
more efficiently; however, if the buffer size is set too high, the user receives a
connection-reject error because no memory can be allocated. For example, if
you set b=64000 on a system that has 1000 users, the system might require 64
megabytes of memory for the communications buffers. This setting might
exhaust the memory resources of the computer.

Syntax Valid Comments

k=0,s=3,b=5120 Yes Correct use of syntax

s=3,k=0 b=5120 Yes Equivalent to the preceding entry (note the use of white
space instead of a comma)

k=s=0 No You cannot combine entries.
4-44 Administrator’s Guide for Informix Dynamic Server

The sqlhosts File or Registry
On many operating systems, the maximum buffer size supported for TCP/IP
is 16 kilobytes. To determine the maximum allowable buffer size, refer to the
documentation for your operating system or contact the technical-support
services for the vendor of your platform.

If your network includes several different types of computers, be particularly
careful when you change the size of the communications buffer.

Tip: Informix recommends that you use the default size for the communications
buffer. If you choose to set the buffer size to a different value, however, set the client-
side communications buffer and the server-side communications buffer to the same
size.

The Communications Support Module Option

Use the communications support module (CSM) option to describe the DCE-
GSS CSM for each sqlhosts entry that you want to use it. If you do not specify
the CSM option, the database server uses the default authentication policy for
that dbservername. You can specify the same CSM option setting for all
sqlhosts entries, or you can specify different CSM option, or no CSM options,
for each sqlhosts entry.

The format of the CSM option is illustrated in the following example:

csm=(csmname,csm-connection-options)

The value of csmname must match a csmname entry in the concsm.cfg file. The
connection-options parameter overrides the default csm-connection options
specified in the concsm.cfg file. For information on the concsm.cfg file entry,
refer to “The $INFORMIXDIR/etc/concsm.cfg file” on page 4-25.

The following example illustrates how to specify a communications support
module in the options field of the sqlhosts file.

csm=(dcegss,"p=my_server")

This entry specifies that the dcegss communications support module will be
used for the connection and that the principal name for the database server
is my_server.

For more information on the communications support module, refer to
“What Is a Connection?” on page 4-6. For more information on the
concsm.cfg file, refer to “The $INFORMIXDIR/etc/concsm.cfg file” on
page 4-25.

UNIX
Client/Server Communications 4-45

The sqlhosts File or Registry
The End of Group Option

Use this option to specify the ending member of a database server group. You
can use this option only in a group entry, but it is not a required option for
each database server group entry. It you specify this option in an entry other
than a database server group, it is ignored.

If no end-of-group option is specified for a group, the group members are
assumed to be contiguous. The end of group is determined when an entry is
reached that does not belong to the group, or at the end-of-file, whichever
comes first.

The Group Option

When you define database server groups in the sqlhosts file or registry, you
can use multiple related sqlhosts entries as one logical entity to establish or
change client/server connections. Enterprise Replication uses groups to
declare database servers for replication. Use the following steps to help you
create database server groups.

To name a database server group

1. Specify the name of the database server group to which the sqlhosts
entry belongs (up to 18 characters) in the DBSERVERNAME field.

The database server group name can be the same as the initial
DBSERVERNAME for the database server.

2. The nettype field contains the keyword group.

3. Do not use the hostname and servicename fields when you initially
name the database server group.

If you specify options, these fields can contain dash (-) characters as
null-field indicators for the unused fields. The only options available
for a database server group entry are the end-of-group option (e) and
the identifier option (i).

Important: Database server groups cannot be nested inside other database server-
groups, and database server group members cannot belong to more than one group.

Figure 4-14 on page 4-47 shows an sqlhosts file or registry that defines
database server groups.
4-46 Administrator’s Guide for Informix Dynamic Server

The sqlhosts File or Registry
Figure 4-14
Database Server Groups in sqlhosts File or Registry

The example in Figure 4-14 shows the following two groups: asia and peru.
Group asia includes the following members:

■ asia.1

■ asia.2

■ usa.2

■ asia.3

Because group asia uses the end-of-group option (e=asia.3), the database
server searches for group members until it reaches asia.3, so the group
includes usa.2.

Because group peru does not use the end-of-group option, the database
server continues to include all members until it reaches the end of file.

Be careful of your placement of group members when you define database
server groups.

dbservername nettype hostname servicename options

asia group – – e=asia.3

asia.1 ontlitcp node6 svc8 g=asia

asia.2 onsoctcp node0 svc1 g=asia

usa.2 ontlispx node9 sv2

asia.3 onsoctcp node1 svc9 g=asia

peru group – –

peru.1 ontlitcp node4 svc4

peru.2 ontlitcp node5 svc5 g=peru

peru.3 ontlitcp node7 svc6

usa.1 onsoctcp 37.1.183.92 sales_ol k=1, s=0
Client/Server Communications 4-47

The sqlhosts File or Registry
The name of a database server group can also be used as a dbservername in
the following environment variables:

■ INFORMIXSERVER

The value of INFORMIXSERVER for a client application can be a
database server group name. However, you cannot use a database
server group name as a value of INFORMIXSERVER for a database
server or database server utility.

■ DBPATH

DBPATH can contain the names of database server groups as
dbservernames.

For more information on the use of the group option, refer to the Guide to
Informix Enterprise Replication

The Identifier Option

The identifier option uses an identifier to specify a database server. The
identifier must be a positive numeric integer and must be unique within
sqlhosts.

For more information on the use of the identifier option, refer to the Guide to
Informix Enterprise Replication.

The Keep-Alive Option

The keep-alive option is a network option that TCP/IP uses. It does not affect
other types of connections.

The letter k identifies keep-alive entries in the options field, as follows:

k=0 disable the keep-alive feature
k=1 enable the keep-alive feature

When a connected client and server are not exchanging data, the keep-alive
option enables the network service to check the connection periodically. If the
receiving end of the connection does not respond within the time specified by
the parameters of your operating system, the connection is considered
broken, and all resources related to the connection are released.

When the keep-alive option is enabled, the network service spends
additional resources to check the connection.
4-48 Administrator’s Guide for Informix Dynamic Server

The sqlhosts File or Registry
When the keep-alive option is disabled, the network service does not check
periodically whether the connection is still active. If the opposite end of the
connection terminates unexpectedly without any notification, as when a PC
reboots, for example, the network service might never detect that the
connection is broken.

If you do not include the keep-alive option in the options field, the keep-alive
feature is enabled by default. You can set this option on the server side only,
the client side only, or on both sides. For most cases, Informix recommends
that you enable the keep-alive option.

The Security Options

The security options let you control operating-system security-file lookups.
The letter s identifies server-side settings and the letter r identifies client-side
settings. You can set both options in the options field. A client ignores s
settings, and the database server ignores r settings.

The following table shows the possible security option settings.

The security options let you control the way that a client (user) gains access
to a database server. By default, an Informix database server searches the
clients hosts.equiv and .rhosts files to determine whether the client host
computer is trusted. With the security options, you can specifically enable or
disable the use of either or both the hosts.equiv and .rhosts files.

Setting Result

r=0 Disables the .netrc lookup from the client side

r=1 Enables the .netrc lookup from the client side (default setting for the client
side)

s=0 Disables both hosts.equiv and .rhosts lookup from the server side

s=1 Enables only the hosts.equiv lookup from the server side

s=2 Enables only the .rhosts lookup from the server side

s=3 Enables both hosts.equiv and .rhosts lookup on the server side (default
setting for the server side)
Client/Server Communications 4-49

ONCONFIG Parameters for Connectivity
For example, if you want to prevent end users from specifying trusted hosts
in their .rhosts file, you can set s=1 in the options field of the sqlhosts file or
registry for the database server to disable the .rhosts file lookup.

Important: Do not disable the hosts.equiv lookup in database servers that are used
in distributed database operations. That is, if you expect to use the database server in
distributed processing, do not set s=0 or s=2.

ONCONFIG Parameters for Connectivity
When you initialize the database server, the initialization procedure uses
parameter values from the ONCONFIG configuration file. The following
ONCONFIG parameters are related to connectivity:

■ DBSERVERNAME

■ DBSERVERALIASES

■ NETTYPE

The next sections explain the DBSERVERNAME and DBSERVERALIASES
configuration parameters.

Although the NETTYPE parameter is not a required parameter, Informix
recommends that you use it if you are going to configure two or more
connection types. It lets you adjust the number and type of virtual processors
used by the database server for communication. After the database server has
been running for some time, you can use the NETTYPE configuration
parameter to tune the database server for better performance.

For more information about DBSERVERNAME, DBSERVERALIASES, and
NETTYPE, refer to “Network Virtual Processors” on page 9-28.
4-50 Administrator’s Guide for Informix Dynamic Server

The DBSERVERNAME Configuration Parameter
The DBSERVERNAME Configuration Parameter
The DBSERVERNAME configuration parameter specifies a name, called the
dbservername, for the database server. For example, to assign the value
nyc_research to dbservername, use the following line in the ONCONFIG
configuration file:

DBSERVERNAME nyc_research

When a client application connects to a database server, it must specify a
dbservername. The entry in the sqlhosts file or registry that is associated
with the specified dbservername describes the type of connection that should
be made.

Client applications specify the name of the database server in one of the
following places:

■ In the INFORMIXSERVER environment variable

■ In SQL statements such as CONNECT, DATABASE, CREATE TABLE,
and ALTER TABLE, which let you specify a database environment

■ In the DBPATH environment variable

The DBSERVERALIASES Configuration Parameter
The DBSERVERALIASES parameter lets you assign multiple dbservernames to
the same database server. Figure 4-15 shows entries in an ONCONFIG config-
uration file that assign three dbservernames to the same database server
instance.

Figure 4-15
Example of DBSERVERNAME and DBSERVERALIASES Parameters

DBSERVERNAME sockets_srvr
DBSERVERALIASES ipx_srvr,shm_srvr
Client/Server Communications 4-51

Environment Variables for Network Connections
The sqlhosts file or registry associated with the dbservernames from
Figure 4-15 on page 4-51 could include the entries shown in Figure 4-16.
Because each dbservername has a corresponding entry in the sqlhosts file or
registry, you can associate multiple connection types with one database
server.

Using the sqlhosts file shown in Figure 4-16, a client application uses the
following statement to connect to the database server using shared-memory
communication:

CONNECT TO '@shm_srvr'

A client application can initiate a TCP/IP sockets connection to the same
database server using the following statement:

CONNECT TO '@sockets_Usrvr'

Environment Variables for Network Connections
The INFORMIXCONTIME (connect time) and INFORMIXCONRETRY
(connect retry) environment variables are client environment variables that
affect the behavior of the client when it is trying to connect to a database
server. These environment variables are used to minimize connection errors
caused by busy network traffic. Environment variables are documented in
the Informix Guide to SQL: Reference.

You do not need to set INFORMIXCONTIME or INFORMIXCONRETRY when
you configure and initialize the database server. Users of client applications
that connect to the database server using network connections might need to
set these variables.

Figure 4-16
Three Entries in the sqlhosts File for One Database Server

shm_srvr onipcshm my_host my_shm
sockets_srvr onsoctcp my_host port1
ipx_srvr ontlispx nw_file_server ipx_srvr
4-52 Administrator’s Guide for Informix Dynamic Server

Examples of Client/Server Configurations
If the client application explicitly attaches to shared-memory segments, you
might need to set INFORMIXSHMBASE (shared-memory base). For more
information, refer to “Where the Client Attaches to the Communications
Portion” on page 11-11.

The INFORMIXSERVER environment variable allows you to specify a default
dbservername to which your clients will connect. For more information, see
the Informix Guide to SQL: Reference.

Examples of Client/Server Configurations
The next several sections show the correct entries in the sqlhosts file or
registry for several client/server connections. The following examples are
included:

■ Using a shared-memory connection

■ Using a local loopback connection

■ Using a network connection

■ Using multiple connection types

■ Accessing multiple database servers

■ Using the relay module

■ Using a post-6.0 client application with a Version 5.x database server

Important: In the following examples, you can assume that the network-
configuration files hosts and services have been correctly prepared, even if they are
not explicitly mentioned.
Client/Server Communications 4-53

Using a Shared-Memory Connection
Using a Shared-Memory Connection
Figure 4-17 shows a shared-memory connection on the computer named
river.

The ONCONFIG configuration file for this installation includes the following
line:

DBSERVERNAME river_shm

A correct entry for the sqlhosts file or registry is as follows.

The client application connects to this database server using the following
statement:

CONNECT TO '@river_shm'

Because this is a shared-memory connection, no entries in network configu-
ration files are required. For a shared-memory connection, you can choose
arbitrary values for the hostname and servicename fields of the sqlhosts file
or registry.

Figure 4-17
A Shared-Memory Connection

Shared
memory

Client

river_shm

Database server

river

dbservername nettype hostname servicename

river_shm onipcshm river rivershm
4-54 Administrator’s Guide for Informix Dynamic Server

Using a Local Loopback Connection
For more information about shared-memory connections, refer to “How a
Client Attaches to the Communications Portion” on page 11-11.

Using a Local Loopback Connection
Figure 4-18 shows a local loopback connection. The name of the host
computer is river.

The network connection in Figure 4-18 uses sockets and TCP/IP, so the correct
entry for the sqlhosts file or registry is as follows.

If the network connection uses TLI instead of Sockets, only the nettype entry
in this example changes. In that case, the nettype entry is ontlitcp instead
of onsoctcp.

The ONCONFIG file includes the following line:

DBSERVERNAME river_soc

This example assumes that an entry for river is in the hosts file and an entry
for riverol is in the services file.

Figure 4-18
Local Loopback

Connection

Client Database server

SOC - TCP

TCP/IP network
programming
interface

river_soc

river

dbservername nettype hostname servicename

river_soc onsoctcp river riverol
Client/Server Communications 4-55

Using a Network Connection
Using a Network Connection
Figure 4-19 shows a configuration in which the client application resides on
host river and the database server resides on host valley.

An entry for the valley_ds database server is in the sqlhosts files or registries
on both computers. Each entry in the sqlhosts file or registry on the computer
where the database server resides has a corresponding entry on the computer
where the client application resides.

Both computers are on the same TCP/IP network, but the host river uses
sockets for its network programming interface, while the host valley uses TLI
for its network programming interface. The nettype field must reflect the
type of network programming interface used by the computer on which
sqlhosts resides. In this example, the nettype field for the valley_ds database
server on host river is onsoctcp, and the nettype field for the valley_ds
database server on host valley is ontlitcp.

Figure 4-19
A Network Configuration

river

SOC - TCP

TLI - TCP

valley

Client

valley_ds

Database server

sqlhosts entry on river

valley_ds

dbservername

valleyonsoctcp valleyol

nettype hostname servicename options

sqlhosts entry on valley

valley_ds

dbservername

valleyontlitcp valleyol

nettype hostname servicename options
4-56 Administrator’s Guide for Informix Dynamic Server

Using Multiple Connection Types
The sqlhosts File Entry for IPX/SPX

IPX/SPX software frequently provides TLI. If the configuration in Figure 4-19
on page 4-56 uses IPX/SPX instead of TCP/IP, the entry in the sqlhosts file on
both computers is as follows.

In this case, the hostname field contains the name of the NetWare file server.
The servicename field contains a name that is unique on the IPX/SPX
network and is the same as the dbservername.

Using Multiple Connection Types
A single instance of the database server can provide more than one type of
connection. Figure 4-20 on page 4-58 illustrates such a configuration. The
database server is on host river. Client A connects to the database server with
a shared-memory connection because shared memory is fast. Client B must
use a network connection because the client and server are on different
computers.

When you want the database server to accept more than one type of
connection, you must take the following actions:

■ Put DBSERVERNAME and DBSERVERALIASES entries in the
ONCONFIG configuration file.

■ Put an entry in the sqlhosts file or registry for each database
server/connection type pair.

For the configuration in Figure 4-20 on page 4-58, the database server has two
dbservernames: river_net and river_shm. The ONCONFIG configuration file
includes the following entries:

DBSERVERNAME river_net
DBSERVERALIASES river_shm

dbservername nettype hostname servicename

valley_us ontlispx valley_nw valley_us

UNIX
Client/Server Communications 4-57

Using Multiple Connection Types
The dbservername used by a client application determines the type of
connection that is used. Client A connects to the database server using the
following statement:

CONNECT TO '@river_shm'

In the sqlhosts file or registry, the nettype associated with the name
river_shm specifies a shared-memory connection, so this connection is a
shared-memory connection.

Client B connects to the database server using the following statement:

CONNECT TO '@river_net'

In the sqlhosts file or registry, the nettype value associated with river_net
specifies a network (TCP/IP) connection, so client B uses a network
connection.

Figure 4-20
A Configuration That Uses Multiple Connection Types

sqlhosts entries on river

river_shm
river_net

dbservername

river
river

onipcshm
onsoctcp

riverA
riveron

nettype hostname servicename

river

SOC - TCP
TLI - TCP

Shared
memory

Client A

Database server A

valley

options

sqlhosts entries on valley

river_net

dbservername

riverontlitcp riveron

nettype hostname servicename options

Client B
4-58 Administrator’s Guide for Informix Dynamic Server

Accessing Multiple Database Servers
Accessing Multiple Database Servers
Figure 4-21 shows a configuration with two database servers on host river.
When more than one database server is active on one computer, it is known
as multiple residency. (For more information about multiple residency, see
Chapter 5, “What Is Multiple Residency?”)

For the configuration in Figure 4-21, you must prepare two ONCONFIG
configuration files, one for database server A and the other for database
server B. The sqlhosts file or registry includes the connectivity information
for both database servers.

The ONCONFIG configuration file for database server A includes the
following line:

DBSERVERNAME riverA_shm

The ONCONFIG configuration file for database server B includes the
following line:

DBSERVERNAME riverB_soc

Figure 4-21
Multiple Database Servers

river

sqlhosts entries on river

riverA_shm
riverB_soc

dbservername

river
river

onipcshm
onsoctcp

riverA
riveron

nettype hostname servicename

Shared memory

options

Client

riverA_shm

Database server A

riverB_soc

Database server B

SOC - TCP
Client/Server Communications 4-59

Using the Relay Module
Using the Relay Module
Starting with Version 6.0, each Informix database server includes a relay
module that lets a Version 4.1 or Version 5.x client application connect to the
database server. The connection can be either a network connection or a local
connection that uses shared memory. The relay module lets Informix
products from different release levels connect to each other as transparently
as possible.

Figure 4-22 shows an example of a shared-memory connection between a
Version 5.x client application and a post-6.0 database server using the relay
module.

To prepare this configuration

1. Verify that a shared-memory connection between the database
server and a client application of the same version works correctly.
(In other words, prepare your configuration as you would for the
configuration shown in Figure 4-17 on page 4-54.)

The sqlhosts file does not contain an entry for the connection
between the client and the relay module. The relay module does not
affect the sqlhosts file.

UNIX

Figure 4-22
A Configuration with a 5.x Client Application and a post-6.0 Database Server

river

sqlhosts file or registry on river

riverA_shm

dbservername

riveronipcshm rivershm

nettype hostname servicename optionsRelay module

Shared memory

5.x Client

river_shm

Database server
4-60 Administrator’s Guide for Informix Dynamic Server

Using the Relay Module
2. The database server should be installed in the same directory as
Version 5.x products. In this case, set the SQLEXEC environment
variable to the pathname of the relay module, as shown in the
following example. (The relay module is stored as
$INFORMIXDIR/lib/sqlrm as part of the installation process.)

setenv SQLEXEC $INFORMIXDIR/lib/sqlrm

3. If you cannot install the database server in the same directory as the
5.x Informix products, do the following:

a. Copy or symbolically link the subdirectories from the $INFOR-
MIXDIR/msg directory of the database server product to the
$INFORMIXDIR/msg directory of the Version 5.x products.

b. Change the INFORMIXDIR environment variable to point to the
directory where the Version 5.x products are installed.

c. Modify the PATH environment variable to include
$INFORMIXDIR/bin of Version 5.x database server.

d. Set the SQLEXEC environment variable to the complete
pathname of the relay module. You cannot use the variable
$INFORMIXDIR to set the SQLEXEC environment variable,
because the INFORMIXDIR environment variable now points to
the directory of the Version 5.x products instead of to the
directory where the database server products are stored. You
must use the exact pathname, for example:

setenv SQLEXEC /usr/versionUSvr/informix/lib/sqlrm

e. Remove extra environment variables.

If Version 5.x Informix products are in use, the user’s
environment might include two environment variables that
were required for Version 5.x database servers: SQLRM and
SQLRMDIR. The user must unset these variables before the client
application can use a post-6.0 database server, as the following
example shows:

unsetenv SQLRM
unsetenv SQLRMDIR

The DBNETTYPE environment variable, used by the Version 5.x database
servers, is not needed for later database servers. You can unset the
DBNETTYPE environment variable if you want, but it does not affect post-6.0
products in any way.
Client/Server Communications 4-61

Using the Relay Module
A Relay Module Configuration with Three Database Servers

Figure 4-23 shows a configuration that has three possible connections (called
A, B, and C) between a Version 5.x client application and three post-6.0
database servers. The client application can use any of the connections, but
only one connection can be active at a time.

Verify that all three connections work correctly with a Version 5.x client
application and then modify the environment variables.

Figure 4-23
A Configuration with a 5.x Client, a Relay Module, and Three Database Servers

sqlhosts file on valley

valley_tli

dbservername

valleyontlitcp valleyol

nettype hostname servicename options

valley

river

5.x Client Relay module

Database
server A

river_shm

Shared
memory

Database
server B

river_soc

SOC -
TCP

Database server C

sqlhosts file on river

river_shm
river_soc
valley_tli

dbservername

river
river
valley

onipcshm
onsoctcp
onsoctcp

rivershm
rivershm
valleyol

nettype hostname servicename options

A
B
C

B

C

A

SOC - TCP

TLI - TCP
4-62 Administrator’s Guide for Informix Dynamic Server

Using a Post-6.0 Client Application with a 5.x Database Server
Using a Post-6.0 Client Application with a 5.x Database
Server
To connect a post-6.0 client application to a Version 5.x database server, do
the following:

■ Use a network connection.

■ Do not use any syntax that is specific to database servers after
Version 5.x.

For example, the client application cannot use the CONNECT
statement because Version 5.x does not support the CONNECT
statement.

Important: A post-6.0 client application is one that corresponds to an Informix data-
base server that is Version 6.0 or later. An application that uses a product in the
INFORMIX-Client Software Developer’s Kit, Version 2.0 or later, is a post-6.0 client
application.

For example, to open a database named 5_base using the database server
valley_istar, do the following:

■ Set the environment variable INFORMIXSERVER to valley_istar.

■ In the application, issue the following statement:
DATABASE 5_base@valley_istar

UNIX
Client/Server Communications 4-63

Using a Post-6.0 Client Application with a 5.x Database Server
Figure 4-24
Example of Connecting a Post-6.0 Client Application to a 5.x Database Server

sqlhosts file on river

valley_istar

dbservername

valleyonsoctcp sqlexecd

nettype hostname servicename options

sqlhosts file on valley

valley_istar

dbservername

valleyoltlitcp sqlexecd

nettype hostname servicename options

river

valley

sqlexecd

TLI - TCP

SOC - TCP

Post 6.0
Client
4-64 Administrator’s Guide for Informix Dynamic Server

Using a Post-6.0 Client Application with a 5.x Database Server
To prepare to use the configuration in Figure 4-24 on page 4-64, follow these
steps:

1. On the server host computer (valley), start the Version 5.x database
server.

2. To confirm that the database server is active, connect a
Version 5.x client application to the database server.

3. Write down (for use in step 6) the entry that is in the sqlhosts file for
the Version 5.x database server.

4. On the client host computer (river), set the INFORMIXDIR
environment variable to the directory where the database server
products are installed.

5. Modify the PATH environment variable to include
$INFORMIXDIR/bin.

6. Update the sqlhosts file to contain an entry for the Version 5.x
database server.

7. Set the INFORMIXSERVER environment variable to the
dbservername of the Version 5.x database server instance.
Client/Server Communications 4-65

5
Chapter
What Is Multiple Residency?
Benefits of Multiple Residency 5-3

How Multiple Residency Works 5-4
The Role of the ONCONFIG Environment Variable 5-5
The Role of the SERVERNUM Configuration Parameter. 5-5

5-2 Adm
inistrator’s Guide for Informix Dynamic Server

You can use more than one database server in the following two
ways:

■ Run multiple instances of the database server on a single host
computer

■ Access several database servers over a network

When multiple database servers and their associated shared memory and
disk structures coexist on a single computer, it is called multiple residency. This
chapter covers the concepts of multiple residency.

Benefits of Multiple Residency
Creating independent database server environments on the same computer
allows you to perform the following actions:

■ Separate production and development environments

■ Isolate sensitive databases

■ Test distributed data transactions on a single computer

When you use multiple residency, each database server has its own configu-
ration file. Thus, you can create a configuration file for each database server
that meets its special requirements for backups, shared-memory use, and
tuning priorities.
What Is Multiple Residency? 5-3

How Multiple Residency Works
You can separate production and development environments to protect the
production system from the unpredictable nature of the development
environment. You might also find it useful to isolate applications or
databases that are critically important, either for security reasons or to
accommodate more frequent backups than the majority of the databases
require.

If you are developing an application for use on a network, you can use local
loopback (see “Using a Local Loopback Connection” on page 4-55) to
perform your distributed-data simulation and testing on a single computer.
Later, when a network is ready, you can use the application without changes
to application source code.

However, running multiple database servers on the same computer is not as
efficient as running one database server. You need to balance the advantages
of separate database servers against the extra performance cost.

How Multiple Residency Works
Multiple residency is possible because the operating system can maintain
separate areas in shared memory and disk for each instance of the database
server. Each instance of the database server passes a value to the operating
system. This value, which is a function of the SERVERNUM parameter,
specifies the shared-memory address to which the database server process
should attach. You must also specify a unique database server name and
unique storage locations for each instance of the database server.
5-4 Administrator’s Guide for Informix Dynamic Server

The Role of the ONCONFIG Environment Variable
The Role of the ONCONFIG Environment Variable
Each instance of the database server is described by the parameters in an
ONCONFIG configuration file. The ONCONFIG environment variable
specifies the name of the current ONCONFIG configuration file. The following
configuration parameters should have unique values for each database
server:

■ SERVERNUM

■ ROOTPATH and/or ROOTOFFSET

■ DBSERVERNAME and DBSERVERALIASES

■ MSGPATH

■ MIRRORPATH and/or MIRROROFFSET

How to set these parameters is discussed in Chapter 6, “Using Multiple
Residency.”

The Role of the SERVERNUM Configuration Parameter
To maintain separation between the instances of database servers, you
maintain multiple configuration files, each with a unique SERVERNUM value.
When you initialize the database server, it reads the ONCONFIG environment
variable for the name of its configuration file. Next, the database server reads
its configuration file to obtain the value of its SERVERNUM parameter. The
database server then uses the SERVERNUM value to calculate the required
shared-memory address.
What Is Multiple Residency? 5-5

The Role of the SERVERNUM Configuration Parameter
For example, the ONCONFIG files for two database servers on a UNIX
platform might include these parameters.

Figure 5-1 provides an example of multiple residency using the configuration
files shown in the preceding table. Each database server has its own name, its
own section of shared memory, and its own storage area on disk.

ONCONFIG file: onconfig.one ONCONFIG file: onconfig.two
...
DBSERVERNAME dbsrvr_one

SERVERNUM 1

ROOTPATH /dev/area1
...

...
DBSERVERNAME dbsrvr_two

SERVERNUM 2

ROOTPATH /dev/area2
...

Figure 5-1
Separate Memory and Storage in Multiple Residency

Shared-memory
area for Database
server B

Memory address
calculated using
SERVERNUM (1)

Memory address
calculated using
SERVERNUM (2)

Shared-memory
area for Database
server A

Disk drive

/dev/area2/dev/area1

Shared memory

Database server B

Database server A
5-6 Administrator’s Guide for Informix Dynamic Server

6
Chapter
Using Multiple Residency
Planning for Multiple Residency 6-3

Preparing for Multiple Residency 6-4
Prepare a Configuration File 6-5
Set the ONCONFIG Environment Variable 6-5
Edit the New Configuration File 6-5
Add Connection Information 6-7
Update the sqlhosts File or Registry. 6-7
Initialize Disk Space 6-7
Prepare Dbspace and Logical-Log Backup Environment. 6-8

If You Use ON-Archive. 6-8
Update the Operating-System Boot File 6-9
Check Users’ INFORMIXSERVER Environment Variables 6-9

Using instmgr.exe 6-10
Adding an Instance of the Database Server 6-10
Deleting an Instance of the Database Server 6-11

6-2 Adm
inistrator’s Guide for Informix Dynamic Server

This chapter describes how to use multiple database servers on the
same computer. It includes the following topics:

■ Questions that you should ask when you plan for multiple residency

■ Steps that you should follow for multiple residency

Before you perform this procedure, you should already have installed one
database server as described in Chapter 3, “Configuring the Database
Server.”

Planning for Multiple Residency
Each database server must have its own unique storage space. You cannot
use the same disk space for more than one instance of a database server.
When you prepare an additional database server, you need to repeat some of
the planning that you did for installing the first database server. For example,
you need to consider these questions:

■ Will you use buffered or unbuffered files? Will the unbuffered files
share a disk partition with another application? (For more infor-
mation on buffered and unbuffered files, see “Unbuffered Disk
Management” on page 1-6.)

■ Will you use mirroring? Where will the mirrors reside?

■ Where will the message log reside?

■ Can you dedicate a tape drive to this database server for its logical
logs?

■ What kind of backups will you perform?
Using Multiple Residency 6-3

Preparing for Multiple Residency
Preparing for Multiple Residency
The following sections present the steps to setup an additional database
server, or multiple residency, on your computer.

Important: Do not try to install another copy of the database server binaries. All
instances of the same version of the database server on one computer share the same
executable files.

If you have installed Informix Enterprise Command Center (IECC) on a
Windows NT computer, you can run instmgr.exe from the command line to
create automatically an additional instance of the database server on that
computer. The instrmgr.exe program uses a graphical interface to prompt
you for the information that it needs. For information on how to run
instmgr.exe to create an additional database server, refer to “Using
instmgr.exe” on page 6-10. ♦

If you are not using IECC, you must perform the following steps manually to
create an additional instance of the database server.

To create a multiple residency of a database server

1. Prepare a new ONCONFIG configuration file.

2. Set your ONCONFIG environment variable to the new filename.

3. Edit the new ONCONFIG configuration file.

4. If needed, add a servicename to the services file or connection
information to the NetWare server.

5. Update the sqlhosts file or registry to include the dbservername(s) of
the new database server.

6. Initialize disk space for the new database server.

7. Prepare dbspace and backup schedules.

8. Modify the operating-system boot file.

9. Check users’ INFORMIXSERVER environment variable.

The sections that follow describe each of these steps.

WIN NT
6-4 Administrator’s Guide for Informix Dynamic Server

Prepare a Configuration File
Prepare a Configuration File
Each instance of the database server must have its own ONCONFIG configu-
ration file. To prepare an ONCONFIG file for the new instance of a database
server, copy a configuration file that already exists and modify it appropri-
ately. You can copy a configuration that you have already prepared, or you
can copy the onconfig.std file. Do not modify onconfig.std.

The following table lists the directories in which the configuration files must
be located.

Give the new ONCONFIG file a name that you can easily associate with its
function and its SERVERNUM value. For example, you might select the
filename onconfig.dev37 to indicate the configuration file for a development
environment with the SERVERNUM value of 37.

Set the ONCONFIG Environment Variable
Set the ONCONFIG environment variable to the filename of the new
ONCONFIG file. Specify only the filename, not the complete path.

Edit the New Configuration File
You can edit the new ONCONFIG file using a text editor or ON-Monitor.

Warning: If you use ON-Monitor, you must set the ONCONFIG environment
variable to the name of the new configuration file, and you must change
SERVERNUM in the file (using a text editor) before you enter ON-Monitor. If you do
not, you will edit the values of the wrong configuration file.

Platform Directory

UNIX $INFORMIXDIR/etc

Windows NT %INFORMIXDIR%\etc
Using Multiple Residency 6-5

Edit the New Configuration File
In the new configuration file, you must change the following configuration
parameters:

■ SERVERNUM

The SERVERNUM parameter specifies an integer (between 0 and 255)
associated with a database server configuration. Each instance of a
database server on the same host computer must have a unique
SERVERNUM value. For more information, refer to “The Role of the
SERVERNUM Configuration Parameter” on page 5-5.

■ DBSERVERNAME

The DBSERVERNAME parameter specifies the dbservername of a
database server. Informix suggests that you choose a name that gives
information about the database server, such as ondev37 or
hostnamedev37. For more information, refer to “The
DBSERVERNAME Configuration Parameter” on page 4-51.

■ MSGPATH

The MSGPATH parameter specifies the pathname of the message file
for a database server. You should specify a unique pathname for the
message file because database server messages do not include the
dbservername. If multiple database servers use the same MSGPATH,
you cannot identify the messages from separate database server
instances. For example, if you name your database server ondev37,
you might specify /usr/informix/dev37.log as the message log for
this instance of the database server.

■ ROOTPATH and/or ROOTOFFSET

The ROOTPATH and ROOTOFFSET parameters together specify the
location of the root dbspace for a database server. The root dbspace
location must be unique for every database server configuration.

If you put several root dbspaces in the same partition, you can use
the same value for ROOTPATH. However, in that case, you must set
ROOTOFFSET so that the combined values of ROOTSIZE and the
ROOTOFFSET define a unique portion of the partition. For more
information, refer to “ROOTPATH” on page 33-77 and
“ROOTOFFSET” on page 33-76.

Tip: You do not need to change ROOTNAME. Even if both database servers have the
name rootdbs for their root dbspace, the dbspaces are unique because ROOTPATH
and ROOTOFFSET specify a unique location.
6-6 Administrator’s Guide for Informix Dynamic Server

Add Connection Information
You might also need to set the MIRRORPATH and/or the MIRROROFFSET
parameter. If the root dbspace is mirrored, the location of the root dbspace
mirror must be unique. For information about setting MIRRORPATH refer to
“Steps Required for Mirroring Data” on page 24-3.

Add Connection Information
If you use the TCP/IP communication protocol, you might need to add an
entry to the services file for the new database server instance. If you use the
IPX/SPX communication protocol, you might need to modify the connection
information for the NetWare server.

Update the sqlhosts File or Registry
The sqlhosts file or registry must have an entry for each database server. If
Informix products on other computers access this instance of the database
server, the administrators on those computers must update their sqlhosts
files or registry. Chapter 4, “Client/Server Communications,” discusses the
preparation of the sqlhosts file or registry.

If you plan to use TCP/IP network connections with an instance of a database
server, the system network administrator must update the hosts and
services files. If you use an IPX/SPX network, the NetWare administrator
must update the NetWare file-server information. For information about
these files, refer to “Network-Configuration Files” on page 4-17 and
“IPX/SPX Connectivity Files” on page 4-22.

Initialize Disk Space
Before you initialize disk space, check the setting of your ONCONFIG
environment variable. If you have not set it correctly, you might overwrite
data from another database server. When you initialize disk space for a
database server, the database server initializes the disk space specified in the
current ONCONFIG configuration file.
Using Multiple Residency 6-7

Prepare Dbspace and Logical-Log Backup Environment
Warning: As you create new blobspaces or dbspaces for a database server, be sure you
assign each chunk to a unique location on the device. The database server does not
allow you to assign more than one chunk to the same location within a single database
server environment, but it remains your responsibility as administrator to make sure
that chunks belonging to different database servers do not overwrite each other.

Prepare Dbspace and Logical-Log Backup Environment
This section provides a brief discussion of the effects of multiple residency on
backups.

When you use multiple residency, you must maintain separate dbspace and
logical-log backups for each database server instance. When you perform
dbspace and logical log backups with multiple residency, you need to be
especially aware of the following points:

■ Device use

■ Cataloger processes, if you use ON-Archive

■ The config.arc file, if you use ON-Archive

■ The oper_deflt.arc file, if you use ON-Archive

If you can dedicate a tape drive to each database server, you can back up your
logical-log files using the continuous logging option. Otherwise, you must
plan your dbspace and logical-log backup schedules carefully, so that use of
a device for one database server instance does not cause the other database
server instance to wait. You must reset the ONCONFIG parameter each time
that you switch your backup operations from one database server instance to
the other.

If You Use ON-Archive

If you use ON-Archive for your backup and restore tool, each database server
instance is served by its own oncatlgr process. When you start and stop
oncatlgr processes using the startup and shutdown scripts (start_oncatlgr
and stop_oncatlgr), the script prompts you to kill existing oncatlgr processes.
You need to know which oncatlgr process serves the different database
server instances before you kill them. Your Archive and Backup Guide explains
how to associate the process ID of an oncatlgr process with a database server
instance.

UNIX
6-8 Administrator’s Guide for Informix Dynamic Server

Update the Operating-System Boot File
You can direct a database server to use a personalized copy of config.arc and
oper_deflt.arc. To do this, set the ARC_CONFIG and ARC_DEFAULT
environment variables to the names of your personalized configuration files.
For example, suppose you copy config.arc and oper_deflt.arc to config.mine
and oper_deflt.mine, respectively. You can then edit both of the .mine files to
suit your needs. To direct a database server to use these files as your config-
uration files, set ARC_CONFIG to config.mine and ARC_DEFAULT to
oper_deflt.mine.

Update the Operating-System Boot File
You can ask your system administrator to modify the system startup script
(“Prepare Operating-System Startup and Shutdown Scripts” on page 3-31) so
that each of your database server instances starts whenever the computer is
rebooted (for example, after a power failure).

The startup script for a single database server instance should set the
INFORMIXDIR, PATH, ONCONFIG, and INFORMIXSERVER environment
variables and then execute oninit. To start a second instance of a database
server, change the ONCONFIG and INFORMIXSERVER environment
variables to point to the configuration file for the second database server, and
then execute oninit again. Do not change INFORMIXDIR or PATH.

Similarly, you can ask the system administrator to modify the shutdown
script so that all instances of a database server shut down in a graceful
manner.

Check Users’ INFORMIXSERVER Environment Variables
If a new instance of a database should be the default database server, your
users need to reset the INFORMIXSERVER environment variable. Your users
might need to update their .informix files.

If you use the informix.rc file to set environment variables for the users, you
might need to update that file. The Informix Guide to SQL: Reference describes
the informix.rc and .informix files.

UNIX

UNIX
Using Multiple Residency 6-9

Using instmgr.exe
Using instmgr.exe
On the Windows NT platform, you can run instmgr.exe to add or delete an
instance of a version 7.3 database server. You must be a member of the
Informix-Admin group to execute instmgr.exe.

Important: On Windows NT, if you install multiple instances of the database server
on one computer, all instances must be Version 7.3. Earlier versions of the database
server on Windows NT do not support multiple residency.

You can execute instmgr.exe in one of the following ways:

■ Choose Start➞Programs➞Informix Administration Tools group.

■ Locating instmgr.exe with Windows NT Explorer and click it.

You can find instmgr.exe in the %INFORMIXDIR%\bin directory.

■ Enter instmgr on an MS-DOS command line.

The instmgr.exe program displays a graphical interface that displays the
names of the database servers that are already installed and gives you the
option to create an additional instance of the database server or delete an
instance that already exists.

For information about installing a database server initially and for additional
information about adding an instance of the database server, refer to the
Installation Guide for Informix Dynamic Server on Windows NT.

Adding an Instance of the Database Server
When you add an instance of the database server, you have the option to
select one of the following types of installations:

■ Typical

■ Compact

■ Custom

The Typical option is the default selection.

WIN NT
6-10 Administrator’s Guide for Informix Dynamic Server

Deleting an Instance of the Database Server
When you click the Create button, the instmgr.exe program prompts you to
enter values for Server Number, Server Name, Service Name, Port Number,
the Primary Storage Location, the Password of the system administrator, and
name of the computer to use for the Shared Server.

The Server Number and Server Name values that you enter set the values for
the SERVERNUM and DBSERVERNAME configuration parameters, respec-
tively.

The Service Name and Port become the servicename and port entries for the
server in the sqlhosts registry.

The Primary Storage Location specifies the location of the ROOTPATH config-
uration parameter.

The Password entry ensures that you have administrator privileges to add
the new instance.

The name of the Shared Server computer specifies where to update the
sqlhosts registry information for the new database server instance.

After you have entered the required information, the instmgr.exe program
proceeds to install services, record environment variables, update the
sqlhosts registry, and update the ONCONFIG file for the new database server
instance.

For more information about the operations that the instmgr.exe program
performs, refer to “Preparing for Multiple Residency” on page 6-4, which
describes the steps that you would need to perform manually to create a new
instance of the database server.

Deleting an Instance of the Database Server
To delete an instance of the database server, select a database server instance
from the list of server instances and click the Delete button.

The instmgr.exe program first checks to see if on-line services for the
database server are running and, if so, stops them. Then it removes the files
and directories, icons, services, registry keys, dbspaces, and configuration
information for the database server.
Using Multiple Residency 6-11

 II
I
Modes and Initialization
Se
ct

io
n

7
Chapter
Managing Database Server
Operating Modes
Database Server Operating Modes 7-3

Changing Database Server Operating Modes 7-5
From Off-Line to Quiescent 7-5
From Off-Line to On-Line 7-6
From Quiescent to On-Line. 7-6
Gracefully from On-Line to Quiescent 7-7
Immediately from On-Line to Quiescent 7-7
From Any Mode Immediately to Off-Line 7-8

7-2 Adm
inistrator’s Guide for Informix Dynamic Server

This chapter introduces you to the database server operating modes
and provides instructions on how to change the operating modes with
command-line utilities.

On UNIX, you can also use ON-Monitor to display and manipulate the
database server operating modes. ♦

If you are using Informix Enterprise Command Center (IECC) to administer
the database server, refer to the Informix Enterprise Command Center User
Guide for information on how to determine and change the database server
operating modes.

Database Server Operating Modes
You can determine the current database server mode by executing the onstat
utility from the command line. The mode is displayed in the header.

The database server has three principal modes of operation, as Figure 7-1 on
page 7-4 illustrates.

UNIX
Managing Database Server Operating Modes 7-3

Database Server Operating Modes
Figure 7-1
Operating Modes

In addition, the database server can also be in one of the following modes:

■ Read-only mode is used by the secondary database server in a high-
availability data-replication pair. An application can query a
database server that is in read-only mode, but the application cannot
write to a read-only database.

■ Recovery mode is transitory. It occurs when the database server
performs Fast recovery or recovers from a system archive or a system
restore. Recovery occurs during the change from Off-Line to
Quiescent mode.

■ Shutdown mode is transitory. It occurs when the database server is
moving from on-line to quiescent mode or from on-line (or
quiescent) to off-line mode. Current users access the system, but no
new users are allowed access.

Once shutdown mode is initiated, it cannot be cancelled.

Operating Mode Description

Off-line mode When the database server is not running. No shared memory
is allocated.

Quiescent, or
Administration,
mode

When the oninit processes are running, shared-memory
resources are allocated, but the system does not allow
database user access.

Only the administrator (user informix) can access the
database server.

On-line mode Users can connect with the database server and perform all
database activities. This is the normal operating mode of the
database server.

User informix or user root can use the command-line utilities
to change many database server ONCONFIG parameter values
while the database server is on-line.
7-4 Administrator’s Guide for Informix Dynamic Server

Changing Database Server Operating Modes
Changing Database Server Operating Modes
This section describes how to change from one database server operating
mode to another. Each section includes information on how to change
operating modes with the oninit and onmode utilities and with ON-Monitor.
To change database server operating modes with IECC, refer to the Informix
Enterprise Command Center User Guide.

Important: Only users who are logged in as either root or informix can perform
database server mode changes.

From Off-Line to Quiescent
When the database server changes from off-line mode to quiescent mode, the
database server initializes shared memory.

When the database server is in quiescent mode, no sessions can gain access
to the database server. In quiescent mode, any user can see status infor-
mation, and user informix or user root can access administrative options.

Quiescent mode is the same as Administration mode when you use IECC.

Utility Action

oninit ■ Execute oninit -s.

■ Execute onstat.

■ Check the onstat header information for the current database
server operating mode.

ON-Monitor Select Mode➞Startup.UNIX
Managing Database Server Operating Modes 7-5

From Off-Line to On-Line
From Off-Line to On-Line
When you take the database server from off-line mode to on-line mode, the
database server initializes shared memory. When the database server is in on-
line mode, it is accessible to all database server sessions.

From Quiescent to On-Line
When you take the database server from quiescent mode to on-line mode, all
sessions gain access.

If you have already taken the database server from on-line mode to quiescent
mode and you are now returning the database server to on-line mode, any
users who were interrupted in earlier processing must reselect their database
and redeclare their cursors.

Utility Action

oninit ■ Execute oninit.

■ Execute onstat.

■ Check the onstat header information for the current database
server operating mode.

ON-Monitor Not supported

Utility Action

onmode ■ Execute onmode -m.

■ Execute onstat.

■ Check the onstat header information for the current database
server operating mode.

ON-Monitor Select Mode➞On-Line.

UNIX

UNIX
7-6 Administrator’s Guide for Informix Dynamic Server

Gracefully from On-Line to Quiescent
Gracefully from On-Line to Quiescent
Take the database server gracefully from on-line mode to quiescent mode to
restrict access to the database server without interrupting current processing.

After you perform this task, the database server sets a flag that prevents new
sessions from gaining access to the database server. Current sessions are
allowed to finish processing.

Once you initiate the mode change, it cannot be cancelled. During the mode
change from on-line to quiescent, the database server is considered to be in
Shutdown mode.

Immediately from On-Line to Quiescent
Take the database server immediately from on-line mode to quiescent mode
to restrict access to the database server as soon as possible. Work in progress
can be lost.

A prompt asks for confirmation of the immediate shutdown. If you confirm,
the database server sends a disconnect signal to all sessions that are attached
to shared memory. If a session does not receive the disconnect signal or is not
able to comply automatically within 10 seconds, the database server termi-
nates the session.

The database server users receive either error message -459 indicating that
the database server was shut down or error message -457 indicating that their
session was unexpectedly terminated.

Utility Action

onmode ■ Execute onmode -m or onmode -sy from the command line.

■ Execute onstat.

■ Check the onstat header information for the current database
server operating mode.

ON-Monitor Select Mode➞Graceful Shutdown.

ON-Monitor displays a list of all active user threads and updates it
every five seconds until the last user thread completes work.

UNIX
Managing Database Server Operating Modes 7-7

From Any Mode Immediately to Off-Line
The database server performs proper cleanup on behalf of all sessions that
were terminated by the database server. Active transactions are rolled back.

From Any Mode Immediately to Off-Line
You can take the database server immediately from any mode to off-line
mode. A prompt asks for confirmation to go off-line. If you confirm, the
database server initiates a checkpoint request and sends a disconnect signal
to all sessions that are attached to shared memory. If a session does not
receive the disconnect signal or is not able to comply automatically within
10 seconds, the database server terminates this session.

The database server users receive either error message -459 indicating that
the database server was shut down or error message -457 indicating that their
session was unexpectedly terminated.

After you take the database server to off-line mode, reinitialize shared
memory by taking the database server to quiescent or on-line mode. When
you reinitialize shared memory, the database server performs a fast recovery
to ensure that the data is logically consistent.

Utility Action

onmode ■ Execute onmode -u or onmode -uy from the command line.

■ Execute onstat.

■ Check the onstat header information for the current database
server operating mode.

ON-Monitor Select Mode➞Immediate Shutdown.

ON-Monitor displays a list of all active user threads and updates it
every five seconds until the last user thread completes work or
until you leave the screen.

UNIX
7-8 Administrator’s Guide for Informix Dynamic Server

From Any Mode Immediately to Off-Line
The database server performs proper cleanup on behalf of all sessions that
were terminated by the database server. Active transactions are rolled back.

Utility Action

onmode Execute onmode -k or onmode -ky from the command line.

The -y option eliminates an automatic prompt to confirm an
immediate shutdown.

ON-Monitor Select Mode➞Take Offline.

ON-Monitor displays a list of all active user threads and updates it
every five seconds until the last user thread completes work or
until you leave the screen.

UNIX
Managing Database Server Operating Modes 7-9

8
Chapter
Initializing the Database Server
Types of Initialization 8-3

Initialization Commands 8-4

Initialization Steps 8-4
Process Configuration File 8-6
Create Shared-Memory Portions 8-7
Initialize Shared-Memory Structures 8-8
Initialize Disk Space 8-8
Start All Required Virtual Processors 8-8
Make Necessary Conversions 8-9
Initiate Fast Recovery. 8-9
Initiate a Checkpoint 8-9
Document Configuration Changes 8-9
Create the oncfg_servername.servernum File 8-10
Drop Temporary Tblspaces. 8-10
Set Forced Residency If Specified 8-10
Return Control to User 8-11
Prepare SMI Tables 8-11

After Initialization 8-12

8-2 Adm
inistrator’s Guide for Informix Dynamic Server

Initialization of the database server refers to two related activities: disk-
space initialization and shared-memory initialization. This chapter defines
the two types of initialization and describes the activities that take place
during initialization.

Types of Initialization
Shared-memory initialization establishes the contents of database server shared
memory as follows: internal tables, buffers, and the shared-memory
communication area.

Disk-space initialization uses the values stored in the configuration file to
create the initial chunk of the root dbspace on disk. When you initialize disk
space, the database server automatically initializes shared memory as part of
the process.

Warning: When you initialize disk space, you overwrite whatever is on that disk
space. If you reinitialize disk space for an existing database server, all the data in the
earlier database server becomes inaccessible and, in effect, is destroyed.

Two key differences distinguish shared-memory initialization from
disk-space initialization:

■ Shared-memory initialization has no effect on disk-space allocation
or layout. No data is destroyed.

■ Shared-memory initialization performs fast recovery.
Initializing the Database Server 8-3

Initialization Commands
Initialization Commands
You must be user informix or root to initialize the database server. The
database server must be in off-line mode when you begin initialization. (For
more information about modes, refer to Chapter 7, “Managing Database
Server Operating Modes.”)

You can initialize shared memory and disk space using one of the following
methods:

■ Informix Enterprise Command Center (IECC)

For information on how to initialize shared-memory and disk space
with IECC, refer to the Informix Enterprise Command Center User Guide.

■ The oninit utility

For more information, refer to “oninit: Initialize Dynamic Server” on
page 35-20.

■ The ON-Monitor utility

For more information, refer to “Using ON-Monitor” on page 32-3. ♦

The options that you include in the oninit command or, on UNIX, the options
that you select from ON-Monitor determine the specific initialization
procedure.

Initialization Steps
Disk-space initialization always includes the initialization of shared memory.
However, some activities that normally take place during shared-memory
initialization, such as recording configuration changes, are not required
during disk initialization because those activities are not relevant with a
newly initialized disk.

UNIX
8-4 Administrator’s Guide for Informix Dynamic Server

Initialization Steps
The two lists in Figure 8-1 show the main tasks completed during the two
types of initialization. Each step is discussed in the following sections.

Figure 8-1
Initialization Steps

Shared-Memory Initialization Disk Initialization

Process configuration file. Process configuration file.

Create shared-memory segments. Create shared-memory segments.

Initialize shared-memory structures. Initialize shared-memory structures.

Initialize disk space.

Start all required virtual processors. Start all required virtual processors.

Make necessary conversions.

Initiate fast recovery.

Initiate a checkpoint. Initiate a checkpoint.

Document configuration changes.

Update oncfg_servername.servernum
file.

Update oncfg_servername.servernum
file.

Change to quiescent mode. Change to quiescent mode.

Drop temporary tblspaces (optional).

Set forced residency, if requested. Set forced residency, if specified.

Change to on-line mode and return con-
trol to user.

Change to on-line mode and return con-
trol to user.

If the SMI tables are not current, update
the tables.

Create SMI tables.
Initializing the Database Server 8-5

Process Configuration File
Process Configuration File
The database server uses configuration parameters to allocate shared-
memory segments during initialization. If you change the size of shared
memory by modifying a configuration-file parameter, you must take the
database server to off-line mode and then reinitialize.

During initialization, the database server looks for configuration values in
the following three files, in order:

1. If the ONCONFIG environment variable is set, the database server
reads values from the following file.

If the ONCONFIG environment variable is set, but the database
server cannot access the specified file, it returns an error message.

2. If the ONCONFIG environment variable is not set, the database
server reads the configuration values from the onconfig file.

3. If the database server cannot find the onconfig file, it reads the con-
figuration values from the following file.

Platform ONCONFIG Variable

UNIX $INFORMIXDIR/etc/$ONCONFIG

Windows NT %INFORMIXDIR%\etc\%ONCONFIG%

Platform ONCONFIG Variable

UNIX $INFORMIXDIR/etc/onconfig

Windows NT %INFORMIXDIR%\etc\onconfig

Platform ONCONFIG Variable

UNIX $INFORMIXDIR/etc/onconfig.std

Windows NT %INFORMIXDIR%\etc\onconfig.std
8-6 Administrator’s Guide for Informix Dynamic Server

Create Shared-Memory Portions
Informix recommends that you always set the ONCONFIG environment
variable before you initialize the database server. The default configuration
files are intended as templates and not as functional configurations. For more
information about the configuration file, refer to step 2 on page 8-6.

The initialization process compares the values in the current configuration
file with the previous values, if any, that are stored in the root dbspace
reserved page, PAGE_CONFIG. For more information about PAGE_CONFIG,
refer to “PAGE_CONFIG” on page 38-8. Where differences exist, the
database server uses the values from the current ONCONFIG configuration
file for initialization.

Create Shared-Memory Portions
Next, the database server uses the configuration values to calculate the
required size of the database server resident shared memory. In addition, the
database server computes additional configuration requirements from
internal values. Space requirements for overhead are calculated and stored.

The database server creates shared memory by acquiring the shared-memory
space from the operating system for three different types of memory:

■ Resident portion, used for data buffers, buffer tables, and so on

■ Virtual portion, used for most internal and user-session memory
requirements

■ IPC communication portion, used for IPC communication

The database server allocates this portion of shared memory only if
you configure an IPC shared-memory connection. ♦

Next, the database server attaches shared-memory segments to its virtual
address space and initializes shared-memory structures. For more infor-
mation about shared-memory structures, refer to “The Virtual Portion of
Shared Memory” on page 11-25.

After initialization is complete and the database server is running, it can
create additional shared-memory segments as needed. The database server
creates segments in increments of the page size.

UNIX
Initializing the Database Server 8-7

Initialize Shared-Memory Structures
Initialize Shared-Memory Structures
After the database server attaches to shared memory, it clears the shared-
memory space of uninitialized data. Next the database server lays out the
shared-memory header information and initializes data in the shared-
memory structures. For example, the database server lays out the space
needed for the logical-log buffer, initializes the structures, and links together
the three individual buffers that form the logical-log buffer. For more infor-
mation about these structures, refer to “onstat: Monitor Database Server
Operation” on page 35-62.

After the database server remaps the shared-memory space, it registers the
new starting addresses and sizes of each structure in the new shared-memory
header.

During shared-memory initialization, disk structures and disk layout are not
affected. The database server reads essential address information, such as the
locations of the logical and physical logs, from disk and uses this information
to update pointers in shared memory.

Initialize Disk Space
This procedure is performed only during disk-space initialization. After
shared-memory structures are initialized, the database server begins initial-
izing the disk. The database server initializes all the reserved pages that it
maintains in the root dbspace on disk and writes PAGE_PZERO control infor-
mation to the disk. For more information about PAGE_PZERO, refer to
“Reserved Pages” on page 38-6.

Start All Required Virtual Processors
The database server starts all the virtual processors that it needs. The param-
eters in the ONCONFIG file influence what processors are started. For
example, the NETTYPE parameter can influence the number and type of
processors started for making connections. For more information about
virtual processors, refer to “What Is a Virtual Processor?” on page 9-5.
8-8 Administrator’s Guide for Informix Dynamic Server

Make Necessary Conversions
Make Necessary Conversions
The database server checks its internal files. If the files are from an earlier
version, it updates these files to the current format. For information about
database conversion, refer to the Informix Migration Guide.

Initiate Fast Recovery
The database server checks if fast recovery is needed and, if so, initiates it. For
more information about fast recovery, refer to “What Is Fast Recovery?” on
page 22-3.

Fast recovery is not performed during disk-space initialization because there
is not yet anything to recover

Initiate a Checkpoint
After fast recovery executes, the database server initiates a checkpoint. As
part of the checkpoint procedure, the database server writes a checkpoint-
complete message in the message log. For more information about check-
points, refer to “Checkpoints” on page 11-57.

The database server now moves to quiescent mode or on-line mode,
depending on how you started the initialization process.

Document Configuration Changes
The database server compares the current values stored in the configuration
file with the values previously stored in the root dbspace reserved page
PAGE_CONFIG. Where differences exist, the database server notes both
values (old and new) in a message to the message log.

This task is not performed during disk-space initialization.
Initializing the Database Server 8-9

Create the oncfg_servername.servernum File
Create the oncfg_servername.servernum File
The database server creates the oncfg_servername.servernum file and
updates it every time that you add or delete a dbspace, blobspace, logical-log
file, or chunk. You do not need to manipulate this file in any way, but you can
see it listed in your $INFORMIXDIR/etc directory on UNIX or in your
%INFORMIXDIR%\etc directory on Windows NT. The database server uses
this file during a full-system restore. For more information about this file,
refer to “oncfg_servername.servernum” on page A-8.

Drop Temporary Tblspaces
This task is not performed during disk-space initialization.

The database server searches through all dbspaces for temporary tblspaces.
(If you initialize the database server using oninit -p, the database server
skips this step.) These temporary tblspaces (if any) are tblspaces left by user
processes that died prematurely and were unable to perform proper cleanup.
The database server deletes any temporary tblspaces and reclaims the disk
space. For more information about temporary tblspaces, refer to “What Is a
Temporary Table?” on page 13-24.

Set Forced Residency If Specified
If the value of the RESIDENT configuration parameter is -1 or a number
greater than 0, the database server tries to enforce residency of shared
memory. If the host computer system does not support forced residency, the
initialization procedure continues. Residency is not enforced, and the
database server sends an error message to the message log. For more infor-
mation about the RESIDENT parameter, refer to “RESIDENT” on page 33-74.
8-10 Administrator’s Guide for Informix Dynamic Server

Return Control to User
Return Control to User
After the previous steps are complete, the database server writes an
initialization complete message in the message log. For more infor-
mation about the message path, refer to “MSGPATH” on page 33-55.

At this point, control returns to the user. Any error messages generated by the
initialization procedure are displayed in one or more of the following
locations:

■ The command line

■ The database server message log file, specified by the MSGPATH
environment variable

■ Within ON-Monitor, if you are using it ♦
■ Within IECC, if you are using it

Prepare SMI Tables
Even though the database server has returned control to the user, it has not
finished its work. The database server now checks the system-monitoring
interface (SMI) tables. (For more information about SMI tables, refer to
Chapter 34, “The sysmaster Database.”) If the SMI tables are not current, the
database server updates the tables. If the SMI tables are not present, as is the
case when the disk is initialized, the database server creates the tables. After
the database server builds the SMI tables, it puts the message sysmaster
database built successfully into the message-log file.

If you shut down the database server before it finishes building the SMI
tables, the process of building the tables aborts. This condition does not
damage the database server. The database server simply builds the SMI tables
the next time that you bring the database server on-line. However, if you do
not allow the SMI tables to finish building, you cannot run any queries
against those tables, and you cannot use ON-Bar or ON-Archive for dbspace
or logical-log backups.

UNIX
Initializing the Database Server 8-11

After Initialization
After Initialization
After the SMI tables have been created, the database server is ready for use.
The database server runs until you stop it or, possibly, until a malfunction.
Informix recommends that you do not try to stop the database server by
killing a virtual processor or another database server process. For more infor-
mation, refer to “Starting and Stopping Virtual Processors” on page 10-7.
8-12 Administrator’s Guide for Informix Dynamic Server

 IV
Disk, Memory, and Process
Management
Se
ct

io
n

9
Chapter
What Is Informix Dynamic
Scalable Architecture?
What Is a Virtual Processor?. 9-5
What Is a Thread? 9-5

What Is a User Thread?. 9-7
Types of Virtual Processors 9-7
Advantages of Virtual Processors 9-9

Sharing Processing 9-9
Saving Memory and Resources 9-9
Processing in Parallel 9-10
Adding and Dropping Virtual Processors in

On-Line Mode 9-11
Binding Virtual Processors to CPUs 9-12

How Virtual Processors Service Threads 9-12
Control Structures 9-13
Context Switching 9-14
Stacks . 9-15
Queues . 9-16

Ready Queues 9-17
Sleep Queues 9-17
Wait Queues 9-18

Multiple Virtual Processors on Windows NT 9-19
Mutexes . 9-19

Virtual-Processor Classes 9-20
CPU Virtual Processors 9-20

How Many CPU Virtual Processors Do You Need? 9-20
Running on a Multiprocessor Computer 9-21
Running on a Single-Processor Computer 9-21
Adding and Dropping CPU Virtual Processors in

On-Line Mode 9-22
Preventing Priority Aging 9-22
Using Processor Affinity 9-22

9-2 Adm
Disk I/O Virtual Processors 9-24
I/O Priorities 9-25
Logical-Log I/O 9-25
Physical-Log I/O 9-26
Asynchronous I/O 9-26

Network Virtual Processors. 9-28
Should Poll Threads Run on CPU or Network

Virtual Processors?. 9-29
How Many Networking Virtual Processors Do

You Need? 9-29
Listen and Poll Threads for the Client/Server

Connection 9-30
Starting Multiple Listen Threads 9-33

Communications Support Module Virtual Processor 9-35
Optical Virtual Processor 9-35
Audit Virtual Processor 9-36
Miscellaneous Virtual Processor 9-36
inistrator’s Guide for Informix Dynamic Server

Informix Dynamic Scalable Architecture (DSA) exploits the capabilities of
both symmetric multiprocessor and uniprocessor platforms to deliver
database scalability, manageability, and performance. This chapter discusses
how the database server can scale its resources in relation to the demands
that applications place on it. DSA provides the following performance and
manageability advantages:

■ A small number of database server processes can service a large
number of client application processes, producing the following
benefits:

❑ Reduced operating-system overhead (fewer processes to run)

❑ Reduced overall memory requirements

❑ Reduced contention for resources within the DBMS

■ DSA provides more control over setting priorities and scheduling
database tasks than the operating system does.

Dynamic Server particularly exploits symmetric multiprocessing computer
systems (SMPs). In a symmetric multiprocessing computer system, multiple
CPUs (central processing units, or processors) all run a single copy of the
operating system, sharing memory and communicating with each other as
necessary. This chapter describes the following additional advantages that
the database server provides on these systems:

■ Multiple processes can work in parallel for one client.

■ On some multiprocessor computers, you can bind database server
processes to specific CPUs.
What Is Informix Dynamic Scalable Architecture? 9-3

Figure 9-1 shows the three major components of the Informix database server
architecture.

The following are the three major components of the Informix database
server architecture:

■ Virtual-processor component

A virtual processor is a task that the operating system schedules for
execution on the CPU. Virtual processors and virtual-processor
classes are the main topics of this chapter.

■ Shared-memory component

Shared memory consists of a resident and virtual portion. The
database server uses shared memory to cache data from the disk in
shared memory for faster access (this is resident shared memory).
The database server also uses shared memory to maintain and
control the resources required by the virtual processors (virtual). For
more information on how the database server uses shared memory,
see Chapter 11, “Shared Memory,” and Chapter 12, “Managing
Shared Memory.”

Figure 9-1
Database Server

Architecture
Components

Database Server Architecture

Shared memory

Virtual processor

Virtual processor

Virtual processor

Disk

Disk

Disk
9-4 Administrator’s Guide for Informix Dynamic Server

What Is a Virtual Processor?
■ Disk Component

The disk component is a collection of one or more units of disk space
assigned to the database server system. All the data in the databases
and all of the system information necessary to maintain the database
server system reside within the disk component. For more infor-
mation on the disk components, see Chapter 13, “Where Is Data
Stored?”

What Is a Virtual Processor?
The central component of DSA is the virtual processor, which is a database
server process. Database server processes are called virtual processors
because they function similarly to the way that a CPU functions in a
computer. Just as a CPU runs multiple operating-system processes to service
multiple users, a virtual processor runs multiple threads to service multiple
SQL client applications.

Virtual processors are multithreaded processes because they run multiple
concurrent threads (MCT).

What Is a Thread?
A thread is a piece of work for a virtual processor in the same way that the
virtual processor is a piece of work for the CPU. How the database server
processes a thread depends on which operating system you are running. The
following table provides descriptions of threads for each platform.

Platform Description of Thread

UNIX A thread is a task that the virtual processor schedules internally for
processing.

Windows NT A virtual processor is a task that the Windows NT operating system
schedules. The database server runs within Windows NT threads,
because each virtual processor is implemented as a Windows NT
thread.
What Is Informix Dynamic Scalable Architecture? 9-5

What Is a Thread?
Important: Throughout this chapter, all references to “thread” refer to the threads
created, scheduled, and destroyed by Dynamic Server. All references to “NT threads”
refer to the threads created, scheduled, and destroyed by the Windows NT operating
system.

Figure 9-2 illustrates the relationship of client applications to virtual
processors.

Figure 9-2
Dynamic Scalable

Architecture and
Virtual Processors

CPU 4CPU 1 CPU 2 CPU 3

Virtual processors

Client applications

Client

Client

Client

Client

Client

Client

Client

AIO

User defined

CPU

AIO

User defined

CPU

Database server
threads
9-6 Administrator’s Guide for Informix Dynamic Server

Types of Virtual Processors
A virtual processor runs threads on behalf of SQL client applications (session
threads) and also to satisfy internal requirements (internal threads). In most
cases, for each connection by a client application, the database server runs
one session thread. The database server runs internal threads to accomplish,
among other things, database I/O, logging I/O, page cleaning, and adminis-
trative tasks. For cases in which the database server runs multiple session
threads for a single client, refer to “Processing in Parallel” on page 9-10.

What Is a User Thread?

A user thread is a database server thread that services requests from client
applications. User threads include session threads, called sqlexec threads,
which are the primary threads that the database server runs to service client
applications. User threads also include a thread to service ON-Monitor
requests, a thread to service requests from the onmode utility, threads for
recovery, and page-cleaner threads.

To display active user threads, use onstat -u, as explained in “Monitoring
Sessions and Threads” on page 29-35.

Types of Virtual Processors
Virtual processors are divided into classes that are based on the type of
processing that they do. Each class of virtual processor is dedicated to
processing certain types of threads. Figure 9-3 on page 9-8 shows the classes
of virtual processors and the types of processing that they do.
What Is Informix Dynamic Scalable Architecture? 9-7

Types of Virtual Processors
Figure 9-3
Virtual-Processor Classes

Virtual-
Processor
Class Category Purpose

CPU Central
processing

Runs all session threads and some system threads.
Runs thread for kernel asynchronous I/O where
available. Can run a single poll thread, depending
on configuration.

PIO Disk I/O Writes to the physical-log file (internal class) if it is in
cooked disk space.

LIO Disk I/O Writes to the logical-log files (internal class) if they
are in cooked disk space.

AIO Disk I/O Performs nonlogging disk I/O. If kernel
asynchronous I/O is used, AIO virtual processors
perform I/O to cooked disk spaces.

SHM Network Performs shared memory communication.

TLI Network Performs network communication using TLI.

SOC Network Performs network communication using sockets.

OPT Optical Performs I/O to optical disk.

ADM Administrative Performs administrative functions.

ADT Auditing Performs auditing functions.

MSC Miscellaneous Services requests for system calls that require a very
large stack.

CSM Communications
Support Module

Performs communications support service
operations.

UNIX
9-8 Administrator’s Guide for Informix Dynamic Server

Advantages of Virtual Processors
Advantages of Virtual Processors
Compared to a database server process that services a single client appli-
cation, the dynamic, multithreaded nature of a database server virtual
processor provides the following advantages:

■ Virtual processors can share processing.

■ Virtual processors save memory and resources.

■ Virtual processors can do parallel processing.

■ You can start additional virtual processors and terminate active CPU
virtual processors while the database server is running.

■ You can bind virtual processors to CPUs.

The following sections describe these advantages.

Sharing Processing

Virtual processors in the same class have identical code and share access to
both data and processing queues in memory. Any virtual processor in a class
can run any thread that belongs to that class.

Generally, the database server tries to keep a thread running on the same
virtual processor because moving it to a different virtual processor can
require some data from the memory of the processor to be transferred on the
bus. When a thread is waiting to run, however, the database server migrates
the thread to another virtual processor because the benefit of balancing the
processing load outweighs the amount of overhead incurred in transferring
the process data.

Shared processing within a class of virtual processors occurs automatically
and is transparent to the database user.

Saving Memory and Resources

The database server is able to service a large number of clients with a small
number of server processes compared to a one-client-process-to-one-server-
process architecture. It does so by running a thread, rather than a process, for
each client.
What Is Informix Dynamic Scalable Architecture? 9-9

Advantages of Virtual Processors
Multithreading permits more efficient use of the operating-system resources
because threads share the resources allocated to the virtual processor. All
threads that a virtual processor runs have the same access to the
virtual-processor memory, communication ports, and files. The virtual
processor coordinates access to resources by the threads. Individual
processes, on the other hand, each have a distinct set of resources, and when
multiple processes require access to the same resources, the operating system
must coordinate the access.

Generally, a virtual processor can switch from one thread to another faster
than the operating system can switch from one process to another. When the
operating system switches between processes, it must stop one process from
running on the processor, save its current processing state (or context), and
start another process. Both processes must enter and exit the operating-
system kernel, and the contents of portions of physical memory might need
to be replaced. Threads, on the other hand, share the same virtual memory
and file descriptors. When a virtual processor switches from one thread to
another, the switch is simply from one path of execution to another. The
virtual processor, which is a process, continues to run on the CPU without
interruption. For a description of how a virtual processor switches from one
thread to another, refer to “Context Switching” on page 9-14.

Processing in Parallel

In the following cases, virtual processors of the CPU class can run multiple
session threads, working in parallel, for a single client:

■ Index building

■ Sorting

■ Recovery

■ Scanning

■ Joining

■ Aggregation

■ Grouping
9-10 Administrator’s Guide for Informix Dynamic Server

Advantages of Virtual Processors
Figure 9-4 illustrates parallel processing. When a client initiates index
building, sorting, or logical recovery, the database server spawns multiple
threads to work on the task in parallel, using as much of the computer
resources as possible. While one thread is waiting for I/O, another can be
working.

Adding and Dropping Virtual Processors in On-Line Mode

You can add virtual processors to meet increasing demands for service while
the database server is running. For example, if the virtual processors of a
class become compute bound or I/O bound (meaning that CPU work or I/O
requests are accumulating faster than the current number of virtual
processors can process them), you can start additional virtual processors for
that class to distribute the processing load further.

While the database server is running, you can add virtual processors for any
of the classes, but you can only drop virtual processors for the CPU class. For
information on how to add or drop virtual processors while the database
server is in on-line mode, refer to “Adding Virtual Processors in On-Line
Mode” on page 10-7 and “Dropping CPU Virtual Processors in On-Line
Mode” on page 10-10.

Figure 9-4
Parallel Processing

CPU 1 CPU 2 CPU 3 CPU 4

Client

Virtual processors

Indexing
sorting

recovery
What Is Informix Dynamic Scalable Architecture? 9-11

How Virtual Processors Service Threads
Binding Virtual Processors to CPUs

Some multiprocessor systems allow you to bind a process to a particular CPU.
This feature is called processor affinity.

On multiprocessor computers for which the database server supports
processor affinity, you can bind virtual processors to specific CPUs in the
computer. When you bind a virtual processor to a CPU, the virtual processor
runs exclusively on that CPU. This operation improves the performance of
the virtual processor because it reduces the amount of switching between
processes that the operating system must do. Binding virtual processors to
specific CPUs also enables you to isolate database work to specific processors
on the computer, leaving the remaining processors free for other work. Only
CPU virtual processors can be bound to CPUs.

For information on how to assign CPU virtual processors to hardware
processors, refer to “Using Processor Affinity” on page 9-22.

How Virtual Processors Service Threads
At a given time, a virtual processor can run only one thread. A virtual
processor services multiple threads concurrently by switching between
them. A virtual processor runs a thread until it yields. When a thread yields,
the virtual processor switches to the next thread that is ready to run. The
virtual processor continues this process, eventually returning to the original
thread, when that thread is ready to continue. Some threads complete their
work, and the virtual processor starts new threads to complete new work.
Because a virtual processor continually switches between threads, it
can keep the CPU processing continually. The speed at which processing
occurs produces the appearance that the virtual processor processes multiple
tasks simultaneously and, in effect, it does.
9-12 Administrator’s Guide for Informix Dynamic Server

Control Structures
Running multiple concurrent threads requires scheduling and synchroni-
zation to prevent one thread from interfering with the work of another.
Virtual processors use the following structures and methods to coordinate
concurrent processing by multiple threads:

■ Control structures

■ Context switching

■ Stacks

■ Queues

■ Mutexes

This section describes how virtual processors use these structures and
methods.

Control Structures
When a client connects to the database server, the database server creates a
session structure, which is called a session control block, to hold information
about the connection and the user. A session begins when a client connects to
the database server, and it ends when the connection terminates.

Next, the database server creates a thread structure, which is called a thread-
control block (TCB) for the session, and initiates a primary thread (sqlexec) to
process the client request. When a thread yields—that is, when it pauses and
allows another thread to run—the virtual processor saves information about
the state of the thread in the thread-control block. This information includes
the content of the process system registers, the program counter (address of
the next instruction to execute), and the stack pointer. This information
constitutes the context of the thread.

In most cases, the database server runs one primary thread per session. In
cases where it does parallel processing, however, it creates multiple session
threads for a single client and, likewise, multiple corresponding thread-
control blocks.
What Is Informix Dynamic Scalable Architecture? 9-13

Context Switching
Context Switching
A virtual processor switches from running one thread to running another one
by context switching. The database server does not preempt a running thread,
as the operating system does to a process, when a fixed amount of time (time-
slice) expires. Instead, a thread yields at one of the following points:

■ A predetermined point in the code

■ When the thread can no longer execute until some condition is met

A thread yields at a predetermined point when the amount of processing
required to complete a task would cause other threads to wait for an undue
length of time. To alleviate this problem, the code for such tasks is written to
include calls to the yield function at strategic points in the processing. When
a thread performs one of these long-running tasks, it yields when it
encounters one of these function calls. When a thread yields, other ready
threads get a chance to run. When the original thread next gets a turn, it
resumes executing code at the point immediately after the call to the yield
function. Predetermined calls to the yield function allow the database server
to interrupt threads at points that are most advantageous for performance.

A thread also yields when it can no longer continue its task until some
condition occurs. For example, a thread yields when it is waiting for disk I/O
to complete, when it is waiting for data from the client, or when it is waiting
for a lock or other resource.

When a thread yields, the virtual processor saves its context in the thread-
control block. Then the virtual processor selects a new thread to run from a
queue of ready threads, loads the context of the new thread from its thread-
control block, and begins executing at the new address in the program
counter. Figure 9-5 on page 9-15 illustrates how a virtual processor accom-
plishes a context switch.
9-14 Administrator’s Guide for Informix Dynamic Server

Stacks
Stacks
Dynamic Server allocates an area in the virtual portion of shared memory to
store nonshared data for the functions that a thread executes. This area of the
thread is called the stack. For information on how to set the size of the stack,
refer to “Stacks” on page 11-32.

The stack enables a virtual processor to protect the nonshared data of a
thread from being overwritten by other threads that concurrently execute the
same code. For example, if several client applications concurrently perform
SELECT statements, the session threads for each client execute many of the
same functions in the code. If a thread did not have a private stack, one thread
could overwrite local data that belongs to another thread within a function.

Figure 9-5
Context Switch:

How a Virtual
Processor Switches
from One Thread to

Another

Thread t0 Thread t1Context switch

Thread-control blocks

Time
Save Restore

t0 prgm ctr

registers

stack ptr

etc.

t1 prgm ctr

registers

stack ptr

etc.

Virtual processor
What Is Informix Dynamic Scalable Architecture? 9-15

Queues
When a virtual processor switches to a new thread, it loads a stack pointer for
that thread from a field in the thread control block. The stack pointer stores
the beginning address of the stack. The virtual processor can then specify
offsets to the beginning address to access data within the stack. Figure 9-6
illustrates how a virtual processor uses the stack to segregate nonshared data
for session threads.

Queues
Dynamic Server uses three types of queues to schedule the processing of
multiple, concurrently running threads:

■ Ready queues

■ Sleep queues

■ Wait queues

Virtual processors of the same class share queues. This fact, in part, enables a
thread to migrate from one virtual processor in a class to another when
necessary.

Figure 9-6
Virtual Processors

Segregate
Nonshared Data for

Each User

t3 prgm ctr
registers
stack

etc.

t2 prgm ctr
registers
stack

etc.

Stack Stack Stack Stack

Threads

Thread-control blocks

Database Server

t0 t1 t2 t3

t1 prgm ctr
registers
stack

etc.

t0 prgm ctr
registers
stack ptr

etc.
Virtual processor
9-16 Administrator’s Guide for Informix Dynamic Server

Queues
Ready Queues

Ready queues hold threads that are ready to run when the current (running)
thread yields. When a thread yields, the virtual processor picks the next
thread with the appropriate priority from the ready queue. Within the queue,
the virtual processor processes threads that have the same priority on a
first-in-first-out (FIFO) basis.

On a multiprocessor computer, if you notice that threads are accumulating in
the ready queue for a class of virtual processors (indicating that work is
accumulating faster than the virtual processor can process it), you can start
additional virtual processors of that class to distribute the processing load.
For information on how to monitor the ready queues, refer to “Monitoring
Virtual Processors” on page 29-33. For information on how to add virtual
processors while the database server is in on-line mode, refer to “Adding
Virtual Processors in On-Line Mode” on page 10-7.

Sleep Queues

Sleep queues hold the contexts of threads that have no work to do at a
particular time. A thread is put to sleep either for a specified period of time
or forever.

The administration class (ADM) of virtual processors runs the system timer
and special utility threads. Virtual processors in this class are created and run
automatically. No configuration parameters impact this class of virtual
processors.

The ADM virtual processor wakes up threads that have slept for the specified
time. A thread that runs in the ADM virtual processor checks on sleeping
threads at one-second intervals. If a sleeping thread has slept for its specified
time, the ADM virtual processor moves it into the appropriate ready queue.
A thread that is sleeping for a specified time can also be explicitly awakened
by another thread.
What Is Informix Dynamic Scalable Architecture? 9-17

Queues
A thread that is sleeping forever is awakened when it is needed again—that
is, when it has more work to do. For example, when a thread that is running
on a CPU virtual processor needs to access a disk, it issues an I/O request,
places itself in a sleep queue for the CPU virtual processor, and yields. When
the I/O thread notifies the CPU virtual processor that the I/O is complete, the
CPU virtual processor schedules the original thread to continue processing by
moving it from the sleep queue into a ready queue. Figure 9-7 illustrates how
the database server threads are queued to perform database I/O.

Wait Queues

Wait queues hold threads that need to wait for a particular event before they
can continue to run. For example, wait queues coordinate access to shared
data by threads. When a user thread tries to acquire the logical-log latch but
finds that the latch is held by another user, the thread that was denied access
puts itself in the logical-log wait queue. When the thread that owns the lock
is ready to release the latch, it checks for waiting threads and, if threads are
waiting, it wakes up the next thread in the wait queue.

Figure 9-7
How Database

Server Threads Are
Queued to Perform

Database I/O

Partially
executed

threads, t2, t4,
and t6, waiting
for completion
of their disk I/O

requests

Ready queue

t4

t6

Sleep queue

t2

t4

t6

I/O requests
for threads t4

and t6

Processing
I/O request for

thread t2

Threads t5
and t3, ready
to continue
processing

when thread t1
yields

Ready queue

t5

t3

CPU

VPt1

AIO VPt2

Virtual processors
9-18 Administrator’s Guide for Informix Dynamic Server

Multiple Virtual Processors on Windows NT
Multiple Virtual Processors on Windows NT
A database server running on Windows NT can take advantage of its fan-out
capabilities. You can use multiple virtual processors (and multiple CPUs, if
available) to work simultaneously, as Figure 9-8 illustrates.

Important: The database server creates multiple threads to do the work for one user
for the following operations: sorting, indexing, and recovery.

Mutexes
A mutex (mutually exclusive) is a latching mechanism that the database
server uses to synchronize access by multiple threads to shared resources.
Mutexes are similar to semaphores, which the operating system uses to
regulate access to shared data by multiple processes. However, mutexes
permit a greater degree of parallelism than semaphores.

WIN NT

Figure 9-8
Fan-out capabilities

on Windows NT

Thread Thread Thread

Virtual processor Virtual processor

CPU

Client

CPU

Database server layer

Windows NT layer

Hardware layer

(NT Thread) (NT Thread)
What Is Informix Dynamic Scalable Architecture? 9-19

Virtual-Processor Classes
A mutex is a variable that is associated with a shared resource such as a
buffer. A thread must acquire the mutex for a resource before it can access the
resource. Other threads are excluded from accessing the resource until the
owner releases it. A thread acquires a mutex, once a mutex becomes
available, by setting it to an in-use state. The synchronization that mutexes
provide ensures that only one thread at a time writes to an area of shared
memory.

For information on monitoring mutexes (latches), refer to “Monitoring
Latches” on page 29-27.

Virtual-Processor Classes
A virtual processor of a given class can run only threads of that class. This
section describes the types of threads, or the types of processing, that each
class of virtual processor performs. It also tells you how to determine the
number of virtual processors that you need to run for each class.

CPU Virtual Processors
The CPU virtual processor runs all session threads (the threads that process
requests from SQL client applications) and some internal threads. Internal
threads perform services that are internal to the database server. For example,
a thread that listens for connection requests from client applications is an
internal thread.

How Many CPU Virtual Processors Do You Need?

The right number of CPU virtual processors is the number at which they are
all kept busy but not so busy that they cannot keep pace with incoming
requests. You should not allocate more CPU virtual processors than the
number of hardware processors in the computer.

The NUMCPUVPS configuration parameter allows you to specify the number
of CPU virtual processors that the database server starts initially. For infor-
mation about the NUMCPUVPS parameter, refer to “NUMCPUVPS” on
page 33-63.
9-20 Administrator’s Guide for Informix Dynamic Server

CPU Virtual Processors
To evaluate the performance of the CPU virtual processors while the database
server is running, repeat the following command at regular intervals over a
set period of time:

onstat -g glo

If the accumulated usercpu and syscpu times, taken together, approach
100 percent of the actual elapsed time for the period of the test, add another
CPU virtual processor if you have a CPU available to run it.

Running on a Multiprocessor Computer

If you are running multiple CPU virtual processors on a multiprocessor
computer, set the MULTIPROCESSOR parameter in the ONCONFIG file to 1.
When you set MULTIPROCESSOR to 1, the database server performs locking
in a manner that is appropriate for a multiprocessor computer. For infor-
mation on setting multiprocessor mode, refer to “MULTIPROCESSOR” on
page 33-56.

Running on a Single-Processor Computer

If you are running only one CPU virtual processor, set the MULTIPROCESSOR
configuration parameter to 0. Set the SINGLE_CPU_VP parameter to 1.

Setting MULTIPROCESSOR to 0 enables the database server to bypass the
locking that is required for multiple processes on a multiprocessor computer.
For information on the MULTIPROCESSOR configuration parameter, refer to
“MULTIPROCESSOR” on page 33-56.

Setting SINGLE_CPU_VP to 1 allows the database server to bypass some of the
mutex calls that it normally makes when it runs multiple CPU virtual
processors. For information on setting the SINGLE_CPU_VP parameter, refer
to “SINGLE_CPU_VP” on page 33-84.

Important: You do not reduce the number of mutex calls by setting NUMCPUVPS
to 1 and SINGLE_CPU_VP to 0, even though you are specifying only one CPU virtual
processor.
What Is Informix Dynamic Scalable Architecture? 9-21

CPU Virtual Processors
When you set the SINGLE_CPU_VP parameter to 1, the database server allows
only one CPU virtual processor to run.

Adding and Dropping CPU Virtual Processors in On-Line Mode

You can add or drop CPU class virtual processors while the database server
is on-line. For instructions on how to do this, see “Adding Virtual Processors
in On-Line Mode” on page 10-7 and “Dropping CPU Virtual Processors in
On-Line Mode” on page 10-10.

Preventing Priority Aging

Some operating systems decrement the priority of long-running processes as
they accumulate processing time. This feature of the operating system is
called priority aging. In some cases, however, the operating system allows you
to disable this feature and keep long-running processes running at a high
priority. To determine if priority aging is available on your computer, check
the machine-notes file described in “Documentation Notes, Release Notes,
Machine Notes” on page 15 of the Introduction.

If your operating system allows you to disable priority aging, you can disable
it by setting the NOAGE parameter. For more information on the NOAGE
parameter, refer to “NOAGE” on page 33-61.

Using Processor Affinity

On some multiprocessor platforms that support processor affinity, you can
assign virtual processors to specific CPUs. When you assign a virtual
processor to a specific CPU, the virtual processor runs exclusively on that
CPU. To see if processor affinity is supported on your database server
platform, refer to the database server machine-notes file, which is described
in “Documentation Notes, Release Notes, Machine Notes” on page 15 of the
Introduction.
9-22 Administrator’s Guide for Informix Dynamic Server

CPU Virtual Processors
Figure 9-9 illustrates the concept of processor affinity. You can specify
processor affinity by setting the AFF_SPROC and AFF_NPROCS parameters.

Setting Processor Affinity with the AFF_SPROC and AFF_NPROCS Parameters

You can also set the following two parameters in the ONCONFIG file to
implement processor affinity on multiprocessor computers that support it:

■ AFF_NPROCS

■ AFF_SPROC

Set the AFF_NPROCS parameter to the number of CPUs to which you want to
assign CPU virtual processors. The number of CPUs should be greater than
the number of CPU virtual processors that you allocate. Also, do not set
AFF_NPROCS to a number that is less than the number of virtual processors
you have allocated.

Set the AFF_SPROC parameter to the number of the first CPU to which a CPU
virtual processor should be assigned. The database server assigns CPU
virtual processors to CPUs in serial fashion, starting with this processor. The
first CPU is number 0. For example, if the computer has four CPUs and you
set NUMCPUVPS to 3, AFF_SPROC to 1, and AFF_NPROCS to 3, the three CPU
virtual processors are assigned to the second, third, and fourth CPUs,
respectively.

Figure 9-9
Processor Affinity

CPU 0 CPU 1 CPU 2 CPU 3

CPU virtual processors

Number of virtual processors = 3

Starting CPU = 1

Virtual processor

Virtual processor

Virtual processor
What Is Informix Dynamic Scalable Architecture? 9-23

Disk I/O Virtual Processors
The value of AFF_NPROCS plus the value of AFF_SPROC must be less than or
equal to the number of CPUs. Using the previous example, if you set
AFF_SPROC to 2, the database server would display an error message because
3 (AFF_NPROCS) plus 2 (AFF_SPROC) equals 5, and only 4 CPUs are available.

Disk I/O Virtual Processors
The following classes of virtual processors perform disk I/O:

■ CPU

■ AIO (asynchronous I/O)

■ PIO (physical-log I/O)

■ LIO (logical-log I/O)

The database server uses either the CPU class or the AIO class of virtual
processors to perform all I/O that is not related to physical or logical logging.
The database server uses the CPU class to perform kernel-asynchronous I/O
(KAIO) when it is available on a platform. If the database server implements
kernel-asynchronous I/O, a KAIO thread performs all I/O to raw disk space,
including I/O to the physical and logical logs.

When kernel asynchronous I/O is not implemented, or when the I/O is to
cooked disk space, the AIO class of virtual processors performs all
nonlogging I/O. For more information about nonlogging I/O, refer to
“Asynchronous I/O” on page 9-26.

Tip: Review “Unbuffered or Buffered Disk Access” on page 13-6 to determine how
your operating system supports raw and cooked disk space.

The PIO class performs all I/O to the physical-log file, and the LIO class
performs all I/O to the logical-log files, unless they reside in raw disk space
and the database server has implemented kernel asynchronous I/O.
9-24 Administrator’s Guide for Informix Dynamic Server

Disk I/O Virtual Processors
I/O Priorities

In general, the database server prioritizes disk I/O by assigning different
types of I/O to different classes of virtual processors and by assigning prior-
ities to the nonlogging I/O queues. Prioritizing ensures that a high-priority
log I/O, for example, is never queued behind a write to a temporary file,
which has a low priority. The database server prioritizes the different types
of disk I/O that it performs, as Figure 9-10 shows.

Figure 9-10
How Database Server Prioritizes Disk I/O

Logical-Log I/O

The LIO class of virtual processors performs I/O to the logical-log files in the
following cases:

■ Kernel asynchronous I/O is not implemented.

■ The logical-log files are in cooked disk space.

Only when kernel asynchronous I/O is implemented and the logical-log files
are in raw disk space does the database server use a KAIO thread in the CPU
virtual processor to perform I/O to the logical log.

The logical-log files store the data that enables the database server to roll back
transactions and recover from system failures. I/O to the logical-log files is
the highest priority disk I/O that the database server performs.

If the logical-log files are in a dbspace that is not mirrored, the database server
runs only one LIO virtual processor. If the logical-log files are in a dbspace
that is mirrored, the database server runs two LIO virtual processors. This
class of virtual processors has no parameters associated with it.

Priority Type of I/O VP Class

1st Logical-log I/O CPU or LIO

2nd Physical-log I/O CPU or PIO

3rd Database I/O CPU or AIO

3rd Page-cleaning I/O CPU or AIO

3rd Read-ahead I/O CPU or AIO
What Is Informix Dynamic Scalable Architecture? 9-25

Disk I/O Virtual Processors
Physical-Log I/O

The PIO class of virtual processors performs I/O to the physical-log file in the
following cases:

■ Kernel asynchronous I/O is not implemented.

■ The physical-log file is in cooked disk space.

Only when kernel asynchronous I/O is implemented and the physical-log
file is in raw disk space does the database server uses a KAIO thread in the
CPU virtual processor to perform I/O to the physical log. The physical-log file
stores before-images of dbspace pages that have changed since the last check-
point. (For more information on checkpoints, refer to “Checkpoints” on
page 11-57.) At the start of recovery, prior to processing transactions from the
logical log, the database server uses the physical-log file to restore before-
images to dbspace pages that have changed since the last checkpoint. I/O to
the physical-log file is the second-highest priority I/O after I/O to the logical-
log files.

If the physical-log file is in a dbspace that is not mirrored, the database server
runs only one PIO virtual processor. If the physical-log file is in a dbspace that
is mirrored, the database server runs two PIO virtual processors. This class of
virtual processors has no parameters associated with it.

Asynchronous I/O

The database server performs database I/O asynchronously, meaning that
I/O is queued and performed independently of the thread that requests the
I/O. Performing I/O asynchronously allows the thread that makes the
request to continue working while the I/O is being performed.

The database server performs all database I/O asynchronously either by
requesting kernel asynchronous I/O, where available, through the CPU class
of virtual processors or by using AIO virtual processors. Database I/O
includes I/O for SQL statements, read-ahead, page cleaning, and checkpoints,
as well as other I/O.
9-26 Administrator’s Guide for Informix Dynamic Server

Disk I/O Virtual Processors
Kernel-Asynchronous I/O

The database server uses kernel-asynchronous I/O when the following
conditions exist:

■ The computer and operating system support it.

■ A performance gain is realized.

■ The I/O is to raw disk space.

The database server implements kernel-asynchronous I/O by running a
KAIO thread on the CPU virtual processor. The KAIO thread performs I/O by
making system calls to the operating system, which performs the I/O
independently of the virtual processor. The KAIO thread can produce better
performance for disk I/O than the AIO virtual processor can because it does
not require a switch between the CPU and AIO virtual processors.

Informix implements kernel-asynchronous I/O when it ports the database
server to a platform that supports it. The database administrator does not
implement kernel-asynchronous I/O. To see if kernel-asynchronous I/O is
supported on your computer, refer to the database server machine-notes file,
which is described under “Documentation Notes, Release Notes, Machine
Notes” on page 15 of the Introduction.

AIO Virtual Processors

If the platform does not support kernel-asynchronous I/O, or if the I/O is to
cooked disk space, the database server performs database I/O through the
AIO class of virtual processors. All AIO virtual processors service all I/O
requests equally within their class.

The database server assigns each disk chunk a queue based on the filename
of the chunk. Thus, each uniquely named chunk has its own queue, and
chunks with the same name share a single queue. The database server orders
I/O requests within a queue according to an algorithm that minimizes disk-
head movement. The AIO virtual processors service queues that have work
pending in round-robin fashion.

You use the NUMAIOVPS parameter to specify the number of AIO virtual
processors that the database server starts initially. For information about the
NUMAIOVPS parameter, refer to “NUMAIOVPS” on page 33-62.
What Is Informix Dynamic Scalable Architecture? 9-27

Network Virtual Processors
You can start additional AIO virtual processors while the database server is
in on-line mode. For more information, refer to “Adding Virtual Processors
in On-Line Mode” on page 10-7.

You cannot drop AIO virtual processors while the database server is in on-
line mode.

How Many AIO Virtual Processors Do You Need?

The goal in allocating AIO virtual processors is to allocate enough of them so
that the lengths of the I/O request queues are kept short; that is, the queues
have as few I/O requests in them as possible. When the I/O request queues
are consistently short, it indicates that I/O to the disk devices is being
processed as fast as the requests occur. The onstat -g ioq command allows
you to monitor the length of the I/O queues for the AIO virtual processors.
For more information, refer to “Monitoring Virtual Processors” on
page 29-33.

If the database server implements kernel-asynchronous I/O on your
platform, and all of your dbspaces are composed of raw disk space, one AIO
virtual processor might be sufficient.

If the database server implements kernel-asynchronous I/O, but you are
using some cooked file space, allocate two AIO virtual processors per active
dbspace that is composed of cooked file space. If kernel-asynchronous I/O is
not implemented on your platform, allocate two AIO virtual processors for
each disk that the database server accesses frequently.

Allocate enough AIO virtual processors to accommodate the peak number of
I/O requests. Generally, it is not detrimental to allocate too many AIO virtual
processors.

Network Virtual Processors
As explained in Chapter 4, “Client/Server Communications,” a client can
connect to the database server in the following ways:

■ Through a network connection

■ Through a pipe

■ Through shared memoryUNIX
9-28 Administrator’s Guide for Informix Dynamic Server

Network Virtual Processors
The network connection can be made by a client on a remote computer or by
a client on the local computer mimicking a connection from a remote
computer (called a local loopback connection).

Should Poll Threads Run on CPU or Network Virtual Processors?

Poll threads can run either in-line on CPU virtual processors or, depending on
the connection type, on network virtual processors. In general, and particu-
larly on a single-processor computer, poll threads run more efficiently on
CPU virtual processors. This might not be true, however, on a multiprocessor
computer with a large number of remote clients.

The NETTYPE parameter has an optional entry, called vp class, that allows
you to specify either CPU or NET, for CPU or network-virtual-processor
classes, respectively.

If you do not specify vp class for the interface/protocol combination (poll
threads) associated with the DBSERVERNAME variable, the class defaults to
CPU. The database server assumes that the interface/protocol combination
associated with DBSERVERNAME is the primary interface/protocol combi-
nation and that it should be the most efficient.

For other interface/protocol combinations, if no vp class is specified, the
default is NET.

While the database server is in on-line mode, you cannot drop a CPU virtual
processor that is running a poll thread.

How Many Networking Virtual Processors Do You Need?

Each poll thread requires a separate virtual processor, so you indirectly
specify the number of networking virtual processors when you specify the
number of poll threads for an interface/protocol combination and specify
that they are to be run by the NET class. If you specify CPU for the vp class,
you must allocate a sufficient number of CPU virtual processors to run the
poll threads. If the database server does not have a CPU virtual processor to
run a CPU poll thread, it starts a network virtual processor of the specified
class to run it.
What Is Informix Dynamic Scalable Architecture? 9-29

Network Virtual Processors
For most systems, one poll thread and consequently one virtual processor per
network interface/protocol combination is sufficient. For systems with 200 or
more network users, running additional network virtual processors might
improve throughput. In this case, you need to experiment to determine the
optimal number of virtual processors for each interface/protocol
combination.

Listen and Poll Threads for the Client/Server Connection

When you start the database server, the oninit process starts an internal
thread, called a listen thread, for each dbservername that you specify with the
DBSERVERNAME and DBSERVERALIASES parameters in the ONCONFIG file.
You specify a listen port for each of these dbservername entries by assigning
it a unique combination of hostname and service name entries in sqlhosts.
For example, the sqlhosts file or registry entry shown in Figure 9-11 causes
the database server soc_ol1 to start a listen thread for port1 on the host, or
network address, myhost.

Figure 9-11
A Listen Thread for Each Listen Port

The listen thread opens the port and requests one of the poll threads for the
specified interface/protocol combination to monitor the port for client
requests. The poll thread runs either in the CPU virtual processor or in the
network virtual processor for the connection that is being used. For infor-
mation on the number of poll threads, refer to “How Many Networking
Virtual Processors Do You Need?” on page 9-29.

For information on how to specify whether the poll threads for an
interface/protocol combination run in CPU or network virtual processors,
refer to “Should Poll Threads Run on CPU or Network Virtual Processors?”
on page 9-29 and “NETTYPE” on page 33-57.

dbservername nettype hostname service name options

soc_ol1 onsoctcp myhost port1
9-30 Administrator’s Guide for Informix Dynamic Server

Network Virtual Processors
When a poll thread receives a connection request from a client, it passes the
request to the listen thread for the port. The listen thread authenticates the
user, establishes the connection to the database server, and starts an sqlexec
thread, the session thread that does the primary processing for the client.
Figure 9-12 illustrates the roles of the listen and poll threads in establishing a
connection with a client application.

A poll thread waits for requests from the client and places them in shared
memory to be processed by the sqlexec thread. For network connections, the
poll thread places the message in a queue in the shared-memory global pool.
The poll thread then wakes up the sqlexec thread of the client to process the
request. Whenever possible, the sqlexec thread writes directly back to the
client without the help of the poll thread. In general, the poll thread reads
data from the client, and the sqlexec thread sends data to the client.

For a shared-memory connection, the poll thread places the message in the
communications portion of shared memory. ♦

Figure 9-12
The Roles of the Poll

and the Listen
Threads in

Connecting to a
Client

Key

Client

Database server

Poll
thread

Thread
process

Data

Request
connection

Receive
connect
request

Start
sqlexec
thread

Listen
thread

Receive
connect
request

Accept client
connectionPass request to

listen thread

UNIX
What Is Informix Dynamic Scalable Architecture? 9-31

Network Virtual Processors
Figure 9-13 illustrates the basic tasks that the poll thread and the sqlexec
thread perform in communicating with a client application.

Figure 9-13
The Roles of the Poll
and sqlexec Threads

in Communicating
with the Client

Application

Key

Send data

Read data

Process

Read data
from client

Client

Database server

Poll
thread

Application
process

Thread
process

Data

Pass request
and data
to sqlexec

Wait for client
request

Processsqlexec
thread

Send
data
to client
9-32 Administrator’s Guide for Informix Dynamic Server

Network Virtual Processors
Starting Multiple Listen Threads

If the database server cannot service connection requests satisfactorily for a
given interface/protocol combination with a single port and corresponding
listen thread, you can improve service for connection requests in the
following two ways:

■ Add listen threads for additional ports.

■ Add another network-interface card.

Adding Listen Threads

As stated previously, the database server starts a listen thread for each
dbservername that you specify with the DBSERVERNAME and
DBSERVERALIASES configuration parameters.

To add listen threads for additional ports, you must first specify dbserver-
names for each of the ports using the DBSERVERALIASES parameter. For
example, the DBSERVERALIASES parameter in Figure 9-14 defines two
additional dbservernames, soc_ol2 and soc_ol3, for the database server
instance identified as soc_ol1.

Once you define additional dbservernames for the database server, you must
specify an interface/protocol combination and port for each of them in the
sqlhosts file or registry. Each port is identified by a unique combination of
hostname and servicename entries. For example, the sqlhosts entries shown
in Figure 9-15 on page 9-34 cause the database server to start three listen
threads for the onsoctcp interface/protocol combination, one for each of the
ports defined.

DBSERVERNAME soc_ol1
DBSERVERALIASES soc_ol2,soc_ol3

Figure 9-14
Defining Multiple dbservernames for

Multiple Connections of the Same Type
What Is Informix Dynamic Scalable Architecture? 9-33

Network Virtual Processors
Figure 9-15
Sqlhosts Entries to Listen to Multiple Ports for a Single Interface/Protocol Combination

If you include a NETTYPE parameter for an interface/protocol combination,
it applies to all the connections for that interface/protocol combination. In
other words, if a NETTYPE parameter exists for onsoctcp in Figure 9-15, it
applies to all of the connections shown. In this example, the database server
runs one poll thread for the onsoctcp interface/protocol combination unless
the NETTYPE parameter specifies more. For more information about entries
in the sqlhosts file or registry, refer to “The sqlhosts File or Registry” on
page 4-27.

Adding a Network-Interface Card

If the network-interface card for the host computer cannot service connection
requests satisfactorily, or if you want to connect the database server to more
than one network, you can add a network-interface card.

To support multiple network-interface cards, you must assign each card a
unique hostname (network address) in sqlhosts. For example, using the
same dbservernames shown in Figure 9-14, the sqlhosts file or registry
entries shown in Figure 9-16 on page 9-35 cause the database server to start
three listen threads for the same interface/protocol combination (as did the
entries in Figure 9-15). In this case, however, two of the threads are listening
to ports on one interface card (myhost1), and the third thread is listening to
a port on the second interface card (myhost2).

dbservername nettype hostname service name options

soc_ol1 onsoctcp myhost port1

soc_ol2 onsoctcp myhost port2

soc_ol3 onsoctcp myhost port3
9-34 Administrator’s Guide for Informix Dynamic Server

Communications Support Module Virtual Processor
Figure 9-16
Example of sqlhosts Entries to Support Two Network-Interface

Cards for the onsoctcp Interface/Protocol Combination

Communications Support Module Virtual Processor
The communications support module (CSM) class of virtual processors
performs communications support service and communications support
module functions.

The database server executes a number of CSM virtual processors equal to the
number of CPU virtual processors defined in the NUMCPUVPS configuration
parameter.

For more information on the Communications Support Service, refer to
Chapter 4, “Client/Server Communications.”

Optical Virtual Processor
The optical class (OPT) of virtual processors is used only with the Optical
Subsystem. The Optical Subsystem starts one virtual processor in the optical
class if the STAGEBLOB configuration parameter is present. For more infor-
mation on Optical Subsystem, see the Guide to the Optical Subsystem.

dbservername nettype hostname service name options

soc_ol1 onsoctcp myhost1 port1

soc_ol2 onsoctcp myhost1 port2

soc_ol3 onsoctcp myhost2 port1

UNIX
What Is Informix Dynamic Scalable Architecture? 9-35

Audit Virtual Processor
Audit Virtual Processor
The database server starts one virtual processor in the audit class (ADT) when
you turn on audit mode by setting the ADTMODE parameter in the
ONCONFIG file to 1. For more information about database server auditing,
refer to your Trusted Facility Manual.

Miscellaneous Virtual Processor
The miscellaneous virtual processor services requests for system calls that
might require a very large stack, such as fetching information about the
current user or the host-system name. Only one thread runs on this virtual
processor; it executes with a stack of 128 kilobytes.
9-36 Administrator’s Guide for Informix Dynamic Server

10
Chapter
Managing Virtual Processors
Setting Virtual-Processor Configuration Parameters 10-3
Setting Virtual-Processor Configuration Parameters with

a Text Editor 10-4
Setting Virtual-Processor Configuration Parameters with

ON-Monitor 10-5

Starting and Stopping Virtual Processors 10-7
Adding Virtual Processors in On-Line Mode. 10-7

Using onmode to Add Virtual Processors in
On-Line Mode 10-8

Using ON-Monitor to Add Virtual Processors in
On-Line Mode 10-8

Adding Network Virtual Processors 10-10
Dropping CPU Virtual Processors in On-Line Mode 10-10

10-2 Ad
ministrator’s Guide for Informix Dynamic Server

This chapter describes how to set the configuration parameters that
affect database server virtual processors. This chapter also tells you how to
start and stop virtual processors.

For descriptions of the virtual-processor classes and for advice on how many
virtual processors you should specify for each class, refer to Chapter 9,
“What Is Informix Dynamic Scalable Architecture?”

Setting Virtual-Processor Configuration
Parameters
As root or user informix, you can set the configuration parameters for the
database server virtual processors with the following tools:

■ A text editor

■ ON-Monitor

ON-Monitor does not allow you to change all configuration parameters. This
chapter provides descriptions of configuration parameters, including the
ON-Monitor menu sequences that lead you to the screen entries for each
parameter. ♦

To put changes to parameters into effect, you must reinitialize shared
memory. For information on how to reinitialize shared memory, refer to
“Reinitializing Shared Memory” on page 12-14.

For more information on configuration parameters refer to Chapter 33,
“Configuration Parameters.”

UNIX
Managing Virtual Processors 10-3

Setting Virtual-Processor Configuration Parameters with a Text Editor
Setting Virtual-Processor Configuration Parameters with a
Text Editor
You can use a text editor program to set ONCONFIG parameters at any time.
To change one of the virtual-processor configuration parameters, use the
editor to locate the parameter in the file, enter the new value(s), and rewrite
the file to disk.

Figure 10-1 lists the ONCONFIG parameters that are used to configure virtual
processors. The page references in the third column refer to descriptions of
the parameters in Chapter 33, “Configuration Parameters.”

Figure 10-1
ONCONFIG Parameters for Configuring Virtual Processors

For more information on how these parameters affect virtual processors refer
to “Virtual-Processor Classes” on page 9-20.

Parameter Purpose Reference

AFF_NPROCS Specifies the number of CPUs to which CPU
virtual processors will be assigned
(multiprocessor computers only)

page 33-9

AFF_SPROC Specifies the first CPU (of AFF_NPROCS) to which
a CPU virtual processor will be assigned

page 33-10

MULTIPROCESSOR Specifies that you are running on a
multiprocessor computer

page 33-56

NETTYPE Specifies parameters for network protocol threads
(and virtual processors)

page 33-57

NOAGE Specifies no priority aging of processes by the
operating system

page 33-61

NUMAIOVPS Specifies the number of AIO virtual processors page 33-62

NUMCPUVPS Specifies the number of CPU virtual processors page 33-63

SINGLE_CPU_VP Specifies that you are running a single CPU virtual
processor

page 33-84
10-4 Administrator’s Guide for Informix Dynamic Server

Setting Virtual-Processor Configuration Parameters with ON-Monitor
Setting Virtual-Processor Configuration Parameters with
ON-Monitor
To set the virtual-processor configuration parameters with ON-Monitor,
select Parameters from the main menu, and then select the perFormance
option.

UNIX

PERFORMANCE: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

PERFORMANCE TUNING PARAMETERS

Multiprocessor Machine [MULTIPROCESSOR]
Num Procs to Affinity [AFF_NPROCS]
Proc num to start with [AFF_SPROC]

CPU VPs [NUMCPUVPS]
AIO VPs [NUMAIOVPS]
Single CPU VP [SINGLE_CPU_VP] NETTYPE settings:

Protocol Threads Users VP-class
Disable Priority Aging [NOAGE] [ipcshm] [NETTYPE]

[soctcp] [NETTYPE]

Figure 10-2
Partial View of

ON-Monitor
PerFormance

Screen with the
ONCONFIG

Parameter for the
Virtual-Processor

Entries
Managing Virtual Processors 10-5

Setting Virtual-Processor Configuration Parameters with ON-Monitor
Figure 10-3 shows the full perFormance screen; the shaded entries set
configuration parameters for virtual processors.

Figure 10-2 on page 10-5 shows only the perFormance screen entries for
configuring virtual processors. For each entry, it shows the name of the
associated parameter in the ONCONFIG file within a pair of brackets ([]).

Each row of entries under NETTYPE settings describes a separate NETTYPE
parameter, one for each of the protocols available on the computer. The four
columns for these entries (Protocol, Threads, Users, and VP-class)
correspond to the four fields of the NETTYPE parameter.

For more information on the ONCONFIG parameters that are associated with
the database server virtual processors, refer to Figure 10-1 on page 10-4.

Figure 10-3
ON-Monitor PerFormance Screen

PERFORMANCE: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-

level help.
PERFORMANCE TUNING PARAMETERS

Multiprocessor Machine [N] LRU Max Dirty [60]
Num Procs to Affinity [0] LRU Min Dirty [50]
Proc num to start with [0] Checkpoint Interval [300]

Num of Read Ahead Pages [50]
CPU VPs [5] Read Ahead Threshold [20]
AIO VPs [1]
Single CPU VP [N] NETTYPE settings:
Use OS Time [N] Protocol Threads Users VP-class
Disable Priority Aging [N] [ipcshm] [2] [5] [CPU]
Off-Line Recovery Threads [10] [soctcp] [2] [5] []
On-Line Recovery Threads [1]
Num of LRUS queues [8]

Are you running on a multiprocessor machine?
10-6 Administrator’s Guide for Informix Dynamic Server

Starting and Stopping Virtual Processors
Starting and Stopping Virtual Processors
When you start the oninit process to start the database server, oninit starts
the number and types of virtual processors that you have specified directly
and indirectly. You configure virtual processors primarily through
ONCONFIG parameters and, for network virtual processors, through param-
eters in the sqlhosts file or registry. For descriptions of the virtual-processor
classes, refer to “Virtual-Processor Classes” on page 9-20.

Once the database server is in on-line mode, you can start additional virtual
processors to improve performance, if necessary. The database server allows
you to start a maximum of 1,000 virtual processors. For more information,
refer to “Adding Virtual Processors in On-Line Mode”.

While the database server is in on-line mode, you can drop only virtual
processors of the CPU class. For more information, refer to “Dropping CPU
Virtual Processors in On-Line Mode” on page 10-10.

To terminate the database server and thereby terminate all virtual processors,
use the -k option of the onmode utility. For more information on using the -k
option of the onmode utility, refer to “Change Database Server Modes” on
page 35-30.

Adding Virtual Processors in On-Line Mode
While the database server is in on-line mode, you can start additional virtual
processors for the following classes: CPU, AIO, PIO, LIO, SHM, STR, TLI, SOC.
You can start additional virtual processors for the CPU, AIO, PIO, LIO, SHM,
STR, TLI, and SOC classes in one of the following two ways:

■ Using the -p option of the onmode utility

■ Using ON-Monitor ♦

 For the format of the onmode command, refer to “onmode: Mode and
Shared-Memory Changes” on page 35-28.

UNIX
Managing Virtual Processors 10-7

Adding Virtual Processors in On-Line Mode
Using onmode to Add Virtual Processors in On-Line Mode

Use the -p option of the onmode command to add virtual processors while
the database server is in on-line mode. Specify the number of virtual
processors that you want to add with a positive number that is greater than
the number of virtual processors that are currently running. As an option,
you can precede the number of virtual processors with a plus sign (+).
Following the number, specify the virtual processor class in lowercase letters.
For example, either of the following commands starts four additional virtual
processors in the AIO class:

% onmode -p 4 aio

% onmode -p +4 aio

The onmode utility starts the additional virtual processors immediately.

You can add virtual processors to only one class at a time. To add virtual
processors for another class, you must run onmode again.

Using ON-Monitor to Add Virtual Processors in On-Line Mode

To use ON-Monitor to add virtual processors while the database server is in
on-line mode, select Modes from the main menu, and then select Add-Proc.

Figure 10-4 on page 10-9 shows the ON-Monitor Add-Proc screen, which
allows you to add virtual processors in the following classes: CPU, AIO, LIO,
PIO, and network.

UNIX
10-8 Administrator’s Guide for Informix Dynamic Server

Adding Virtual Processors in On-Line Mode
The logical-log and physical-log entries on the Add-Proc screen allow you to
enter a number greater than 2, but the database server will not start more
than two virtual processors in either of these classes. The database server
automatically starts one virtual processor in each of these classes unless
mirroring is used, in which case it starts two.

You specify network virtual processors by first entering the number of virtual
processors and then entering one of the following interface/protocol combi-
nations: ipcshm, ipcstr, tlitcp, tlispx, or soctcp.

You cannot use ON-Monitor to start additional virtual processors for a user-
designated class. For information on adding virtual processors of a user-
designated class in on-line mode, refer to “Using onmode to Add Virtual
Processors in On-Line Mode” on page 10-8.

DD VIRTUAL PROCESSORS: Press ESC to add virtual processors.
Press Interrupt to cancel and return to the modes menu.

ADDING VIRTUAL PROCESSORS

Number of CPU Virtual Processors to add [0]

Number of Asynchronous IO Virtual Processors to add [0]

Number of Logical log IO Virtual Processors to add [0]

Number of Physical log IO Virtual Processors to add [0]

Number of Network Virtual Processors to add [] []
[] []
[] []

Enter the number of asynchronous IO processors to add

Figure 10-4
The ON-Monitor

Add-Proc Screen
Managing Virtual Processors 10-9

Dropping CPU Virtual Processors in On-Line Mode
Adding Network Virtual Processors

When you add network virtual processors, you are adding poll threads, each
of which requires its own virtual processor to run. If you attempt to add poll
threads for a protocol while the database server is in on-line mode, and you
have specified in the NETTYPE parameter that the poll threads run in the CPU
class, the database server does not start the new poll threads if no CPU virtual
processors are available to run them.

Dropping CPU Virtual Processors in On-Line Mode
While the database server is in on-line mode, you can use the -p option of the
onmode utility to drop, or terminate, CPU processors. Following the onmode
command, specify a negative number that is the number of virtual processors
that you want to drop, and then specify the class in lowercase letters. For
example, the following command drops two CPU virtual processors:

% onmode -p -2 cpu

If you attempt to drop a CPU virtual processor that is running a poll thread,
you receive the following message:

% onmode: failed when trying to change the number of cpu
virtual processor by -<number>.

For more information on CPU virtual processors and poll threads, refer to
“Should Poll Threads Run on CPU or Network Virtual Processors?” on
page 9-29.
10-10 Administrator’s Guide for Informix Dynamic Server

11
Chapter
Shared Memory
What Is Shared Memory?. 11-5

How the Database Server Uses Shared Memory 11-6
How the Database Server Allocates Shared Memory 11-7
How Much Shared Memory Does the Database Server Need?. . . 11-9
What Action Should You Take If SHMTOTAL Is Exceeded? . . . 11-10

What Processes Attach to Shared Memory? 11-11
How a Client Attaches to the Communications Portion 11-11

Where the Client Attaches to the Communications
Portion 11-11

How Utilities Attach to Shared Memory 11-12
How Virtual Processors Attach to Shared Memory 11-12

Defining a Unique Key Value 11-13
Specifying Where to Attach the First Shared-Memory

Segment 11-14
How Virtual Processors Attach Additional

Shared-Memory Segments 11-15
The Shared-Memory Lower-Boundary Address 11-15

Keeping Shared-Memory Segments Resident 11-17

The Resident Portion of Shared Memory 11-18
Shared-Memory Header. 11-19
Shared-Memory Buffer Pool 11-19

Regular Buffers 11-19
Logical-Log Buffer 11-22
Physical-Log Buffer 11-24
High-Availability Data-Replication Buffer 11-24

11-2 Ad
The Virtual Portion of Shared Memory 11-25
How the Database Server Manages the Virtual Portion of

Shared Memory 11-25
How to Specify the Size of the Virtual Portion of

Shared Memory. 11-25
The Virtual Portion of Shared Memory 11-26

Shared-Memory Internal Tables 11-26
Big Buffers 11-31
Session Data 11-31
Thread Data. 11-32
Dictionary Cache 11-33
Sorting Memory 11-33
Stored Procedures Cache 11-34
Global Pool 11-34

The Communications Portion of Shared Memory 11-34

Concurrency Control 11-35
Shared-Memory Mutexes 11-35
Shared-Memory Buffer Locks 11-36

Types of Buffer Locks 11-36

How Database Server Threads Access Shared Buffers 11-37
LRU Queues . 11-37

LRU Queue Components 11-37
Why Are Pages Ordered in Least-Recently Used Order? . . . 11-38
LRU Queues and Buffer-Pool Management 11-38
How Many LRU Queues Should You Configure? 11-39
How Many Cleaners Should You Allocate? 11-40
Limiting the Number of Pages Added to the

MLRU Queues 11-40
When MLRU Cleaning Ends 11-41

Configuring the Database Server to Read Ahead 11-42
How a Database Server Thread Accesses a Buffer Page 11-43

Identify the Page 11-43
Determine the Level of Lock Access 11-43
Try to Locate the Page in Shared Memory 11-44
Locate a Buffer and Read Page from Disk 11-44
Lock the Buffer If Necessary 11-44
Release the Buffer Lock and Wake a Waiting Thread 11-45
ministrator’s Guide for Informix Dynamic Server

How the Database Server Flushes Data to Disk 11-46
Events That Prompt Flushing of the Regular Buffers 11-47
Flushing Before-Images First 11-47

Flushing the Physical-Log Buffer 11-47
Events That Prompt Flushing of the Physical-Log Buffer 11-48
When the Physical-Log Buffer Becomes Full 11-49

How the Database Server Synchronizes Buffer Flushing 11-50
Ensuring That Physical-Log Buffers Are Flushed First. 11-50

How Write Types Describe Flushing Activity 11-51
Foreground Write 11-52
LRU Write . 11-52
Chunk Write 11-53

Flushing the Logical-Log Buffer. 11-53
When the Logical-Log Buffer Becomes Full 11-54
After a Transaction Is Prepared or Terminated in a

Database with Unbuffered Logging 11-55
When a Session That Uses Nonlogging Databases or

Unbuffered Logging Terminates 11-55
When a Checkpoint Occurs 11-55
When a Page Is Modified That Does Not Require a

Before-Image in the Physical-Log File. 11-56

How the Database Server Achieves Data Consistency 11-56
Critical Sections 11-56
Checkpoints . 11-57

Events That Initiate a Checkpoint 11-57
Checkpoint Is Critical to Fast Recovery 11-59

Time Stamps . 11-60
Time Stamps on Disk Pages 11-60
Time Stamps on Blobpages 11-61
Blob Time Stamps with Dirty Read and Committed

Read Isolation Levels 11-61

Buffering TEXT and BYTE Data Types 11-63
Writing TEXT and BYTE Data 11-63

Blobpages Do Not Pass Through Shared Memory 11-63
TEXT and BYTE Objects Are Created Before the Data

Row Is Inserted 11-64
Blobpage Buffers Are Created for the Duration of the Write . . . 11-64
Shared Memory 11-3

11-4 Ad
ministrator’s Guide for Informix Dynamic Server

This chapter describes the content of database server shared memory,
the factors that determine the sizes of shared-memory areas, and how data
moves into and out of shared memory. For information on how to change the
database server configuration parameters that determine shared-memory
allocations, refer to Chapter 12, “Managing Shared Memory.”

What Is Shared Memory?
Shared memory is an operating-system feature that allows the database
server threads and processes to share data by sharing access to pools of
memory. The database server uses shared memory for the following
purposes:

■ To reduce memory usage and disk I/O

■ To perform high-speed communication between processes

Shared memory enables the database server to reduce overall memory uses
because the participating processes, in this case, virtual processors, do not
need to maintain private copies of the data that is in shared memory.

Shared memory reduces disk I/O because buffers, which are managed as a
common pool, are flushed on a database server-wide basis instead of a per-
process basis. Furthermore, a virtual processor can often avoid reading data
from disk because the data is already in shared memory as a result of an
earlier read operation. The reduction in disk I/O reduces execution time.

Shared memory provides the fastest method of interprocess communication
because it processes read and write messages at the speed of memory
transfers.
Shared Memory 11-5

How the Database Server Uses Shared Memory
How the Database Server Uses Shared Memory
The database server uses shared memory for the following purposes:

■ To enable virtual processors and utilities to share data

■ To provide a fast communications channel for local client
applications that use IPC communication

Figure 11-1 illustrates the shared-memory scheme.

Figure 11-1
How the Database

Server Uses Shared
Memory

Unallocated space

Private data

Program text

Unallocated space

Private data

Program text

Client applicationsData

Shared-memory
segments

Client

Client

Client

Client

Virtual processor A
memory space

Virtual processor B
memory space
11-6 Administrator’s Guide for Informix Dynamic Server

How the Database Server Allocates Shared Memory
How the Database Server Allocates Shared Memory
The database server creates the following portions of shared memory:

■ The resident portion

■ The virtual portion

■ The IPC communications or message portion ♦

Each portion of shared memory consumes one or more operating-system
segments. When the database server initializes shared memory, it allocates at
least two operating-system segments, one for the resident portion and one for
the virtual portion. It might allocate more segments if the maximum segment
size is not large enough.

If sqlhosts specifies shared-memory communications, the database server
allocates memory for the communications portion. ♦

The database server adds operating-system segments as needed to the virtual
portions of shared memory. Figure 11-2 on page 11-8 shows the contents of
each portion of shared memory.

All database server virtual processors have access to the same shared-
memory segments. Each virtual processor manages its work by maintaining
its own set of pointers to shared-memory resources such as buffers, locks,
and latches. Virtual processors attach to shared memory when you take the
database server from off-line mode to quiescent mode, or from off-line mode
directly to on-line mode. The database server uses locks and latches to
manage concurrent access to shared-memory resources by multiple threads.
For more information about modes, refer to Chapter 7, “Managing Database
Server Operating Modes.”

UNIX

UNIX
Shared Memory 11-7

How the Database Server Allocates Shared Memory
Figure 11-2
Contents of Dynamic Server Shared Memory

Mirrored-chunk table

Dbspace table Page-cleaner tableLock table

Tblspace table Transaction table

Shared mem. header Buffer-header table

Chunk table

User table

LRU queues

Resident portion

Virtual portion

IPC communications
portion (UNIX)

Session structures Thread structures Dictionary cache

Stored procedures cache Sorting pool

Big buffers

Thread stacks Thread heaps

Client/server IPC messages

Global pool

Unallocated memory

Buffer pool
11-8 Administrator’s Guide for Informix Dynamic Server

How Much Shared Memory Does the Database Server Need?
How Much Shared Memory Does the Database Server Need?
Each portion of the database server shared memory consists of one or more
operating-system segments of memory, each one divided into a series of
blocks that are 8 kilobytes in size and managed by a bit map.

The header-line output by the onstat utility contains the size of the database
server shared memory, expressed in kilobytes. For information on how to use
the onstat utility, refer to “onstat: Monitor Database Server Operation” on
page 35-62. You can also use the -g seg option of onstat to monitor how much
memory the database server allocates for each of the resident, virtual, and
communications portions of shared memory.

You can set the SHMTOTAL parameter in the ONCONFIG file to limit the
amount of memory overhead that the database server can place on your
computer. The SHMTOTAL parameter specifies the total amount of shared
memory that the database server can use for all memory allocations.
However, certain operations might fail if the database server needs more
memory than the amount set in SHMTOTAL. If this condition occurs, the
database server displays the following message in the message log:

size of resident + virtual segments x + y > z
total allowed by configuration parameter SHMTOTAL

In addition, the database server returns an error message to the application
that initiated the offending operation. For example, if the database server
needs more memory than you specify in SHMTOTAL while it tries to perform
an operation such as an index build or a hash join, it returns an error message
to the application that is similar to one of the following:

-567 Cannot write sorted rows.
-116 ISAM error: cannot allocate memory.

After the database server sends these messages, it rolls back any partial
results performed by the offending query.
Shared Memory 11-9

What Action Should You Take If SHMTOTAL Is Exceeded?
Internal operations, such as page-cleaner or checkpoint activity, can also
cause the database server to exceed the SHMTOTAL ceiling. When this
situation occurs, the database server sends a message to the message log. For
example, suppose that the database server attempts and fails to allocate
additional memory for page-cleaner activity. As a consequence, the database
server sends a message to the message log that is similar to the following:

17:19:13 Assert Failed: WARNING! No memory available for page cleaners
17:19:13 Who: Thread(11, flush_sub(0), 9a8444, 1)
17:19:13 Results: Dynamic Server may be unable to complete a checkpoint
17:19:13 Action: Make more virtual memory available to Dynamic Server
17:19:13 See Also: /tmp/af.c4

After the database server informs you about the failure to allocate additional
memory, it rolls back the transactions that caused it to exceed the SHMTOTAL
limit. Immediately after the roll back, operations will no longer fail from lack
of memory, and the database server continues to process transactions as
usual.

What Action Should You Take If SHMTOTAL Is Exceeded?
The condition that occurs when the database server needs more memory
than is allowed by SHMTOTAL is a transient condition, perhaps caused by a
burst of activity that exceeds the normal processing load. Only the operation
that caused the database server to run out of memory temporarily should fail.
Other operations continue to be processed in a normal fashion.

If you see messages on a regular basis that indicate that the database server
needs more memory than is allowed by SHMTOTAL, you have not configured
the database server correctly. Lowering the value of BUFFERS or
DS_TOTAL_MEMORY is one possible solution, and increasing the value of
SHMTOTAL is another.
11-10 Administrator’s Guide for Informix Dynamic Server

What Processes Attach to Shared Memory?
What Processes Attach to Shared Memory?
The following processes attach to the database server shared memory:

■ Client-application processes that communicate with the database
server through the shared-memory communications portion
(ipcshm) ♦

■ Database server virtual processors

■ Database server utilities

The following sections describe how each type of process attaches to the
database server shared memory.

How a Client Attaches to the Communications Portion
Client-application processes that communicate with the database server
through shared memory (nettype ipcshm) attach transparently to the
communications portion of shared memory. System-library functions that are
automatically compiled into the application enable it to attach to the commu-
nications portion of shared memory. For information on specifying a shared-
memory connection, see Chapter 4, “Client/Server Communications” and
“Network Virtual Processors” on page 9-28.

Where the Client Attaches to the Communications Portion

If the INFORMIXSHMBASE environment variable is not set, the client
application attaches to the communications portion at an address that is
platform specific. If the client application attaches to other shared-memory
segments (not database server shared memory), the user can set the
INFORMIXSHMBASE environment variable to specify the address at which
to attach the database server shared-memory communications segments. By
specifying the address at which to address the shared-memory communica-
tions segments, you can prevent the database server from colliding with the
other shared-memory segments that your application uses. For information
on how to set the INFORMIXSHMBASE environment variable, refer to the
Informix Guide to SQL: Reference.

UNIX

UNIX
Shared Memory 11-11

How Utilities Attach to Shared Memory
How Utilities Attach to Shared Memory
The database server utilities such as onstat, onmode, and ontape attach to
shared memory through one of the files listed in the following table.

The variable servername is the value of the DBSERVERNAME parameter in the
ONCONFIG file. The utilities obtain the servername portion of the filename
from the INFORMIXSERVER environment variable.

The oninit process reads the ONCONFIG file and creates the file
.infos.servername when it starts the database server. The file is removed
when the database server terminates.

How Virtual Processors Attach to Shared Memory
The database server virtual processors attach to shared memory during
initialization. During this process, the database server must satisfy the
following two requirements:

■ Ensure that all virtual processors can locate and access the same
shared-memory segments

■ Ensure that the shared-memory segments reside in physical memory
locations that are different than the shared-memory segments
assigned to other instances of the database server, if any, on the same
computer

The database server uses two configuration parameters, SERVERNUM and
SHMBASE, to meet these requirements.

Platform File

UNIX $INFORMIXDIR/etc/.infos.servername

Windows NT %INFORMIXDIR%\etc\.infos.servername
11-12 Administrator’s Guide for Informix Dynamic Server

How Virtual Processors Attach to Shared Memory
When a virtual processor attaches to shared memory, it performs the
following major steps:

1. Accesses the SERVERNUM parameter from the ONCONFIG file

2. Uses SERVERNUM TO calculate a shared-memory key value

3. Requests a shared-memory segment using the shared-memory key
value

The operating system returns the shared-memory identifier for the
first shared-memory segment.

4. Directs the operating system to attach the first shared-memory seg-
ment to its process space at SHMBASE

5. Attaches additional shared-memory segments, if required, to be
contiguous with the first segment

The following sections describe how the database server uses the values of
the SERVERNUM and SHMBASE configuration parameters in the process of
attaching shared-memory segments.

Defining a Unique Key Value

The database server uses the ONCONFIG parameter SERVERNUM to calculate
a unique key value for its shared-memory segments. All virtual processors
within a single database server instance share the same key value. When each
virtual processor attaches to shared memory, it calculates the key value as
follows:

(SERVERNUM * 65536) + shmkey

The value of shmkey is set internally and cannot be changed by the user. (The
shmkey value is 52564801 in hexadecimal representation or 1,381,386,241 in
decimal.) The value (SERVERNUM * 65,536) is the same as multiplying
SERVERNUM by hexadecimal 10,000.

When more than one database server instance exists on a single computer, the
difference in the key values for any two instances is the difference between
the two SERVERNUM values, multiplied by 65,536.
Shared Memory 11-13

How Virtual Processors Attach to Shared Memory
When a virtual processor requests that the operating system attach the first
shared-memory segment, it supplies the unique key value to identify the
segment. In return, the operating system passes back a shared-memory segment
identifier associated with the key value. Using this identifier, the virtual
processor requests that the operating system attach the segment of shared
memory to the virtual-processor address space.

Specifying Where to Attach the First Shared-Memory Segment

The SHMBASE parameter in the ONCONFIG file specifies the virtual address
where each virtual processor attaches the first, or base, shared-memory
segment. Each virtual processor attaches to the first shared-memory segment
at the same virtual address. This situation enables all virtual processors
within the same database server instance to reference the same locations in
shared memory without needing to calculate shared-memory addresses. All
shared-memory addresses for an instance of the database server are relative
to SHMBASE.

Warning: Informix recommends that you do not attempt to change the value of
SHMBASE for the following reasons:

■ The specific value of SHMBASE is often computer dependent. It is not an
arbitrary number. Informix selects a value for SHMBASE that keeps the
shared-memory segments safe when the virtual processor dynamically
acquires additional memory space.

■ Different operating systems accommodate additional memory at different
virtual addresses. Some architectures extend the highest virtual address of
the virtual-processor data segment to accommodate the next segment. In
this case, the data segment might grow into the shared-memory segment.

■ Some versions of UNIX require the user to specify a SHMBASE parameter
of virtual address zero. The zero address informs the UNIX kernel that the
kernel should pick the best address at which to attach the shared-memory
segments. However, not all UNIX architectures support this option.
Moreover, on some systems, the selection that the kernel makes might not be
the best selection. ♦

UNIX
11-14 Administrator’s Guide for Informix Dynamic Server

How Virtual Processors Attach to Shared Memory
How Virtual Processors Attach Additional Shared-Memory Segments

Each virtual processor must attach to the total amount of shared memory that
the database server has acquired. After a virtual processor attaches each
shared-memory segment, it calculates how much shared memory it has
attached and how much remains. The database server facilitates this process
by writing a shared-memory header into the first shared-memory segment.
Sixteen bytes into the header, a virtual processor can obtain the following
data:

■ The total size of shared memory for this database server

■ The size of each shared-memory segment

To attach additional shared-memory segments, a virtual processor requests
them from the operating system in much the same way that it requested the
first segment. For the additional segments, however, the virtual processor
adds 1 to the previous value of shmkey. The virtual processor directs the
operating system to attach the segment at the address that results from the
following calculation:

SHMBASE + (seg_size x number of attached segments)

The virtual processor repeats this process until it has acquired the total
amount of shared memory.

Given the initial key value of (SERVERNUM * 65536) + shmkey, the database
server can request up to 65,536 shared-memory segments before it could
request a shared-memory key value used by another database server instance
on the same computer.

The Shared-Memory Lower-Boundary Address

If your operating system uses a parameter to define the lower boundary
address for shared memory, and the parameter is set incorrectly, it can
prevent the shared-memory segments from being attached contiguously.
Shared Memory 11-15

How Virtual Processors Attach to Shared Memory
Figure 11-3 illustrates the problem. If the lower-boundary address is less than
the ending address of the previous segment plus the size of the current
segment, the operating system attaches the current segment at a point
beyond the end of the previous segment. This action creates a gap between
the two segments. Because shared memory must be attached to a virtual
processor so that it looks like contiguous memory, this gap creates problems.
The database server receives errors when this situation occurs. To correct the
problem, check the operating-system kernel parameter that specifies the
lower-boundary address or reconfigure the kernel to allow larger shared-
memory segments. For a description of the operating-system kernel
parameter, refer to “Shared-Memory Lower-Boundary Address” on
page 12-5.

Figure 11-3
Shared-Memory
Lower-Boundary

Address Overview

Operating-system memory

Virtual processor

SHMBASE

When lower boundary is too large,
the next segment attaches here.

The next segment of shared
memory should attach here.

Gap

Shared-memory
segment

Shared-memory
segment
11-16 Administrator’s Guide for Informix Dynamic Server

Keeping Shared-Memory Segments Resident
Keeping Shared-Memory Segments Resident
The operating system, as it switches between the processes running on the
system, normally swaps the contents of portions of memory to disk. When a
portion of memory is designated as resident, however, it is not swapped to
disk. Keeping frequently accessed data resident in memory improves perfor-
mance because it reduces the number of disk I/O operations that would
otherwise be required to access that data.

The database server requests that the operating system keep the resident and
virtual portions in physical memory when the following two conditions
exist:

■ The operating system supports shared-memory residency.

■ The RESIDENT parameter in the ONCONFIG file is set to -1 or a value
that is greater than 0 (zero).

Warning: You must consider the use of shared memory by all applications when you
consider whether to set the RESIDENT parameter to -1. Locking all shared memory
for the use of the Informix database server can adversely affect the performance of
other applications, if any, on the same computer.

For more information on the RESIDENT parameter, refer to “RESIDENT” on
page 33-74.
Shared Memory 11-17

The Resident Portion of Shared Memory
The Resident Portion of Shared Memory
The resident portion of the database server shared memory stores the
following data structures that do not change in size:

■ Shared-memory header

■ Buffer pool

Figure 11-4 illustrates the contents of the resident portion of shared memory.

Figure 11-4
The Resident

Portion of Shared
Memory (Shaded

Areas)

Shared-memory
header

Buffer table

Hash table

Buffer pool

Virtual memory segments
11-18 Administrator’s Guide for Informix Dynamic Server

Shared-Memory Header
Shared-Memory Header
The shared-memory header contains a description of all other structures in
shared memory, including internal tables and the buffer pool.

The shared-memory header also contains pointers to the locations of these
structures. When a virtual processor first attaches to shared memory, it reads
address information in the shared-memory header for directions to all other
structures.

The size of the shared-memory header is about one kilobyte, but the size
varies depending on the computer platform. You cannot tune the size of the
header.

Shared-Memory Buffer Pool
The buffer pool in the resident portion of shared memory contains regular
buffers that store database data pages.

If data pages are modified, entries are usually made in the following two
other shared-memory buffers, also in the resident portion of shared memory,
which function solely to ensure the physical and logical consistency of the
data:

■ Logical-log buffer

■ Physical-log buffer

Regular Buffers

The regular buffers store dbspace pages read from disk. The pool of regular
buffers comprises the largest allocation of the resident portion of shared
memory.
Shared Memory 11-19

Shared-Memory Buffer Pool
You specify the number of regular buffers in the buffer pool with the BUFFERS
parameter in the ONCONFIG file. BUFFERS defaults to 1000 buffers. Informix
recommends that you allocate at least four buffers per user thread up to
2000 buffers. For more than 500 users, the minimum requirement is
2000 buffers. The following table lists the maximum number of allocated
buffers for each platform.

For more information on setting the BUFFERS configuration parameter, refer
to “BUFFERS” on page 33-12.

The status of the regular buffers is tracked through the buffer table. Within
shared memory, regular buffers are organized into LRU buffer queues. Buffer
acquisition is managed through the use of latches, called mutexes, and lock-
access information. You can monitor buffers and buffer-pool activity using
four options of onstat:

■ The -b and -B options display general buffer information.

■ The -R option displays LRU queue statistics.

■ The -X option displays information about the database server I/O
threads that are waiting for buffers.

For a description of how LRU queues work, refer to “LRU Queues” on
page 11-37. For a description of mutexes, refer to “Mutexes” on page 9-19.

How Big Is a Regular Buffer?

Each regular buffer is the size of one database server page. In general, the
database server performs I/O in full-page units, the size of a regular buffer.
The two exceptions are I/O performed from big buffers (see “Big Buffers” on
page 11-31) and I/O performed from blobspace buffers (see “Blobpage
Buffers Are Created for the Duration of the Write” on page 11-64). The -b
option of the onstat utility also displays the database server page size. For
information on the onstat utility, refer to “onstat: Monitor Database Server
Operation” on page 35-62.

Platform Maximum Number of Allocated Buffers

UNIX 768 kilobytes (768 * 1024)

Windows NT 512 kilobytes
11-20 Administrator’s Guide for Informix Dynamic Server

Shared-Memory Buffer Pool
On UNIX. you also can determine the page size for your system by choosing
Parameters ➞Shared-memory in ON-Monitor. ON-Monitor displays a list of
shared-memory parameters, of which the database server page size is the last
entry on the page. ♦

Memory-Resident Tables

You can specify that one or more fragments of a table or index remain
resident in shared memory as much as possible. Any pages that belong to a
resident fragment, either currently in the buffer or loaded in the future, are
considered last for replacement when a free buffer is requested.

Use the SET TABLE and SET INDEX statements to turn on the resident state for
one or more fragments of a table or index. For information on the SET TABLE
and SET INDEX statements, refer to the Informix Guide to SQL: Syntax.

You must be the a database system administrator (DBSA) or user informix to
turn on or change the resident state. As the DBSA, you can create a DBA-privi-
leged stored procedure to grant the privilege to other users.

Important: The resident state of a table fragment is not persistent; it must be speci-
fied each time that you start the server. The default state is nonresident.

If you add new fragments to a resident table, the new fragments are not
automatically marked as resident. You must use SET TABLE or SET INDEX to
declare the new fragments as resident or redeclare the table as resident. If you
use the SET TABLE or SET INDEX statement to turn residency off, or if you use
the ALTER FRAGMENT statement to drop a fragment, its residency is cleared.

When you turn on residency, the buffer pool is scanned and any buffers that
belong to these fragments are marked as the highest priority. When you turn
off residency, the buffer pool is scanned and all buffers belonging to that
partition are put back into the buffer pool with the default priority. When the
fragment is dropped, the resident state of all the buffers for that partition in
the buffer pool is cleared and put back into the buffer pool with the lowest
priority.

The DBSA must keep track of how many tables are marked resident. If the
buffer pool contains too many resident pages, the caching effect is defeated.
The number of resident pages that can be held in memory is exceeded and
high-priority pages are swapped to disk and replaced with other high-
priority pages.

UNIX
Shared Memory 11-21

Shared-Memory Buffer Pool
You can use the -p and -P options of the onstat utility to determine the rate of
buffer cache usage and to optimize the use of memory resident tables, respec-
tively. The onstat -t option enables you to determine which tblspaces are
resident. For information on the onstat utility, refer to “onstat: Monitor
Database Server Operation” on page 35-62.

Logical-Log Buffer

The database server uses the logical log to store a record of changes to the
database server data since the last dbspace backup. The logical log stores
records that represent logical units of work for the database server. The
logical log contains the following five types of log records, in addition to
many others:

■ SQL data definition statements for all databases

■ SQL data manipulation statements for databases that were created
with logging

■ Record of a change to the logging status of a database

■ Record of a checkpoint

■ Record of a change to the configuration

The database server uses only one of the logical-log buffers at a time. This
buffer is the current logical-log buffer. Before the database server flushes the
current logical-log buffer to disk, it makes the second logical-log buffer the
current one so that it can continue writing while the first buffer is flushed. If
the second logical-log buffer fills before the first one finishes flushing, the
third logical-log buffer becomes the current one. This process is illustrated in
Figure 11-5 on page 11-23.
11-22 Administrator’s Guide for Informix Dynamic Server

Shared-Memory Buffer Pool
For a description of how the database server flushes the logical-log buffer,
refer to “Flushing the Logical-Log Buffer” on page 11-53.

The LOGBUFF parameter in the ONCONFIG file specifies the size of the
logical-log buffers. Small buffers can create problems if you store records
larger than the size of the buffers (for example, TEXT or BYTE data in
dbspaces). For the possible values that you can assign to this parameter, refer
to “LOGBUFF” on page 33-41.

For information on the impact of TEXT and BYTE data on shared memory
buffers, refer to “Buffering TEXT and BYTE Data Types” on page 11-63

Figure 11-5
The Logical-Log

Buffer and Its
Relation to the

Logical-Log Files
on Disk

Current
logical-log
fileLogical-log

buffer (ready to
accept data)

Logical-log buffers
Writes performed by
user thread

Logical-log
buffer
(flushing)

Current logical-
log buffer
(now filling)

Free
logical-log
file

Free
logical-log
file
Shared Memory 11-23

Shared-Memory Buffer Pool
Physical-Log Buffer

The database server uses the shared-memory physical-log buffer to hold
before-images of dbspace pages that are going to be updated. The before-
images in the physical log enable the database server to restore consistency
to its databases after a system failure.

The physical-log buffer is actually two buffers. Double buffering permits the
database server processes to write to the active physical-log buffer while the
other buffer is being flushed to the physical log on disk. For a description of
how the database server flushes the physical-log buffer, refer to “Flushing the
Physical-Log Buffer” on page 11-47.

For information on monitoring the physical-log file, refer to “Monitoring the
Physical-Log File” on page 29-47.

The PHYSBUFF parameter in the ONCONFIG file specifies the size of the
physical-log buffers. A write to the physical-log buffer writes exactly one
page. If the specified size of the physical-log buffer is not evenly divisible by
the page size, the database server rounds the size down to the nearest value
that is evenly divisible by the page size. Although some operations require
the buffer to be flushed sooner, in general the database server flushes the
buffer to the physical-log file on disk when the buffer fills. Thus, the size of
the buffer determines how frequently the database server needs to flush it to
disk. For more information on this parameter, refer to “PHYSBUFF” on
page 33-69.

High-Availability Data-Replication Buffer

High-availability data replication requires two instances of the database
server, a primary instance and a secondary instance, running on two
computers. If you implement high-availability data replication for your
database server, the database server holds logical-log records in the high-
availability data-replication buffers before it sends them to the secondary
database server. A high-availability data-replication buffer is always the
same size as the logical-log buffer. For information on the size of the logical-
log buffer, refer to the preceding section, “Logical-Log Buffer” on page 11-22.
For more information on how the data-replication buffer is used, refer to
“How Does High-Availability Data Replication Work?” on page 25-8.
11-24 Administrator’s Guide for Informix Dynamic Server

The Virtual Portion of Shared Memory
The Virtual Portion of Shared Memory
The virtual portion of shared memory is expandable by the database server
and can be paged out to disk by the operating system. As the database server
executes, it automatically attaches additional operating-system segments, as
needed, to the virtual portion.

How the Database Server Manages the Virtual Portion of
Shared Memory
The database server uses memory pools to track memory allocations that are
similar in type and size. Keeping related memory allocations in a pool helps
to reduce memory fragmentation. It also enables the database server to free a
large allocation of memory at one time, as opposed to freeing each piece that
makes up the pool.

All sessions have one or more memory pools. When the database server
needs memory, it first looks in the specified pool. If insufficient memory is
available in a pool to satisfy a request, the database server adds memory from
the system pool. If the database server cannot find enough memory in the
system pool, it dynamically allocates more segments to the virtual portion.

How to Specify the Size of the Virtual Portion of Shared Memory

You specify the initial size of the virtual shared-memory portion by setting
the SHMVIRTSIZE parameter in the ONCONFIG file. You can specify the size
of segments that are later added to the virtual portion of shared memory by
setting the SHMADD parameter in the ONCONFIG file.

For more information on determining the size of virtual shared memory, refer
to “SHMVIRTSIZE” on page 33-83, “SHMADD” on page 33-80, and “Adding
a Segment to the Virtual Portion of Shared Memory” on page 12-15.
Shared Memory 11-25

The Virtual Portion of Shared Memory
The Virtual Portion of Shared Memory
The virtual portion of shared memory stores the following data:

■ Internal tables

■ Big buffers

■ Session data

■ Thread data (stacks and heaps)

■ Dictionary cache

■ Stored procedures cache

■ Sorting pool

■ Global pool

Shared-Memory Internal Tables

The database server shared memory contains nine internal tables that track
shared-memory resources. Three of these nine tables are paired with hash
tables. The shared-memory internal tables are as follows:

■ Buffer table and associated hash table

■ Chunk table

■ Dbspace table

■ Lock table and associated hash table

■ Page-cleaner table

■ Tblspace table and associated hash table

■ Transaction table

■ User table

Hashing is a technique that permits rapid lookup in tables where items are
added unpredictably. Three shared-memory tables have an associated hash
table: the lock table, the active tblspace table, and the buffer table. These three
hash tables also reside in the virtual portion of shared memory.
11-26 Administrator’s Guide for Informix Dynamic Server

The Virtual Portion of Shared Memory
Buffer Table

The buffer table tracks the addresses and status of the individual buffers in
the shared-memory pool. When a buffer is used, it contains an image of a
data or index page from disk. For more information on the purpose and
content of a disk page, refer to “What Is a Page?” on page 13-10.

Each buffer in the buffer table contains the following control information,
which is needed for buffer management:

■ Buffer status

Buffer status is described as empty, unmodified, or modified. An
unmodified buffer contains data, but this data can be overwritten. A
modified, or dirty buffer, contains data that must be written to disk
before it can be overwritten.

■ Current lock-access level

Buffers receive lock-access levels depending on the type of operation
that the user thread is executing. The database server supports two
buffer lock-access levels: shared and exclusive.

■ Threads waiting for the buffer

Each buffer header maintains a list of the threads that are waiting for
the buffer and the lock-access level that each waiting thread requires.

Each database server buffer has one entry in the buffer table.

For information on how to monitor the buffers, refer to “Monitoring Buffers”
on page 29-20. For information on the database server buffers, refer to
“Regular Buffers” on page 11-19.

The database server determines the number of entries in the buffer-table hash
table based on the number of allocated buffers. The maximum number of
hash values is the largest power of two that is less than the value of BUFFERS.
Shared Memory 11-27

The Virtual Portion of Shared Memory
Chunk Table

The chunk table tracks all chunks in the database server. If mirroring has been
enabled, a corresponding mirrored chunk table is also created when shared
memory is initialized. The mirrored chunk table tracks all mirrored chunks.

The chunk table in shared memory contains information that enables the
database server to locate chunks on disk. This information includes the
chunk number and the number of the next chunk in the dbspace. Flags also
describe chunk status: mirror or primary; off-line, on-line, or recovery mode;
and whether this chunk is part of a blobspace. For information on monitoring
chunks, refer to “Monitoring Chunks” on page 29-53.

The maximum number of entries in the chunk table might be limited by the
maximum number of file descriptors that your operating system allows per
process. You can usually specify the number of file descriptors per process
with an operating-system kernel-configuration parameter. Consult your
operating-system manuals for details.

Dbspace Table

The dbspace table tracks dbspaces and blobspaces in the database server. The
dbspace-table information includes the following information about each
dbspace:

■ Dbspace number

■ Dbspace name and owner

■ Dbspace mirror status (mirrored or not)

■ Date and time that the dbspace was created

If the space is a blobspace, flags indicate the media where the blobspace is
located magnetic, removable media, or optical.

For information on monitoring dbspaces, refer to “Monitoring the Database
Server for Disabling I/O Errors” on page 29-52.
11-28 Administrator’s Guide for Informix Dynamic Server

The Virtual Portion of Shared Memory
Lock Table

A lock is created when a user thread writes an entry in the lock table. The lock
table is the pool of available locks. Each entry is one lock. A single transaction
can own multiple locks. For an explanation of locking and the SQL statements
associated with locking, refer to the Informix Guide to SQL: Tutorial.

The following information, which is stored in the table, describes the lock:

■ The address of the transaction that owns the lock

■ The type of lock (exclusive, update, shared, byte, or intent)

■ The page and rowid that is locked

■ The tblspace where the lock is placed

You specify the maximum number of entries in the lock table by setting the
LOCKS configuration parameter. For information on specifying the number
of locks available to sessions, refer to “LOCKS” on page 33-39.

For information on monitoring locks, refer to “Monitoring Locks” on
page 29-29.

A byte lock is generated only if you shrink the size of a data value in a
VARCHAR column. The byte lock exists solely for rollforward and rollback
execution, so a byte lock is created only if you are working in a database that
uses logging. Byte locks appear in onstat -k output only if you are using row-
level locking; otherwise, they are merged with the page lock.

The lock table includes an associated hash table. The number of entries in the
lock hash table is based on the number of entries in the locks table. The
maximum number of hash values is the largest power of two that is less than
the value specified by the expression (LOCKS divided by 16).

Page-Cleaner Table

The page-cleaner table tracks the state and location of each of the page-
cleaner threads. The number of page-cleaner threads is specified by the
CLEANERS parameter in the ONCONFIG file. For advice on how many page-
cleaner threads to specify, refer to “CLEANERS” on page 33-14.

The page-cleaner table always contains 128 entries, regardless of the number
of page-cleaner threads specified by the CLEANERS parameter in the
ONCONFIG file.
Shared Memory 11-29

The Virtual Portion of Shared Memory
For information on monitoring the activity of page-cleaner threads, refer to
the -F option in “onstat: Monitor Database Server Operation” on page 35-62.

Tblspace Table

The tblspace table tracks all active tblspaces in a database server instance. An
active tblspace is one that is currently in use by a database session. Each
active table accounts for one entry in the tblspace table. Active tblspaces
include database tables, temporary tables, and internal control tables, such as
system catalog tables. Each tblspace table entry includes header information
about the tblspace, the tblspace name, and pointers to the tblspace tblspace
in dbspaces on disk. (Do not confuse the shared-memory active tblspace table
with the tblspace tblspace.) For information on monitoring tblspaces, refer to
“Monitoring Tblspaces and Extents” on page 29-60.

The database server manages one tblspace table for each dbspace.

Transaction Table

The transaction table tracks all transactions in the database server.

Tracking information derived from the transaction table appears in the
onstat -x display. For an example of the output displayed by onstat -x,
see“Monitoring Transactions” on page 29-41.

The database server automatically increases the number of entries in the
transaction table, up to a maximum of 32,767, based on the number of current
transactions.

For more information on transactions and the SQL statements that you use
with transactions, refer to the Informix Guide to SQL: Tutorial, the Informix
Guide to SQL: Reference, and the Informix Guide to SQL: Syntax.

The transaction table also specifically supports the X/Open environment.
Support for the X/Open environment requires INFORMIX-TP/XA. For a
description of a transaction in this environment, refer to the product
documentation for INFORMIX-TP/XA. ♦

UNIX
11-30 Administrator’s Guide for Informix Dynamic Server

The Virtual Portion of Shared Memory
User Table

The user table tracks all user threads. Each client session has one primary
thread and zero to many secondary threads, depending on the level of paral-
lelism specified. Other threads include one to monitor and control check-
points, one to process onmode commands, the btree cleaner thread, and one
too many page-cleaner threads.

The database server increases the number of entries in the user table as
needed. You can monitor user threads with the onstat -u command.

Big Buffers

A big buffer is a single buffer that is made up of several pages. The actual
number of pages is platform dependent. The database server allocates big
buffers to improve performance on large reads and writes.

The database server uses a big buffer whenever it writes to disk multiple
pages that are physically contiguous. For example, the database server tries
to use a big buffer to perform a series of sequential reads or to read into
shared memory TEXT or BYTE DATA that is stored in a dbspace. After disk
pages are read into the big buffer, they are immediately copied to regular
buffers in the buffer pools. The database server also uses big buffers in sorted
writes and in chunk writes during checkpoints. For information on
monitoring the use of big buffers, refer to “onstat: Monitor Database Server
Operation” on page 35-62.

Session Data

When a client application requests a connection to the database server, the
database server begins a session with the client and creates a data structure for
the session in shared memory called the session-control block (SCB). The
session-control block stores the session ID, the user ID, the process ID of the
client, the name of the host computer, and various status flags.

The database server allocates memory for session structures as needed.
Shared Memory 11-31

The Virtual Portion of Shared Memory
Thread Data

When a client connects to the database server, in addition to starting a
session, the database server starts a primary session thread and creates a
thread-control block (TCB) for it in shared memory.

The database server also starts internal threads on its own behalf and creates
thread-control blocks for them. When the database server switches from
running one thread to running another one (a context switch), it saves infor-
mation about the thread— such as the register contents, program counter
(address of the next instruction), and global pointers—in the thread-control
block. For more information on the thread-control block and how it is used,
refer to “Context Switching” on page 9-14.

The database server allocates memory for thread-control blocks as needed.

Stacks

Each thread in the database server has its own stack area in the virtual
portion of shared memory. For a description of how threads use stacks, refer
to “Stacks” on page 9-15. For information on how to monitor the size of the
stack for a session, refer to “Monitoring Sessions and Threads” on page 29-35.

The size of the stack space for user threads is specified by the STACKSIZE
parameter in the ONCONFIG file. The default size of the stack is 32 kilobytes.
You can change the size of the stack for all user threads, if necessary, by
changing the value of STACKSIZE. For information and a warning on setting
the size of the stack, refer to “STACKSIZE” on page 33-85.

You can alter the size of the stack for the primary thread of a specific session
by setting the INFORMIXSTACKSIZE environment variable. The value of
INFORMIXSTACKSIZE overrides the value of STACKSIZE for a particular
user. For information on how to override the stack size for a particular user,
refer to the description of the INFORMIXSTACKSIZE environment variable in
the Informix Guide to SQL: Reference.

You can more safely alter the size of stack space by using the
INFORMIXSTACKSIZE environment variable than by altering the configu-
ration parameter STACKSIZE. The INFORMIXSTACKSIZE environment
variable affects the stack space for only one user, and it is less likely to affect
new client applications that initially were not measured.
11-32 Administrator’s Guide for Informix Dynamic Server

The Virtual Portion of Shared Memory
Heaps

Each thread also has a heap to hold data structures that it creates while it is
running. A heap is dynamically allocated when the thread is created. The size
of the thread heap is not configurable.

Dictionary Cache

When a session executes an SQL statement that requires accessing a system
catalog table, the database server reads the system catalog tables and stores
them in structures that it can access more efficiently. These structures are
created in the virtual portion of shared memory for use by all sessions. These
structures constitute the dictionary cache.

The size of the dictionary cache is not configurable.

Sorting Memory

The amount of virtual shared memory that the database server allocates for
a sort depends on the number of rows to be sorted and the size of the row.

To calculate the amount of virtual shared memory that the database server
might need for sorting, estimate the maximum number of sorts that might
occur concurrently and multiply that number by the average number of rows
times the average row size. For example, if you estimate that 30 sorts might
occur concurrently, the average row size is 200 bytes, and the average
number of rows in a table is 400, you can estimate the amount of shared
memory that the database server needs for sorting as follows:

30 sorts * 200 bytes * 400 rows = 2,400,000 bytes

If PDQ priority is greater than 0, the maximum amount of shared memory
that the database server allocates for a sort is controlled by the memory grant
manager (MGM). The database server calculates the unit (quantum) of
memory allocation with the following formula:

quantum = DS_TOTAL_MEMORY/DS_MAX_QUERIES

When MGM controls the resources for a query, sorting does not use more than
the amount of memory specified by the DS_TOTAL_MEMORY configuration
parameter. If the query requests more sorts than can concurrently fit into the
DS_TOTAL_MEMORY amount of memory, some sorts must wait until memory
is available. For more information about MGM, see your Performance Guide.
Shared Memory 11-33

The Communications Portion of Shared Memory
You set the PSORT_NPROCS environment variable to request a parallel sort.
If PDQ is used, MGM divides the allocated sort memory evenly among the
sort threads for the query. For more information on parallel sorts and the
PSORT_NPROCS environment variable, refer to your Performance Guide.

If PDQ priority is 0, the maximum amount of shared memory that the
database server allocates for a sort is about 128 kilobytes.

Stored Procedures Cache

When a session needs to access a stored procedure for the first time, the
database server reads the stored procedure from the system catalog tables.
The database server converts the stored procedure into executable format
and stores the procedure in a cache, where it can be accessed by any session.

The size of the stored procedure cache is not configurable.

Global Pool

The global pool stores structures that are global to the database server. For
example, the global pool contains the message queues where poll threads for
network communications deposit messages from clients. The sqlexec threads
pick up the messages from here and process them.

The Communications Portion of Shared Memory
The database server allocates memory for the IPC communication portion of
shared memory if and only if you configure at least one of your connections
as an IPC shared-memory connection. The database server performs this
allocation when you initialize shared memory. The communications portion
contains the message buffers for local client applications that use shared
memory to communicate with the database server.

The size of the communications portion of shared memory equals approxi-
mately 12 kilobytes multiplied by the expected number of connections
needed for shared-memory communications (nettype ipcshm). If nettype
ipcshm is not present, the expected number of connections defaults to 50.

UNIX
11-34 Administrator’s Guide for Informix Dynamic Server

Concurrency Control
For information about how a client attaches to the communications portion
of shared memory, refer to “How a Client Attaches to the Communications
Portion” on page 11-11.

Concurrency Control
The database server threads that run on the same virtual processor, and on
separate virtual processors, share access to resources in shared memory.
When a thread writes to shared memory, it uses mechanisms called mutexes
and locks to prevent other threads from simultaneously writing to the same
area. A mutex gives a thread the right to access a shared-memory resource. A
lock prevents other threads from writing to a buffer until the thread that
placed the lock is finished with the buffer and releases the lock.

Shared-Memory Mutexes
The database server uses latches, also called mutexes, to coordinate threads as
they attempt to modify data in shared memory. Every modifiable shared-
memory resource is associated with a mutex. Before a thread can modify a
shared-memory resource, it must first acquire the mutex associated with that
resource. After the thread acquires the mutex, it can modify the resource.
When the modification is complete, the thread releases the mutex.

If a thread tries to obtain a mutex and finds that it is held by another thread,
the incoming thread must wait for the mutex to be released.

For example, two threads can attempt to access the same slot in the chunk
table, but only one can acquire the mutex associated with the chunk table.
Only the thread that holds the mutex can write its entry in the chunk table.
The second thread must wait for the mutex to be released and then acquire it.

For information on monitoring mutexes (which are also referred to as latches
in the output from the monitoring tools), refer to “Monitoring Latches” on
page 29-27.
Shared Memory 11-35

Shared-Memory Buffer Locks
Shared-Memory Buffer Locks
A primary benefit of shared memory is the ability of database server threads
to share access to disk pages stored in the shared-memory buffer pool. The
database server maintains thread isolation while it achieves this increased
concurrency through a strategy for locking the data buffers.

Types of Buffer Locks

The database server uses two types of locks to manage access to shared-
memory buffers:

■ Share locks

■ Exclusive locks

Each of these lock types enforces the required level of thread isolation during
execution.

For information on how to monitor the use of locks, refer to “Monitoring
Locks” on page 29-29.

For detailed information about locking and process isolation during SQL
processing, see the Informix Guide to SQL: Tutorial. For further information
about locking and shared memory, refer to “Shared-Memory Buffer Locks”.

The Share Lock

A buffer is in share mode, or has a share lock, if multiple threads have access
to the buffer to read the data and none intends to modify the data.

The Exclusive Lock

A buffer is in exclusive mode, or has an exclusive lock, if a thread demands
exclusive access to the buffer. All other thread requests that access the buffer
are placed in the wait queue. When the executing thread is ready to release
the exclusive lock, it wakes the next thread in the wait queue.

For more information about locking, see “Lock Table” on page 11-29 and
“Shared-Memory Buffer Locks”.
11-36 Administrator’s Guide for Informix Dynamic Server

How Database Server Threads Access Shared Buffers
How Database Server Threads Access Shared
Buffers
The database server threads access shared buffers through a system of
queues, using latches and locks to synchronize access and protect data.

LRU Queues
Each regular buffer is tracked through several linked lists of pointers to the
buffer table. A regular buffer holds data for the purpose of caching. These
linked lists are the least-recently used (LRU) queues.

The LRUS parameter in the ONCONFIG file specifies the number of LRU
queues to create when the database server shared memory is initialized. You
can tune the value of LRUS, combined with the LRU_MIN_DIRTY and
LRU_MAX_DIRTY parameters, to control how frequently the shared-memory
buffers are flushed to disk.

LRU Queue Components

The LRU queue is composed of two queues, the FLRU and the MLRU queues.

Each LRU queue is actually a pair of linked lists, as follows:

■ One list tracks free or unmodified pages in the queue.

■ One list tracks modified pages in the queue.

The free or unmodified page list is referred to as the FLRU queue of the queue
pair, and the modified page list is referred to as the MLRU queue. The two
separate lists eliminate the need to search a queue for a free or unmodified
page. Figure 11-6 on page 11-38 illustrates the structure of the LRU queues.
Shared Memory 11-37

LRU Queues
Why Are Pages Ordered in Least-Recently Used Order?

When the database server processes a request to read a page from disk, it
must decide which page to replace in memory. Rather than select a page
randomly, the database server assumes that recently referenced pages are
more likely to be referenced in the future than pages that it has not referenced
for some time. Thus, rather than replacing a recently accessed page, the
database server replaces a least-recently accessed page. By maintaining
pages in least-recently to most-recently used order, the database server can
easily locate the least-recently used pages in memory.

LRU Queues and Buffer-Pool Management

Before processing begins, all page buffers are empty, and every buffer is
represented by an entry in one of the FLRU queues. The buffers are evenly
distributed among the FLRU queues. The number of buffers in each queue is
calculated by dividing the total number of buffers (BUFFERS) by the number
of LRU queues (LRUS).

When a user thread needs to acquire a buffer, the database server randomly
selects one of the FLRU queues and uses the oldest or least-recently used entry
in the list. If the least-recently used page can be latched, that page is removed
from the queue.

If the FLRU queue is locked, and the end page cannot be latched, the database
server randomly selects another FLRU queue.

Figure 11-6
LRU Queue

LRU queue
(composed of 2
queues)

Least-recently used <--> most-recently used

FLRU 1

MLRU 1

Pointer to a
modified page

Pointer to an
unmodified page

Pointer to an
empty page
11-38 Administrator’s Guide for Informix Dynamic Server

LRU Queues
If a user thread is searching for a specific page in shared memory, it obtains
the LRU-queue location of the page from the control information stored in the
buffer table.

After an executing thread finishes its work, it releases the buffer. If the page
has been modified, the buffer is placed at the most-recently used end of an
MLRU queue. If the page was read but not modified, the buffer is returned to
the FLRU queue at its most-recently used end. For information on how to
monitor LRU queues, refer to “Monitoring Buffer-Pool Activity” on
page 29-23.

How Many LRU Queues Should You Configure?

Multiple LRU queues have two purposes:

■ They reduce user-thread contention for the queues.

■ They allow multiple cleaners to flush pages from LRU queues and
maintain the percentage of dirty pages at an acceptable level.

Informix recommends initial values for the LRUS configuration parameter
based on the number of CPUs that are available on your computer. If your
computer is a uniprocessor, start by setting LRUS to 4. If your computer is a
multiprocessor, use the following formula:

LRUS = max(4, (no. of cpu VPs))

After you give an initial value to LRUS, monitor your LRU queues with onstat
-R. If you find that the percent of dirty LRU queues consistently exceeds the
value of the LRU_MAX_DIRTY parameter, add more LRU queues by increasing
the value of the LRUS configuration parameter.

For example, suppose you set LRU_MAX_DIRTY to 70 and find that your LRU
queues are consistently 75 percent dirty. Consider increasing the value of the
LRUS configuration parameter. By increasing the number of LRU queues, you
shorten the length of the queues, thereby reducing the work of the page
cleaners. However, you must allocate a sufficient number of page cleaners
with the CLEANERS configuration parameter, as discussed in the following
section.
Shared Memory 11-39

LRU Queues
How Many Cleaners Should You Allocate?

In general, Informix recommends that you configure one cleaner for each
disk that your applications update frequently. However, you should also
consider the length of your LRU queues and frequency of checkpoints as
explained in the following paragraphs.

In addition to insufficient LRU queues, another factor that influences whether
page cleaners keep up with the number of pages that require cleaning can
occur if you do not have enough page-cleaner threads allocated. The percent
of dirty pages might exceed LRU_MAX_DIRTY in some queues because no
page cleaners are available to clean the queues. After a while, the page
cleaners might be too far behind to catch up, and the buffer pool becomes
much more dirty than the percent that you specified in LRU_MAX_DIRTY.

For example, suppose that the CLEANERS parameter is set to 8, and you
increase the number of LRU queues from 8 to 12. You can expect little in the
way of a performance gain because the 8 cleaners must now share the work
in cleaning an additional 4 queues. By increasing the number of CLEANERS
to 12, each of the queues, now shortened, can be more efficiently cleaned by
a single cleaner.

Setting CLEANERS too low can cause performance to suffer whenever a
checkpoint occurs because page cleaners must flush all modified pages to
disk during checkpoints. If you do not have a sufficient number of page
cleaners configured, checkpoints take longer, causing overall performance to
suffer.

Limiting the Number of Pages Added to the MLRU Queues

Periodically, the page-cleaner threads flush the modified buffers in an MLRU
queue to disk. To specify the point at which cleaning begins, use the
LRU_MAX_DIRTY configuration parameter.

By specifying when page cleaning begins, the LRU_MAX_DIRTY configu-
ration parameter limits the number of page buffers that can be appended to
an MLRU queue. The initial setting of LRU_MAX_DIRTY is 60, so page
cleaning begins when 60 percent of the buffers managed by a queue are
modified.
11-40 Administrator’s Guide for Informix Dynamic Server

LRU Queues
In practice, page cleaning begins under several conditions, only one of which
is when an MLRU queue reaches the value of LRU_MAX_DIRTY. For more
information on how the database server performs buffer-pool flushing, refer
to “How the Database Server Flushes Data to Disk” on page 11-46.

Figure 11-7 shows how the value of LRU_MAX_DIRTY is applied to an LRU
queue to specify when page cleaning begins and thereby limit the number of
buffers in an MLRU queue.

When MLRU Cleaning Ends

You can also specify the point at which MLRU cleaning can end. The
LRU_MIN_DIRTY configuration parameter specifies the acceptable percent of
buffers in an MLRU queue. The initial setting of LRU_MIN_DIRTY is 50,
meaning that page cleaning is no longer required when 50 percent of the
buffers in an LRU queue are modified. In practice, page cleaning can continue
beyond this point as directed by the page-cleaner threads.

Figure 11-8 on page 11-42 shows how the value of LRU_MIN_DIRTY is applied
to the LRU queue to specify the acceptable percent of buffers in an MLRU
queue and the point at which page cleaning ends.

BUFFERS specified as 8000
LRUS specified as 8
LRU_MAX_DIRTY specified as 60

Page cleaning begins when the number of buffers in the MLRU
queue is equal to LRU_MAX_DIRTY.

Buffers per LRU queue = (8000/8) = 1000

Max buffers in MLRU queue and point at which page cleaning
begins: 1000 x 0.60 = 600

Figure 11-7
How

LRU_MAX_DIRTY
 Initiates Page

Cleaning to Limit
the Size of the
MLRU Queue
Shared Memory 11-41

Configuring the Database Server to Read Ahead
For more information on how the database server flushes the buffer pool,
refer to “How the Database Server Flushes Data to Disk” on page 11-46.

Configuring the Database Server to Read Ahead
For sequential table or index scans, you can configure the database server to
read several pages ahead while the current pages are being processed. A
read-ahead enables applications to run faster because they spend less time
waiting for disk I/O.

The database server performs a read-ahead whenever it detects the need for
it during sequential data or index reads.

The RA_PAGES parameter in the ONCONFIG file specifies the number of
pages to read from disk when the database server does a read-ahead.

The RA_THRESHOLD parameter specifies the number of unprocessed pages
in memory that cause the database server to do another read-ahead. For
example, if RA_PAGES is 10, and RA_THRESHOLD is 4, the database server
reads ahead 10 pages when 4 pages remain to be processed in the buffer. For
an example of the output that the onstat -p command produces to enable you
to monitor the database server use of read-ahead, refer to “Monitoring
Shared-Memory Profile” on page 29-19 and “-p Option” on page 35-84 under
the heading “onstat: Monitor Database Server Operation.”

BUFFERS specified as 8000
LRUS specified as 8
LRU_MIN_DIRTY specified as 50

The acceptable number of buffers in the MLRU queue and
the point at which page cleaning can end is equal
to LRU_MIN_DIRTY.

Buffers per LRU queue = (8000/8) = 1000

Acceptable number of buffers in MLRU queue and the point
at which page cleaning can end: 1000 x .050 = 500

Figure 11-8
How

LRU_MIN_DIRTY
Specifies the Point

at Which Page
Cleaning Can End
11-42 Administrator’s Guide for Informix Dynamic Server

How a Database Server Thread Accesses a Buffer Page
How a Database Server Thread Accesses a Buffer Page
The database server uses shared-lock buffering to allow more than one
database server thread to access the same buffer concurrently in shared
memory. The database server uses two categories of buffer locks to provide
this concurrency without a loss in thread isolation. The two categories of lock
access are share and exclusive. (For more information, refer to “Types of
Buffer Locks” on page 11-36.)

The process of accessing a data buffer consists of the following steps:

1. Identify the data requested by physical page number.

2. Determine the level of lock access needed by the thread for the
requested buffer.

3. Attempt to locate the page in shared memory.

4. If the page is not in shared memory, locate a buffer in an FLRU queue,
and read the page in from disk. If the page is in shared memory,
proceed with step 5.

5. Proceed with processing, locking the buffer if necessary.

6. When finished accessing the buffer, release the lock.

7. Wake waiting threads with compatible lock-access types, if any exist.

Identify the Page

The database server threads request a specific data row, and the database
server searches for the page that contains the row.

Determine the Level of Lock Access

Next the database server determines the requested level of lock access: share
or exclusive.
Shared Memory 11-43

How a Database Server Thread Accesses a Buffer Page
Try to Locate the Page in Shared Memory

The thread first attempts to locate the requested page in shared memory. To
do this, it acquires a mutex on the hash table that is associated with the buffer
table. Then, it searches the hash table to see if an entry matches the requested
page. If the thread finds an entry for the page, it releases the mutex on the
hash table and tries to acquire the mutex on the buffer entry in the buffer
table.

The thread tests the current lock-access level of the buffer. If the levels are
compatible, the requesting thread gains access to the buffer and sets its own
lock. If the current lock-access level is incompatible, the requesting thread
puts itself on the wait queue for the buffer.

The buffer state, unmodified or modified, is irrelevant to locking; even
unmodified buffers can be locked.

If you configure the database server to use read-ahead, the database server
performs a read-ahead request when the number of pages specified by the
RA_THRESHOLD parameter remains to be processed in memory.

Locate a Buffer and Read Page from Disk

If the requested page must be read from disk, the thread first locates a usable
buffer in the FLRU queues. The database server selects an FLRU queue at
random and tries to acquire the mutex associated with the queue. If the
mutex can be acquired, the buffer at the least-recently used end of the queue
is used. If another thread holds the mutex, the first thread tries to acquire the
mutex of another FLRU queue.

If you configure the database server to use read-ahead, the database server
reads the number of pages specified by the RA_PAGES configuration
parameter.

Lock the Buffer If Necessary

After a usable buffer is found, the buffer is temporarily removed from the
FLRU queue. The thread creates an entry in the shared-memory buffer table
as the page is read from disk into the buffer.
11-44 Administrator’s Guide for Informix Dynamic Server

How a Database Server Thread Accesses a Buffer Page
Release the Buffer Lock and Wake a Waiting Thread

When the thread is finished with the buffer, it releases the buffer lock. If any
threads are waiting for the buffer, it wakes one up. However, this procedure
varies, depending on whether the releasing thread modified the buffer.

When the Buffer Is Not Modified

If a thread does not modify the data, it releases the buffer as unmodified.

The release of the buffer occurs in steps. First, the releasing thread acquires
the mutex on the buffer table that enables it to modify the buffer entry.

Next, it checks if other threads are sleeping, waiting for this buffer. If so, the
releasing thread wakes the first thread in the wait queue that has a
compatible lock-access type. The waiting threads are queued according to
priorities that encompass more than just first-come, first-served hierarchies.
(Otherwise, for example, threads waiting for exclusive access could wait
forever.)

If no thread in the wait queue has a compatible lock-access type, any thread
waiting for that buffer can receive access.

If no thread is waiting for the buffer, the releasing thread tries to release the
buffer to the FLRU queue where it was found. If the latch for that FLRU queue
is unavailable, the thread tries to acquire a latch for a randomly selected FLRU
queue. When the FLRU queue latch is acquired, the unmodified buffer is
linked to the most-recently used end of the queue.

After the buffer is returned to the FLRU queue, or the next thread in the wait
queue is awakened, the releasing thread removes itself from the user list for
the buffer and decrements the shared-user count by one.

When the Buffer Is Modified

If the thread intends to modify the buffer, to update a row in a table, for
example, it acquires the mutex for the buffer and changes the buffer
lock-access type to exclusive.
Shared Memory 11-45

How the Database Server Flushes Data to Disk
In most cases, a copy of the before-image of the page is needed for data
consistency. If necessary, the thread determines whether a before-image of
this page was written to either the physical-log buffer or the physical log
since the last checkpoint. If not, a copy of the page is written to the physical-
log buffer. Then the data in the page buffer is modified. If any transaction
records are required for logging, those records are written to the logical-log
buffer.

After the mutex for the buffer is released, the thread is ready to release the
buffer. First, the releasing thread acquires the mutex on the buffer table that
enables it to modify the buffer entry. Next, the releasing thread updates the
time stamp in the buffer header so that the time stamp on the buffer page and
the time stamp in the header match. Statistics describing the number and
types of writes performed by this thread are updated.

The lock is released as described in the previous section, but the buffer is
appended to the MLRU queue associated with the original FLRU queue.

How the Database Server Flushes Data to Disk
Writing a buffer to disk is called buffer flushing. When a user thread modifies
data in a buffer, it marks the buffer as dirty. When the database server flushes
the buffer to disk, it subsequently marks the buffer as not dirty and allows the
data in the buffer to be overwritten.

Buffer flushing is managed by the page-cleaner threads. The database server
always runs at least one page-cleaner thread. If the database server is
configured for more than one page-cleaner thread, the LRU queues are
divided among the page cleaners for more efficient flushing. For information
on specifying how many page-cleaner threads the database server runs, refer
to “CLEANERS” on page 33-14.

Flushing the physical-log buffer, the modified shared-memory page buffers,
and the logical-log buffer must be synchronized with page-cleaner activity
according to specific rules designed to maintain data consistency.
11-46 Administrator’s Guide for Informix Dynamic Server

Flushing the Physical-Log Buffer
Events That Prompt Flushing of the Regular Buffers

Flushing of the regular buffers is initiated by any one of the following three
conditions:

■ The number of buffers in an MLRU queue reaches the number
specified by LRU_MAX_DIRTY.

■ The page-cleaner threads cannot keep up. In other words, a user
thread needs to acquire a buffer, but no unmodified buffers are
available.

■ The database server needs to execute a checkpoint.

Flushing Before-Images First

The overriding rule of buffer flushing is that the before-images of modified
pages are flushed to disk before the modified pages themselves.

In practice, the physical-log buffer is flushed first and then the regular buffers
that contain modified pages. Therefore, even when a shared-memory buffer
page needs to be flushed because a user thread is trying to acquire a buffer,
but none is available (a foreground write), the regular buffer pages cannot be
flushed until the before-image of the page has been written to disk.

Flushing the Physical-Log Buffer
The database server temporarily stores before-images of disk pages in the
physical-log buffer. Before a disk page can be modified, a before-image of the
disk page must already be stored in the physical log. If the before-image has
been written to the physical-log buffer but not to the physical log on disk, the
physical-log buffer must be flushed to disk before the modified page can be
flushed to disk. This action is required for the fast-recovery feature. Writing
the before-image to the physical log buffer and then flushing the buffer page
to disk is illustrated in Figure 11-9 on page 11-48.
Shared Memory 11-47

Flushing the Physical-Log Buffer
Both the physical-log buffer and the physical log contribute toward
maintaining the physical and logical consistency of the data. For a
description of physical logging, refer to Chapter 20, “What Is Physical
Logging?” For a description of fast recovery, refer to Chapter 22, “What Is
Fast Recovery?”

Events That Prompt Flushing of the Physical-Log Buffer

The following three events cause the current physical-log buffer to flush:

■ The current physical-log buffer becomes full.

■ A modified page in shared memory must be flushed, but the
before-image is still in the current physical-log buffer.

■ A checkpoint occurs.

 The contents of the physical-log buffer must always be flushed to disk before
any data buffers. This rule is required for the fast-recovery feature.

The database server uses only one of the two physical-log buffers at a time.
This buffer is the current physical-log buffer. Before the database server
flushes the current physical-log buffer to disk, it makes the other buffer the
current buffer so that it can continue writing while the first buffer is being
flushed.

Figure 11-9
The Physical-Log

Buffer and its
Relation to the

Physical Log on
Disk

Physical-log buffers

Writes performed by database
server user thread

Physical-log
buffer (flushing)

Current
physical log

Physical-log
files
11-48 Administrator’s Guide for Informix Dynamic Server

Flushing the Physical-Log Buffer
When the Physical-Log Buffer Becomes Full

Buffer flushing that results from the physical-log buffer becoming full
proceeds as follows.

When a user thread needs to write a before-image to the physical-log buffer,
it acquires the mutex associated with the physical-log buffer and the mutex
associated with the physical log on disk. If another thread is writing to the
buffer, the incoming thread must wait for the mutexes to be released.

After the incoming thread acquires the mutexes, but before the write, the
thread checks to see what percent of the physical log is full.

If the Log Is More Than 75 Percent Full

If the log is more than 75 percent full, the thread sets a flag to request a check-
point. Next, the thread claims the amount of space in the buffer that it needs
for its write and releases the buffer mutex so that other threads can access the
buffer. Finally, it copies the data into the space that it claimed in the buffer.
The checkpoint does not begin until all user threads, including this one, are
out of critical sections. For a description of a critical section, refer to “Critical
Sections” on page 11-56.

If the Log Is Less Than 75 Percent Full

If the log is less than 75 percent full, the thread compares the page counter in
the physical-log buffer header to the buffer capacity. If this one-page write
does not fill the physical-log buffer, the thread reserves space in the log buffer
for the write and releases the mutex. Any thread waiting to write to the buffer
is awakened. After the thread releases the mutex, it writes the page to the
reserved space in the physical-log buffer. The sequence of this operation
increases concurrency and eliminates the need to hold the mutex during the
write.
Shared Memory 11-49

How the Database Server Synchronizes Buffer Flushing
If this one-page write fills the physical-log buffer, flushing is initiated. First
the page is written to the current physical-log buffer, filling it. Next, the
thread latches the other physical-log buffer. The thread switches the shared-
memory current-buffer pointer, making the newly latched buffer the current
buffer. The mutex on the physical log on disk and the mutex on this new,
current buffer are released, which permits other user threads to begin writing
to the new current buffer. Last, the full buffer is flushed to disk, and the
mutex on the buffer is released.

Each write to the physical-log buffer writes one page.

How the Database Server Synchronizes Buffer Flushing
When shared memory is first initialized, all buffers are empty. As processing
occurs, data pages are read from disk into the buffers, and user threads begin
to modify these pages.

Ensuring That Physical-Log Buffers Are Flushed First

When page cleaning is initiated on the shared-memory buffer pool, the page-
cleaner thread must coordinate the flushing so that the physical-log buffer is
flushed first. Time-stamp comparison determines the order.

The database server stores a time stamp each time that the physical-log buffer
is flushed. If a page-cleaner thread needs to flush a page in a shared-memory
buffer, the page cleaner compares the time stamp in the modified buffer with
the time stamp that indicates the point when the physical-log buffer was last
flushed.

If the time stamp on the page in the buffer pool is equal to or more recent than
the time stamp for the physical-log buffer flush, the before-image of this page
conceivably could be contained in the physical-log buffer. In this case, the
physical-log buffer must be flushed before the shared-memory buffer pages
are flushed.
11-50 Administrator’s Guide for Informix Dynamic Server

How Write Types Describe Flushing Activity
After the physical-log buffer is flushed, the user thread updates the time
stamp in shared memory that describes the most-recent physical-log buffer
flush. The specific page in the shared-memory buffer pool that is marked for
flushing is now flushed. The number of modified buffers in the queue is
compared to the value of LRU_MIN_DIRTY. If the number of modified buffers
is greater than the value represented by LRU_MIN_DIRTY, another page buffer
is marked for flushing. The time-stamp comparison is repeated. If required,
the physical-log buffer is flushed again.

When no more buffer flushing is required, the page-cleaner threads sleep
forever, which means they sleep until buffer flushing is required again, and
they are awakened to do the work. (For more information, refer to “Sleep
Queues” on page 9-17.) You can tune the page-cleaning parameters
(LRU_MIN_DIRTY and LRU_MAX_DIRTY) to influence the frequency of buffer
flushing. For a description of how these parameters determine when page
cleaning begins and ends, refer to “LRU Queues” on page 11-37.

How Write Types Describe Flushing Activity
The database server provides you with information about the specific
condition that prompted buffer-flushing activity by defining three types of
writes and counting how often each write occurs:

■ Foreground write

■ LRU write

■ Chunk write

To display the write counts that the database server maintains, use onstat -F
as described on page 35-75.

If you implement mirroring for the database server, data is always written to
the primary chunk first; then the write is repeated on the mirrored chunk.
Writes to a mirrored chunk are included in the counts. For more information
on monitoring the types of writes that the database server performs, refer to
“Monitoring Buffer-Pool Activity” on page 29-23.
Shared Memory 11-51

How Write Types Describe Flushing Activity
Foreground Write

Whenever an sqlexec thread writes a buffer to disk, it is termed a foreground
write. A foreground write occurs when an sqlexec thread searches through
the LRU queues on behalf of a user but cannot locate an empty or unmodified
buffer. To make space, the sqlexec thread flushes pages, one at a time, to hold
the data to be read from disk. (For more information, refer to “LRU Queues”
on page 11-37.)

If the sqlexec thread must perform buffer flushing just to acquire a shared-
memory buffer, performance can suffer. Foreground writes should be
avoided. To display a count of the number of foreground writes, run
onstat -F. If you find that foreground writes are occurring on a regular basis,
tune the value of the page-cleaning parameters by either increasing the
number of page cleaners or decreasing the value of LRU_MAX_DIRTY.

LRU Write

Unlike foreground writes, LRU writes are performed by page cleaners rather
than by sqlexec threads. The database server performs LRU writes as
background writes that typically occur when the percentage of dirty buffers
exceeds the percent you that specified in the LRU_MAX_DIRTY configuration
parameter.

In addition, a foreground write can trigger an LRU write. When a foreground
write occurs, the sqlexec thread that performed the write alerts a page-
cleaner to wake up and clean the LRU for which it performed the foreground
write.

In a properly tuned system, page cleaners ensure that enough unmodified
buffer pages are available for storing pages to be read from disk. Thus,
sqlexec threads that perform a query do not need to flush a page to disk
before they read in the disk pages required by the query. This condition can
result in significant performance gains for queries that do not make use of
foreground writes.

LRU writes are preferred over foreground writes because page-cleaner
threads perform buffer writes much more efficiently than sqlexec threads do.
To monitor both types of writes, use onstat -F.
11-52 Administrator’s Guide for Informix Dynamic Server

Flushing the Logical-Log Buffer
Chunk Write

Chunk writes are commonly performed by page-cleaner threads during a
checkpoint or, possibly, when every page in the shared-memory buffer pool
is modified. Chunk writes, which are performed as sorted writes, are the
most efficient writes available to the database server.

During a chunk write, each page-cleaner thread is assigned to one or more
chunks. Each page-cleaner thread reads through the buffer headers and
creates an array of pointers to pages that are associated with its specific
chunk. (The page cleaners have access to this information because the chunk
number is contained within the physical page number address, which is part
of the page header.) This sorting minimizes head movement (disk seek time)
on the disk and enables the page-cleaner threads to use the big buffers during
the write, if possible.

In addition, because user threads must wait for the checkpoint to complete,
the page-cleaner threads are not competing with a large number of threads
for CPU time. As a result, the page-cleaner threads can finish their work with
less context switching.

Flushing the Logical-Log Buffer
The database server uses the shared-memory logical-log buffer as temporary
storage for records that describe modifications to database server pages.
From the logical-log buffer, these records of changes are written to the current
logical-log file on disk and eventually to the logical-log backup tapes. For a
description of logical logging, refer to Chapter 18, “What Is the Logical Log?”

Five events cause the current logical-log buffer to flush:

■ The current logical-log buffer becomes full.

■ A transaction is prepared or committed in a database with
unbuffered logging.

■ A nonlogging database session terminates.

■ A checkpoint occurs.

■ A page is modified that does not require a before-image in the
physical log.

Each of these events is discussed in detail in the following sections.
Shared Memory 11-53

Flushing the Logical-Log Buffer
When the Logical-Log Buffer Becomes Full

When a user thread needs to write records to the logical-log buffer, it acquires
the mutexes associated with the logical-log buffer and the current logical log
on disk. If another thread is writing to the buffer, the incoming thread must
wait for the mutexes to be released.

After the incoming thread acquires the mutexes, but before the write, the
thread checks how much logical-log space is available on disk. When the
logical-log space on disk is full, and the database server switches to a new
logical log, it checks if the percent of used log space is greater than the long-
transaction high-water mark, specified by the LTXHWM parameter in the
ONCONFIG file. For a description of this parameter and for information on
specifying a value for it, refer to “LTXHWM” on page 33-51.

If no long-transaction condition exists, the logical-log I/O thread compares
the available space in the logical-log buffer with the size of the record to be
written. If the write does not fill the logical-log buffer, the thread writes the
record, releases latches, and awakens any threads that are waiting to write to
the buffer.

If the write fills the logical-log buffer, flushing is initiated as follows:

1. The thread latches the next logical-log buffer. The thread then
switches the shared-memory current-buffer pointer, making the
newly latched buffer the current buffer.

2. The thread writes the new record to the new current buffer. The
thread releases the latch on the logical log on disk and the latch on
this new, current buffer, permitting other logical-log I/O threads to
begin writing to the new current buffer.

3. The full logical-log buffer is flushed to disk, and the latch on the
buffer is released. This logical-log buffer is now available for reuse.
11-54 Administrator’s Guide for Informix Dynamic Server

Flushing the Logical-Log Buffer
After a Transaction Is Prepared or Terminated in a Database with
Unbuffered Logging

If a transaction is prepared or terminated in a database with unbuffered
logging, the logical-log buffer is immediately flushed. Flushing might cause
a waste of some disk space. Typically, many logical-log records are stored on
a single page. However, because the logical-log buffer is flushed in whole
pages, even if only one transaction record is stored on the page, the whole
page is flushed. In the worst case, a single COMMIT logical-log record
(COMMIT WORK) could occupy a page on disk, and all remaining space on
the page would be unused. However, the cost in disk space of using unbuf-
fered logging is minor compared to the benefits of insured data consistency.

The following log records cause flushing of the logical-log buffers in a
database with unbuffered logging:

■ COMMIT

■ PREPARE

■ XPREPARE

■ ENDTRANS

For a comparison of buffered versus unbuffered logging, refer to the SET LOG
statement in the Informix Guide to SQL: Syntax.

When a Session That Uses Nonlogging Databases or Unbuffered
Logging Terminates

Even for nonlogging databases, the database server logs certain activities that
alter the database schema, such as the creation of tables or extents. When the
database server terminates sessions that use unbuffered logging or
nonlogging databases, the logical-log buffer is flushed to make sure that any
logging activity is recorded.

When a Checkpoint Occurs

For a detailed description of the events that occur during a checkpoint, refer
to “Checkpoints” on page 11-57.
Shared Memory 11-55

How the Database Server Achieves Data Consistency
When a Page Is Modified That Does Not Require a Before-Image in the
Physical-Log File

When a page is modified that does not require a before-image in the physical
log, the logical-log buffer must be flushed before that page is flushed to disk.

How the Database Server Achieves Data
Consistency
The database server uses the following three procedures to ensure that the
data that is destined for disk is actually recorded intact on disk:

■ Critical sections

■ Checkpoints

■ Time stamps

These procedures ensure that multiple, logically related writes are recorded
as a unit; that data in shared memory is periodically made consistent with
data on disk; and that a buffer page that is written to disk is actually written
in entirety.

Critical Sections
A critical section is a section of code that makes a set of disk modifications that
must be performed as a single unit; either all the modifications must occur, or
none can occur.

A thread that is in a critical section is holding shared-memory resources.
Within the space of the critical section, the database server cannot determine
which shared-memory resources should be released and which changes
should be undone to return all data to a consistent point. Therefore, if a
virtual processor is terminated while a thread is in a critical section, the
database server takes the two following steps to ensure that all data is
returned to the last known point of consistency:

■ The database server aborts immediately.

■ The database server initiates fast recovery the next time that it is
initialized.
11-56 Administrator’s Guide for Informix Dynamic Server

Checkpoints
Fast recovery is the procedure that the database server uses to restore the
physical and logical consistency of data quickly, up to and including the last
record in the logical log. For a description of fast recovery, refer to Chapter 22,
“What Is Fast Recovery?”

Checkpoints
The term checkpoint refers to the point in the database server operation when
the pages on disk are synchronized with the pages in the shared-memory
buffer pool. When a checkpoint completes, all physical operations are
complete, the MLRU queue is empty, and the database server is said to be
physically consistent.

Events That Initiate a Checkpoint

Any user thread can initiate a check to determine if a checkpoint is needed.
A checkpoint is initiated under any one of five conditions:

■ The checkpoint interval, specified by the configuration parameter
CKPTINTVL, has elapsed, and one or more modifications have
occurred since the last checkpoint.

■ The physical log on disk becomes 75 percent full.

■ The database server detects that the next logical-log file to become
current contains the most-recent checkpoint record.

■ Certain administrative tasks, such as adding a chunk or a dbspace,
take place.

■ The database server administrator initiates a checkpoint from the
command line with onmode -c

■ The database server administrator initiates a checkpoint from the
ON-Monitor, Force-Ckpt menu. ♦

An administrator might initiate a checkpoint to force a new checkpoint
record in the logical log. Forcing a checkpoint would be a step in freeing a
logical-log file that contains the most-recent checkpoint record and that is
backed up but not yet released (onstat -l status of U-B-L).

UNIX
Shared Memory 11-57

Checkpoints
The following section outlines the main events that occur once a user thread
raises the checkpoint-requested flag. The following events occur during a
checkpoint:

1. The database server prevents user threads from entering critical
sections.

2. The main_loop() thread flushes the physical-log buffer.

3. The page-cleaner threads flush modified pages in the buffer pool to
disk. Flushing is performed as a chunk write.

4. The main_loop() thread writes a checkpoint record to the logical-log
buffer.

5. The physical log on disk is logically emptied (current entries can be
overwritten).

6. The logical-log buffer is flushed to the current logical-log file on disk.

7. The main_loop() thread updates configuration and dbspace backup
information to reserved pages.

User Threads Cannot Enter a Critical Section

Once the checkpoint-requested flag is set, user threads are prevented from
entering portions of code that are considered critical sections. User threads
that are within critical sections of code are permitted to continue processing
to the end of the critical sections.

The main_loop() Thread Flushes the Physical-Log Buffer

After all threads have exited from critical sections, the main_loop() thread
resets the shared-memory pointer from the current physical-log buffer to the
other buffer and flushes the buffer. After the buffer is flushed, the page-
cleaner thread updates the time stamp that indicates the most-recent point at
which the physical-log buffer was flushed.

Page-Cleaner Threads Flush Modified Pages in the Buffer Pool

Next, the page cleaners flush all modified pages in the shared-memory buffer
pool. This flushing is performed as a chunk write.
11-58 Administrator’s Guide for Informix Dynamic Server

Checkpoints
The main_loop() Thread Writes Checkpoint Record

After the modified pages have been written to disk, the page-cleaner thread
writes a checkpoint-complete record in the logical-log buffer.

Physical Log Is Logically Emptied

After the checkpoint-complete record is written to disk, the physical log is
logically emptied, meaning that current entries in the physical log can be
overwritten.

Logical-Log Buffer Is Flushed to the Logical-Log File on Disk

Next, the logical-log buffer is flushed to the logical-log file on disk.

The main_loop Thread Updates Reserved Pages

The main_loop() thread next begins writing all configuration and dbspace
backup information to the appropriate reserved pages, regardless of whether
changes have occurred since the last checkpoint.

When dbspaces, primary chunks, or mirrored chunks are added or dropped
from the database server, the changes are recorded in descriptor tables in
shared memory. If changes occurred since the last checkpoint, the
main_loop() thread writes the descriptor tables from shared memory to the
appropriate reserved page in the root dbspace. Otherwise, the main_loop()
thread ignores the reserved pages that describe the dbspaces, primary
chunks, and mirrored chunks. The main_loop() thread writes all checkpoint
statistics to the appropriate reserved page in the root dbspace.

Checkpoint Is Critical to Fast Recovery

The database server generates at least one checkpoint for each span of the
logical-log space to guarantee that it has a checkpoint at which to begin fast
recovery.

As fast recovery begins, the database server brings data to physical consis-
tency as of the last checkpoint by restoring the contents of the physical log.
Shared Memory 11-59

Time Stamps
During the next stage of fast recovery, the database server reprocesses the
transactions contained in the logical logs, beginning at the point of the last
checkpoint record and continuing through all the records contained in the
subsequent logical logs.

After fast recovery completes, the database server data is consistent up
through the last completed transaction. That is, all committed transactions
recorded in the logical logs on disk are retained; all incomplete transactions
(transactions with no COMMIT WORK entry in the logical logs on disk) are
rolled back.

Time Stamps
The database server uses a time stamp to identify a time when an event
occurred relative to other events of the same kind. The time stamp is not a
literal time that refers to a specific hour, minute, or second. It is a 4-byte
integer that the database server assigns sequentially. When the database
server compares two time stamps, its algorithm accounts for the possibility
that wraparound has occurred.

Time Stamps on Disk Pages

Each disk page has one time stamp in the page header and a second time
stamp in the last 4 bytes on the page. The page-header and page-ending time
stamps are synchronized after each write, so they should be identical when
the page is read from disk. Each read compares the time stamps as a test for
data consistency. If the test fails, an error is returned to the user thread,
indicating either that the disk page was not fully written to disk or that the
page has been partially overwritten on disk or in shared memory. For a
description of the content of a dbspace page, refer to “Structure and Storage
of a Dbspace Page” on page 38-34.
11-60 Administrator’s Guide for Informix Dynamic Server

Time Stamps
Time Stamps on Blobpages

In addition to the page-header and page-ending time-stamp pair, each disk
page that contains TEXT or BYTE data also contains one member of a second
pair of time stamps. This second pair of time stamps is the blob time-stamp
pair. The time stamp that appears on the disk page where the TEXT or BYTE
data is stored is paired with a time stamp that is stored with the forward
pointer to this data segment. The forward pointer is stored either in the data
row (with the descriptor) or with the previous segment of TEXT or BYTE data.
For more information on time stamps on blobpages, refer to “Blobspace
Structure and Storage” on page 38-59.

A blob time-stamp pair is updated whenever a TEXT or BYTE column is
updated. When TEXT or BYTE data in a row is updated, the new object is
stored on disk, and the forward pointer that is stored with the descriptor is
revised to point to the new location. The blob time stamp in the data row is
updated and synchronized with the blob time stamp on the disk page of the
new TEXT or BYTE object.

Blob Time Stamps with Dirty Read and Committed Read Isolation
Levels

Because TEXT or BYTE objects can be very large, it might be impossible to
retrieve the data simultaneously with the rest of the row. Coordination is
needed for TEXT or BYTE reads at the Dirty Read or Committed Read level of
isolation. Therefore, each read compares the two members of the blob time-
stamp pair as a test for logical consistency of data. If the two time stamps in
the pair differ, this inconsistency is reported as a part of consistency checking.
The error indicates either that the pages have been corrupted or that the
forward pointer is no longer valid.

To understand how a forward pointer for TEXT or BYTE data might become
invalid, consider the following examples.
Shared Memory 11-61

Time Stamps
Dirty Read

A program using Dirty Read isolation is able to read rows that have been
deleted, provided the deletion has not yet been committed. Assume that a
user thread is deleting TEXT or BYTE data from a row. During the delete
process, another user thread that is operating with a Dirty Read isolation
level reads the same row, searching for the blob-descriptor information. In
the meantime, the first transaction completes, the TEXT or BYTE data is
deleted, the space is freed, and a third thread starts to write new TEXT or
BYTE data in the newly freed space where the first TEXT or BYTE object was
stored. Eventually, when the second user thread starts to read the data at the
location where the first object was stored, the thread compares the time
stamp from the descriptor with the time stamp that precedes the data. The
time stamps do not match. The time stamp on the blobpage is greater than the
time stamp in the forward pointer, indicating to the user thread that the
forward pointer information is obsolete.

Committed Read

If a program is using Committed Read isolation, the problem just described
cannot occur because the database server does not see a row that has been
marked for deletion. However, under Committed Read, no lock is placed on
an undeleted row when it is read. BYTE or TEXT data is read in a second step,
after the row is fetched. During this step, another program could delete the
row, commit the deletion, and reuse the space on the disk page. If the space
is reused in the interim, the time stamp for the TEXT or BYTE data is greater
than the time stamp in the forward pointer. In this case, the comparison
indicates the obsolete pointer information, and the inconsistency is reported.
11-62 Administrator’s Guide for Informix Dynamic Server

Buffering TEXT and BYTE Data Types
Buffering TEXT and BYTE Data Types
You can assign BYTE and TEXT data types, or columns, to either dbspaces or
blobspaces.

Writing TEXT and BYTE Data
The database server writes TEXT and BYTE data to disk pages in a dbspace in
the same way that it writes any other data type. For more information, refer
to “How the Database Server Flushes Data to Disk” on page 11-46.

The database server writes TEXT and BYTE data to a blobspace differently
than the way that it writes other data to a shared-memory buffer and then
flushes it to disk. For a description of blobspaces, refer to “Blobspace
Structure and Storage” on page 38-59.

Blobpages Do Not Pass Through Shared Memory

Blobspace blobpages store large amounts of data. Consequently, the database
server does not create or access blobpages by way of the shared-memory
buffer pool, and it does not write blobspace blobpages to either the logical or
physical logs.

If blobspace data passed through the shared-memory pool, it has the
potential to dilute the effectiveness of the pool by driving out index pages
and data pages. Instead, blobpage data is written directly to disk when it is
created.

To reduce logical-log and physical-log traffic, the database server writes
blobpages from magnetic media to dbspace backup tapes and logical-log
backup tapes in a different way than it writes dbspace pages. For a
description of how blobspaces are logged, refer to “Blobspace Logging” on
page 18-27.

Blobpages stored on optical media are not written to dbspace and logical-log
backup tapes due to the high reliability of optical media.
Shared Memory 11-63

Writing TEXT and BYTE Data
TEXT and BYTE Objects Are Created Before the Data Row Is Inserted

When TEXT or BYTE data is written to disk, the row to which it belongs might
not exist yet. During an insert, for example, the TEXT or BYTE data is trans-
ferred before the rest of the row data. After the TEXT or BYTE object is stored,
the data row is created with a 56-byte descriptor that points to its location.
For a description of how TEXT and BYTE data types are stored physically,
refer to “TEXT and BYTE Data Storage and the Descriptor” on page 38-61.

Blobpage Buffers Are Created for the Duration of the Write

To receive TEXT or BYTE data from the application process, the database
server creates a pair of blobspace buffers, one for reading and one for writing,
each the size of one blobspace blobpage. Each user has only one set of blob
buffers and, therefore, can access only one TEXT or BYTE object at a time.

TEXT or BYTE data is transferred from the client-application process to the
database server in 1-kilobyte segments. The database server begins filling the
blobspace buffers with the 1-kilobyte pieces and attempts to buffer two
blobpages at a time. The database server buffers two blobpages so that it can
determine when to add a forwarding pointer from one page to the next.
When it fills the first buffer and discovers that more data remains to transfer,
it adds a forward-pointer to the next page before it writes the page to disk.
When no more data remains to transfer, the database server writes the last
page to disk without a forward pointer.

When the thread begins writing the first blobspace buffer to disk, it attempts
to perform the I/O based on the user-defined blobpage size. For example, if
the blobpage size is 32 kilobytes, the database server attempts to read or
write the data in 32,768-byte increments. If the underlying hardware (such as
the disk controller) cannot transfer this amount of data in a single operation,
the operating-system kernel loops internally (in kernel mode) until the
transfer is complete.
11-64 Administrator’s Guide for Informix Dynamic Server

Writing TEXT and BYTE Data
The blobspace buffers remain until the thread that created them is finished.
When the TEXT or BYTE data is written to disk, the database server deallo-
cates the pair of blobspace buffers. Figure 11-10 illustrates the process of
writing TEXT or BYTE data to a blobspace.

Tracking Blobpages

Blobspace blobpages are allocated and tracked using the free-map page.
Links that connect the blobpages and pointers to the next blobpage segments
are created as needed.

A record of the operation (insert, update, or delete) is written to the
logical-log buffer.

Figure 11-10
Writing TEXT or

BYTE data to a
Blobspace

Database server disk space

Blobspace
Temporary blobpage

buffers

Database server shared memory

Client

Virtual processor
Shared Memory 11-65

12
Chapter
Managing Shared Memory
Setting Operating-System Shared-Memory Configuration
Parameters 12-3

Maximum Operating-System Shared-Memory Segment Size . . . 12-4
Maximum Number of Shared-Memory Identifiers. 12-4
Shared-Memory Lower-Boundary Address 12-5
Maximum Amount of Shared Memory for One Process 12-5
Semaphores . 12-6

Setting Database Server Shared-Memory Configuration
Parameters 12-6

Setting Parameters for Resident Shared Memory
with ON-Monitor. 12-7

Setting Configuration Parameters for Resident
Shared Memory with a Text Editor 12-8

Setting Parameters for Virtual Shared Memory
with ON-Monitor. 12-10

Setting Parameters for Virtual Shared Memory
with a Text Editor 12-11

Setting Parameters for Shared-Memory Performance
Options with ON-Monitor 12-12

Setting Parameters for Shared-Memory Performance
Options with a Text Editor 12-13

Reinitializing Shared Memory 12-14

Turning Residency On or Off for Resident Shared Memory 12-14
Turning Residency On or Off in On-Line Mode 12-14
Turning Residency On or Off for the Next Time You

Reinitialize Shared Memory 12-15

Adding a Segment to the Virtual Portion of Shared Memory 12-15

Forcing a Checkpoint 12-16

12-2 Ad
ministrator’s Guide for Informix Dynamic Server

This chapter tells you how to perform tasks related to managing the
use of shared memory with the database server. It assumes you are familiar
with the terms and concepts contained in Chapter 11, “Shared Memory.”

This chapter describes how to perform the following tasks:

■ Set the shared-memory configuration parameters

■ Reinitialize shared memory

■ Turn residency on or off for the resident portion of the database
server shared memory

■ Add a segment to the virtual portion of shared memory

■ Force a checkpoint

This chapter does not cover the DS_TOTAL_MEMORY configuration
parameter. This parameter places a ceiling on the allocation of memory for
decision-support queries. For information on this parameter, refer to your
Performance Guide.

Setting Operating-System Shared-Memory
Configuration Parameters
Several operating-system configuration parameters can affect the use of
shared memory by the database server. These parameters are described by
function in the following list. Parameter names are not provided because
names vary among platforms, and not all parameters exist on all platforms:

■ Maximum operating-system shared-memory segment size,
expressed in bytes or kilobytes

■ Minimum shared-memory segment size, expressed in bytes

■ Maximum number of shared-memory identifiers
Managing Shared Memory 12-3

Maximum Operating-System Shared-Memory Segment Size
■ Shared-memory lower-boundary address

■ Maximum number of attached shared-memory segments per
process

■ Maximum amount of shared memory system wide

■ Maximum number of semaphore identifiers

■ Maximum number of semaphores

■ Maximum number of semaphores per identifier

For specific information about your operating-system environment, refer to
the machine-notes file that is provided with the database server. For more
information about the machine-notes file, refer to “Documentation Notes,
Release Notes, Machine Notes” on page 15 in the Introduction. ♦

Maximum Operating-System Shared-Memory Segment Size
When the database server creates the required shared-memory segments, it
attempts to acquire as large an operating-system segment as possible. The
first segment size that the database server tries to acquire is the size of the
portion that it is allocating (resident, virtual, or communications), rounded
up to the nearest multiple of 8 kilobytes.

The database server receives an error from the operating system if the
requested segment size is too large; that is, if the segment size is greater than
the maximum size allowed. If the database server receives an error, it divides
the requested size by two and tries again. Attempts at acquisition continue
until the largest segment size that is a multiple of 8 kilobytes can be created.
Then the database server creates as many additional segments as it requires.

Maximum Number of Shared-Memory Identifiers
Shared-memory identifiers affect the database server operation when a
virtual processor attempts to attach to shared memory. The operating system
identifies each shared-memory segment with a shared-memory identifier.
For most operating systems, virtual processors receive identifiers on a first-
come, first-served basis, up to the limit that is defined for the operating system
as a whole. For more information about shared-memory identifiers, refer to
“How Virtual Processors Attach to Shared Memory” on page 11-12.

UNIX
12-4 Administrator’s Guide for Informix Dynamic Server

Shared-Memory Lower-Boundary Address
You might be able to calculate the maximum amount of shared memory that
the operating system can allocate by multiplying the number of
shared-memory identifiers by the maximum shared-memory segment size.

Shared-Memory Lower-Boundary Address
When the database server attaches shared-memory segments subsequent to
the first segment, it assumes that the segment can be attached contiguous
with the previous one—that is, that a segment can be attached at the address
of the previous segment plus the size of that segment. However, your
operating system might set a parameter that defines a lower-boundary
address for attaching shared-memory segments. If the size of a segment
would cause it to cross the lower-boundary address, the segment is attached
at a point beyond the end of the previous segment, creating a gap between
shared-memory segments. For an illustration of this problem, refer to “How
Virtual Processors Attach to Shared Memory” on page 11-12.

Maximum Amount of Shared Memory for One Process
Check that the maximum amount of memory that can be allocated for one
process is equal to the total addressable shared-memory size for a single
operating-system process. The following equation expresses the concept
another way:

Maximum amount of shared memory for one process =
(Maximum number of attached shared-memory segments per
process) x (Maximum shared-memory segment size)

If this relationship does not hold, one of two undesirable situations could
develop:

■ If the total amount of shared memory is less than the total
addressable shared-memory size, you are able to address more
shared memory for the operating system than is available.

■ If the total amount of shared memory is greater than the total
addressable size of shared memory, you can never address some
amount of shared memory that is available. That is, space that could
potentially be used as shared memory cannot be allocated.
Managing Shared Memory 12-5

Semaphores
Semaphores
The database server operation requires 1 UNIX semaphore for each virtual
processor, 1 for each user who connects to the database server through
shared memory (ipcshm protocol), 6 for database server utilities, and 16 for
other purposes.

Setting Database Server Shared-Memory
Configuration Parameters
Shared-memory configuration parameters are divided into the following
categories based on their purposes:

■ Parameters that affect the resident portion of shared memory

■ Parameters that affect the virtual portion of shared memory

■ Shared-memory parameters that affect performance

You can set shared-memory configuration parameters in the following ways:

■ Using ON-Monitor ♦
■ Using a text editor

You must be root or user informix to use either method.

Regardless of which method you use, you must reinitialize shared memory
to put the changes into effect.

UNIX

UNIX
12-6 Administrator’s Guide for Informix Dynamic Server

Setting Parameters for Resident Shared Memory with ON-Monitor
Setting Parameters for Resident Shared Memory with
ON-Monitor
To set the configuration parameters for the resident portion of shared
memory using ON-Monitor, select Parameters➞Shared-Memory.
Figure 12-1 shows an example of a Shared-Memory screen. The shaded
entries set configuration parameters for the resident portion of shared
memory.

Important: The configuration parameters SHMADD and SHMTOTAL are described
with the parameters that affect the resident portion of shared memory, but they affect
both the resident and virtual portions of shared memory.

UNIX

SHARED MEMORY: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

SHARED MEMORY PARAMETERS
Server Number [0] Server Name [odyssey_ol]
Server Aliases [oddsoc_ol1,oddsoc_ol2,oddsoc_ol3]
Dbspace Temp []
Deadlock Timeout [0] Secs Number of Page Cleaners [1]
Forced Residency [Y] Stack Size (Kbytes) [32]
Non Res. SegSize (Kbytes) [4000] Optical Cache Size (Kbytes)[0]

Physical Log Buffer Size [32] Kbytes Dbspace Down Option [0]
Logical Log Buffer Size [32] Kbytes Preserve Log for Log Backup [N]
Max # of Logical Logs [6] Transaction Timeout [300]
Max # of Locks [2000] Long TX HWM [50]
Max # of Buffers [200] Long TX HWM Exclusive [60]

Index Page Fill Factor [90]
Add SegSize (Kbytes) [8192]
Total Memory (Kbytes) [0]

Shared memory size [546] Kbytes Page Size [2] Kbytes

Enter a unique value to be associated with this version of Informix Dynamic Server

Figure 12-1
ON-Monitor

Shared-Memory
Screen
Managing Shared Memory 12-7

Setting Parameters for Resident Shared Memory with a Text Editor
Figure 12-2 shows an example of only the Shared-Memory screen entries that
affect the configuration of the resident portion of shared memory. For each
entry, it shows within brackets ([]) the name of the associated parameter in
the ONCONFIG file.

For more information on the ONCONFIG parameters that are associated with
the resident portion of shared memory, refer to Figure 12-3 on page 12-9.

Setting Parameters for Resident Shared Memory with a
Text Editor
You can use a text editor to set shared-memory configuration parameters at
any time. To set a shared-memory configuration parameter, use the editor to
locate the parameter in the ONCONFIG file, enter the new value or values,
and rewrite the file to disk. Before the changes take effect, however, you must
reinitialize shared memory.

SHARED MEMORY: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

SHARED MEMORY PARAMETERS
Server Number [SERVER_NUM]

Number of Page Cleaners[CLEANERS]
Forced Residency [Y]

Physical Log Buffer Size [PHYSBUFF] Kbytes
Logical Log Buffer Size [LOGBUFF] Kbytes
Max # of Logical Logs [LOGFILES]
Max # of Locks [LOCKS]
Max # of Buffers [BUFFERS] Add SegSize (Kbytes) [SHMADD]

Total Memory (Kbytes) [SHMTOTAL]

Shared memory size [546] Kbytes Page Size [2] Kbytes

Enter a unique value to be associated with this version of Informix Dynamic Server

Figure 12-2
ONCONFIG

Parameter for
Each of the

Shared-Memory
Entries
12-8 Administrator’s Guide for Informix Dynamic Server

Setting Parameters for Resident Shared Memory with a Text Editor
Figure 12-3 lists the parameters in the ONCONFIG file that specify the config-
uration of the buffer pool and the internal tables in the resident portion of
shared memory. The page references in the third column refer to summary
descriptions of the parameters in Chapter 33, “Configuration Parameters.”

Figure 12-3
Configuring the Resident Portion of Shared Memory

ONCONFIG
Parameter Purpose Reference

BUFFERS Specifies the maximum number of shared-memory
buffers

page 33-12

CLEANERS Specifies the number of page-cleaner threads that the
database server is to run

page 33-14

LOCKS Specifies the maximum number of locks for database
objects; for example, rows, key values, pages, and ta-
bles

page 33-39

LOGBUFF Specifies the size of the logical-log buffers page 33-41

PHYSBUFF Specifies the size of the physical-log buffers page 33-69

RESIDENT Specifies residency for the resident portion of the data-
base server shared memory

page 33-74

SERVERNUM Specifies a unique identification number for the
database server on the local host computer

page 33-79

SHMADD Specifies the size of dynamically added shared-memo-
ry segments

page 33-80

SHMTOTAL Specifies the total amount of memory to be used by the
database server

page 33-82
Managing Shared Memory 12-9

Setting Parameters for Virtual Shared Memory with ON-Monitor
Setting Parameters for Virtual Shared Memory with
ON-Monitor
To set the configuration parameters for the virtual portion of shared memory
using ON-Monitor, select Parameters➞Shared-Memory. Figure 12-4 shows
an example of a Shared-Memory screen. The shaded entries set configuration
parameters for the virtual portion of shared memory.

Figure 12-5 shows only the Shared Memory screen entries that affect the
configuration of the virtual portion of shared memory. For each entry, it
shows the name of the associated parameter in the ONCONFIG file within
brackets ([]).

UNIX

SHARED MEMORY: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

SHARED MEMORY PARAMETERS
Server Number [2] Server Name [lashley_ol]
Server Aliases [cole,davison,stackhouse]
Dbspace Temp []
Deadlock Timeout [60] Secs Number of Page Cleaners [1]
Forced Residency [N] Stack Size (Kbytes) [32]
Non Res. SegSize (Kbytes) [4000] Optical Cache Size (Kbytes) [0]

Physical Log Buffer Size [32] Kbytes Dbspace Down Option [0]
Logical Log Buffer Size [32] Kbytes Preserve Log for Log Backup [N]
Max # of Logical Log [14] Transaction Timeout [300]
Max # of Locks [2000] Long TX HWM [50]
Max # of Buffers [80] Long TX HWM Exclusive [60]

Index Page Fill Factor [90]
Add SegSize (Kbytes) [8192]
Total Memory (Kbytes) [0]

Shared memory size [528] Kbytes Page Size [2] Kbytes
Enter a unique value to be associated with this version of Informix Dynamic Server

Figure 12-4
Setting Virtual

Shared-Memory
Configuration

Parameters

SHARED MEMORY: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

SHARED MEMORY PARAMETERS

Stack Size (Kbytes) [STACKSIZE]
Non Res. SegSize (Kbytes) [SHMVIRTSIZE]

Figure 12-5
ONCONFIG

Parameters for
Each of the Virtual

Shared-Memory
Entries
12-10 Administrator’s Guide for Informix Dynamic Server

Setting Parameters for Virtual Shared Memory with a Text Editor
For more information on the ONCONFIG parameters that affect the configu-
ration of the virtual portion of shared memory, refer to Figure 12-6.

Setting Parameters for Virtual Shared Memory with a Text
Editor
You can use a text editor at any time to set the virtual shared-memory config-
uration parameters. To set the virtual shared-memory configuration param-
eters with a text editor, use the editor to locate the parameter in the file, enter
the new value or values, and rewrite the file to disk.

Figure 12-6 lists the ONCONFIG parameters that you use to configure the
virtual portion of shared memory.

Figure 12-6
 Configuring the Virtual Portion of Shared Memory

ONCONFIG
Parameter Purpose Reference

LOGFILES Specifies the number of logical-log files that the data-
base server is to create during disk initialization

page 33-42

SHMVIRTSIZE Specifies the initial size of the virtual portion of shared
memory

page 33-83

STACKSIZE Specifies the stack size for the database server user
threads

page 33-85
Managing Shared Memory 12-11

Setting Parameters for Shared-Memory Performance Options with ON-Monitor
Setting Parameters for Shared-Memory Performance
Options with ON-Monitor
To set the configuration parameters for the shared-memory performance
options using ON-Monitor, select Parameters➞perFormance. Figure 12-7
shows the perFormance screen. The shaded entries set the configuration
parameters for the shared-memory performance options.

.

Figure 12-8 shows only the perFormance screen entries for setting the shared-
memory performance options. For each entry, it shows the name of the
associated parameter in the ONCONFIG file within brackets ([]).

For more information on the ONCONFIG parameters that set shared-memory
performance options, refer to Figure 12-9 on page 12-13.

UNIX

PERFORMANCE: Make desired changes and press ESC to record changes.
 Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.
 PERFORMANCE TUNING PARAMETERS

 Multiprocessor Machine [] LRU Max Dirty [60]
 Num Procs to Affinity [0] LRU Min Dirty [50]
 Proc num to start with [0] Checkpoint Interval [300]
 Num of Read Ahead Pages [50]
 CPU VPs [1] Read Ahead Threshold [40]
 AIO VPs []
 Single CPU VP [N] NETTYPE settings:
 Use OS Time [N] Protocol Threads Users VP-class
 Disable Priority Aging [N] [soctcp] [1] [30] [NET]
 Off-Line Recovery Threads [10] [] [] [] []
 On-Line Recovery Threads [1] [] [] [] []
 Num of LRUS queues [8] [] [] [] []

Figure 12-7
ON-Monitor

perFormance
Screen

PERFORMANCE: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

PERFORMANCE TUNING PARAMETERS

Num of LRUS queues [LRUS]
LRU Max Dirty [LRU_MAX_DIRTY]
LRU Min Dirty [LRU_MIN_DIRTY]
Checkpoint Interval [CKPTINTVL]
Num of Read Ahead Pages [RA_PAGES]
Read Ahead Threshold [RA_THRESHOLD]

Figure 12-8
ONCONFIG

Parameters for the
Shared-Memory

Performance
Options
12-12 Administrator’s Guide for Informix Dynamic Server

Setting Parameters for Shared-Memory Performance Options with a Text Editor
Setting Parameters for Shared-Memory Performance
Options with a Text Editor
You can use a text editor to set ONCONFIG parameters at any time. To change
one of the configuration parameters that set shared-memory performance
options, use the text editor to locate the parameter in the file, enter the new
value or values, and rewrite the file to disk. The changes that you make do
not take effect until you reinitialize shared memory.

Figure 12-9 lists the ONCONFIG parameters that set shared-memory perfor-
mance options. The page references in the third column refer to descriptions
of the parameters in Chapter 33, “Configuration Parameters.”

Figure 12-9
Setting Shared-Memory Performance Options

ONCONFIG
Parameter Purpose Reference

CKPTINTVL Specifies the maximum number of seconds that can
elapse before the database server checks if a check-
point is needed

page 33-13

LRU_MAX_DIRTY Specifies the percentage of modified pages in the
LRU queues that flags page cleaning to start

page 33-46

LRU_MIN_DIRTY Specifies the percentage of modified pages in the
LRU queues that flags page cleaning to stop

page 33-46

LRUS Specifies the number of LRU queues for the shared-
memory buffer pool

page 33-45

RA_PAGES Specifies the number of disk pages that the data-
base server should attempt to read ahead when it
performs sequential scans of data or index records

page 33-72

RA_THRESHOLD Specifies the number of unprocessed memory pag-
es that, after they are read, cause the database serv-
er to read ahead on disk

page 33-73
Managing Shared Memory 12-13

Reinitializing Shared Memory
Reinitializing Shared Memory
The database server reinitializes shared memory when you take the database
server from off-line mode to quiescent mode or when you take it from off-line
mode directly to on-line mode. To reinitialize shared memory, first bring the
database server off-line. After the database server is off-line, you need to
bring it to quiescent mode or on-line mode to reinitialize shared memory. For
information on how to take the database server from on-line mode to off-line,
refer to Chapter 7, “Managing Database Server Operating Modes.”

Turning Residency On or Off for Resident Shared
Memory
You can turn residency on or off for the resident portion of shared memory in
either of the following two ways:

■ Use the onmode utility to reverse the state of shared-memory
residency immediately while the database server is in on-line mode.

■ Change the RESIDENT parameter in the ONCONFIG file to turn
shared-memory residency on or off for the next time that you
initialize the database server shared memory.

For a description of the resident portion of shared memory, refer to “The
Resident Portion of Shared Memory” on page 11-18.

Turning Residency On or Off in On-Line Mode
You can turn residency on or off while the database server is in on-line mode
by using the onmode utility. You must be root or user informix to do this.

To turn on residency immediately for the resident portion of shared memory,
execute the following command:

% onmode -r
12-14 Administrator’s Guide for Informix Dynamic Server

Turning Residency On or Off for the Next Time You Reinitialize Shared Memory
To turn off residency immediately for the resident portion of shared memory,
execute the following command:

% onmode -n

These commands do not change the value of the RESIDENT parameter in the
ONCONFIG file. That is, this change is not permanent, and residency reverts
to the state specified by the RESIDENT parameter the next time that you
initialize shared memory.

Turning Residency On or Off for the Next Time You
Reinitialize Shared Memory
You can use a text editor to turn residency on or off for the next time that you
reinitialize shared memory. To change the current state of residency, use a text
editor to locate the RESIDENT parameter. Set RESIDENT to 1 to turn residency
on or to 0 to turn residency off, and rewrite the file to disk. Before the changes
take effect, you must reinitialize shared memory.

Adding a Segment to the Virtual Portion of Shared
Memory
The -a option of the onmode utility allows you to add a segment of specified
size to virtual shared memory.

You do not normally need to add segments to virtual shared memory because
the database server automatically adds segments as needed.

The option to add a segment with the onmode utility is useful if the number
of operating-system segments is limited, and the initial segment size is so
low, relative to the amount that is required, that the operating-system limit of
shared-memory segments is nearly exceeded.
Managing Shared Memory 12-15

Forcing a Checkpoint
Forcing a Checkpoint
You might want to force a checkpoint for any of the following reasons, as well
as others:

■ You have just finished building a large index. If the database server
terminates before the next checkpoint, the index build will restart the
next time you initialize the database server.

■ You are about to attempt a system operation that might interrupt the
database server. If it has been a long time since a checkpoint
occurred, fast recovery could take longer than you want.

■ Foreground writes are taking more resources than you want. You can
manually force a checkpoint to bring this down to zero for a while.

You can force a checkpoint by executing the following command from the
command line:

% onmode -c

You can also use ON-Monitor to force a checkpoint by selecting the Force-
Ckpt option from the main menu. ♦

UNIX
12-16 Administrator’s Guide for Informix Dynamic Server

13
Chapter
Where Is Data Stored?
Overview of Data Storage 13-3

What Are the Physical Units of Storage? 13-5
What Is a Chunk? 13-5

Limits on Chunk Size and Number 13-5
Unbuffered or Buffered Disk Access 13-6
What Is an Offset? 13-9

What Is a Page?. 13-10
What are Blobpages? 13-11

How Big Should Blobpage Be? 13-12
What Is an Extent?. 13-13

What Are Disabling I/O Errors? 13-15

What Are the Logical Units of Storage? 13-16
What Is a Dbspace? 13-16

How Can You Control Where Data Is Stored? 13-17
How Does Table Fragmentation Affect Data Storage? 13-19
What Is the Root Dbspace? 13-19
What Is a Temporary Dbspace? 13-20
What Are the Advantages of Using Temporary

Dbspaces? 13-20
What Is a Blobspace? 13-21
What Is a Database? 13-22
What Is a Table? 13-23
What Is a Temporary Table? 13-24

Where Are Temporary Tables Stored? 13-26
What Is a Tblspace? 13-27

What Is Extent Interleaving? 13-29

13-2 Ad
How Much Disk Space Do You Need to Store Your Data?. 13-30
Calculate the Size of the Root Dbspace 13-30

Physical and Logical Logs 13-30
Temporary Tables 13-31
Critical Data 13-31
ON-Archive Catalog Data 13-32
Control Information (Reserved Pages). 13-32
Complete the Root Dbspace Calculation 13-32

Estimate Space That Databases Require 13-33

Disk-Layout Guidelines 13-33
Dbspace and Chunk Guidelines 13-34

Strive to Associate Partitions with Chunks 13-34
Mirror Critical Data Dbspaces 13-34
Spread Your Temporary Storage Space Across

Multiple Disks 13-35
Move the Logical and Physical Logs from the

Root Dbspace 13-35
Consider Account Backup-and-Restore Performance 13-36

Table-Location Guidelines 13-36
Isolate High-Use Tables. 13-37
Consider Mirroring 13-38
Group Your Tables with Backup and Restore in Mind 13-38
Place High-Use Tables on Middle Partition of Disk 13-39
Optimize Table-Extent Sizes 13-40

Sample Disk Layouts 13-40
Sample Layout When Performance Is Highest Priority 13-42
Sample Layout When Availability Is Highest Priority 13-44

What Is a Logical-Volume Manager? 13-46
ministrator’s Guide for Informix Dynamic Server

This chapter defines terms and explains the concepts that you must
understand to perform the tasks described in Chapter 14, “Managing Disk
Space.” This chapter covers the following topics:

■ Definitions of the physical and logical units that the database server
uses to store data on disk

■ Instructions on how to calculate the amount of disk space that you
need to store your data

■ Guidelines on how to lay out your disk space and where to place
your databases and tables

Important: The examples in this chapter use command-line utilities to illustrate how
to create disk spaces for the database server. You can also use INFORMIX-Enterprise
Command Center (IECC), which is a graphical interface, to accomplish the same tasks
more easily. For more information managing disk space with IECC, see the “Informix
Enterprise Command Center User Guide.”

The release-notes file contains supplementary information on the maximum
values related to the storage units discussed in this chapter. For information
on how to access this file, see “Documentation Notes, Release Notes,
Machine Notes” on page 15 of the Introduction.

Overview of Data Storage
The database server can use regular operating-system files to store data. On
operating systems that support raw disks, the database sever can also use
raw disk space to store data. On UNIX platforms, Informix recommends that
you use raw disks to store data whenever performance or data consistency is
important. On Windows NT platforms, Informix recommends using unbuf-
fered NTFS files to store data for ease of administration.
Where Is Data Stored? 13-3

Overview of Data Storage
The database server uses the following physical units to manage disk space:

■ Chunk

■ Page

■ Blobpage

■ Extent

Overlying the physical units of storage space, the database server supports
the following logical units associated with database management:

■ Dbspace

■ Blobspace

■ Extspace

■ Database

■ Table

■ Tblspace

The database server maintains the following additional disk-space storage
structures to ensure physical and logical consistency of data:

■ Logical log

■ Physical log

■ Reserved pages

Because these additional disk-space structures are not permanent storage
units, they are not described in this chapter. For information about the logical
log, see Chapter 18, “What Is the Logical Log?” For information about the
physical log, see Chapter 20, “What Is Physical Logging?” For information
about reserved pages, see “Reserved Pages” on page 38-6.

The following sections describe the various data-storage units that the
database server supports and the relationships between those units.
13-4 Administrator’s Guide for Informix Dynamic Server

What Are the Physical Units of Storage?
What Are the Physical Units of Storage?
The database server uses the physical units of storage to allocate disk space.
Unlike the logical units of storage whose size fluctuates, each of the physical
units—chunks, extents, pages, and blobpages—has a fixed or assigned size.

What Is a Chunk?
The chunk is the largest unit of physical disk dedicated to database server
data storage.

The database server administrator typically adds a chunk to a dbspace when
that dbspace approaches full capacity.

Chunks provide administrators with a conveniently large unit for allocating
disk space. The database server also uses chunks for mirroring. A primary
chunk is a chunk from which the database server copies data to a mirrored
chunk. If the primary chunk fails, the database server brings the mirrored
chunk on-line automatically. For more information on mirroring, see
Chapter 23, “What Is Mirroring?”

Some operating systems use the concept of a logical volume, and others use
a logical unit. Each of these terms represents the smallest unit of physical disk
that you can assign. A database server chunk is the same as a logical volume
or a logical unit.

Limits on Chunk Size and Number

On most platforms, the maximum size of a chunk is 2 gigabytes, but on some
platforms the maximum chunk size is 4 gigabytes.
Where Is Data Stored? 13-5

What Is a Chunk?
Unbuffered or Buffered Disk Access

This section describes the advantages and disadvantages of the two methods
of allocating disk space: using files that are buffered through the operating
system, also referred to as cooked files, and using unbuffered disk access.
Depending on the operating system, unbuffered disk access can be through
unbuffered files, through a raw disk device, or character-special files. As a
general guideline, you experience better performance and increased
reliability when you use unbuffered file access.

Disk Access on UNIX

On UNIX, the raw disk interface that character-special files provide yields
significant performance advantages. I/O to raw disk bypasses the buffering
operations that the operating system performs on regular (cooked) files.

Disk Access on Windows NT

In the Windows NT environment, the database server uses unbuffered I/O to
access both raw disk space and N TFS files. Consequently, I/O to raw disk
space in the Windows NT environment does not yield a significant
improvement in performance compared to I/O to NTFS files. For this reason,
Informix recommends that you use regular NTFS files for chunks.

If you use files for disk space on Windows NT, the files must be NTFS files.

What Is Raw Disk Space on UNIX?

UNIX uses the concept of a device to describe peripherals such as magnetic
disks and tapes, terminals, and communication lines. One type of device is a
block device, such as a hard disk or a tape. A block device can be configured
with an interface that provides buffering or with a raw interface that leaves
the buffering to the application. When you configure a block device with a
raw interface, the device is called a raw device, and the storage space that the
device provides is called raw disk space. Space in a chunk of raw disk space is
physically contiguous.

UNIX

WIN NT

UNIX
13-6 Administrator’s Guide for Informix Dynamic Server

What Is a Chunk?
A raw interface is also referred to as a character-special device. The name of the
chunk is the name of the character-special file in the /dev directory. In many
operating systems, you can distinguish the character-special file from the
block-special file by the first letter in the filename (typically r). For example,
/dev/rsd0f is the character-special device that corresponds to the /dev/sd0f
block special device.

What is Raw Disk Space on Windows NT?

In the Windows NT environment, raw disk space can be either a physical drive
without a drive letter or a disk partition that has been assigned a drive letter
using the Windows NT Disk Administrator. The space can either be formatted
or unformatted but if it contains data, the data will be overwritten after the
space has been allocated to the database server.

What Is a Cooked File?

A cooked file is a regular file that the operating system manages. Although
the database server manages the contents of cooked files, the operating
system manages all I/O to cooked files. Unlike raw disk space, the logically
contiguous blocks of a cooked file might not be physically contiguous.

Even though a cooked file is a regular file, the database server manages the
internal arrangement of data within the file. Never edit the contents of a
cooked file that the database server manages. To do so puts the integrity of
your data at risk.

How Does the Database Server Manage Data Differently When It Is Stored in a
Cooked File Instead of a Raw Disk Device?

When the operating system reads from a cooked file, it reads the data from
disk into an internal buffer pool. Later, a second copy operation copies it from
the operating system to the location requested by the application. Therefore.
when two users both read the same file, the data is read from disk only once
but copied from the operating-system buffer twice.

WIN NT
Where Is Data Stored? 13-7

What Is a Chunk?
By contrast, when the operating system reads data from an unbuffered file or
a raw disk device, it bypasses the operating-system buffer pool and copies
the data directly to the location requested by the application. The database
server requests that the data be placed in shared memory, making it immedi-
ately available to all database server virtual processors and running threads
with no further copying.

Why Use Unbuffered Disk Access?

A raw device or unbuffered file can directly transfer data between shared
memory and the disk using direct memory access (DMA), which results in
better performance by orders of magnitude.

When you use a raw device or unbuffered file to store your data, the database
server guarantees that committed data is stored on disk. (The next section
explains why no such guarantee can be made when you use cooked files to
store your data.)

When you decide to allocate raw disk space to store your data, you must take
the following steps:

1. Create and install a raw device.

2. Change the ownership and permissions of the device.

These steps are described in detail in “Allocating Raw Disk Space on UNIX”
on page 14-8.

Why Use a Cooked File?

You can more easily allocate cooked files than raw disk space. To allocate raw
space, you must have a disk partition available that is dedicated to raw space.
To allocate a cooked file, you need only create the file on any existing
partition. However, you sacrifice reliability and might experience diminished
performance when you store the database server data in cooked files.

The buffering mechanism that most operating systems provide can become a
performance bottleneck. If you must use cooked UNIX files, store the least
frequently accessed data in those files. Store the files in a file system located
near the center cylinders of the disk device or in a file system with minimal
activity.
13-8 Administrator’s Guide for Informix Dynamic Server

What Is a Chunk?
In a learning environment, where reliability and performance are not critical,
cooked files can be convenient.

When performance is not a consideration, you can also use cooked files for
static data (which seldom, if ever, changes). Such data is less vulnerable to the
problems associated with UNIX buffering in the event of a system failure.

When a chunk consists of cooked disk space, the name of the chunk is the
complete pathname of the file. Because the chunk of cooked disk space is an
operating-system file, space in the chunk might not be physically contiguous.

Warning: Cooked files are less reliable than raw disk space because the operating
system manages I/O for a cooked file. A write to a cooked file can result in data being
written to a memory buffer in the operating-system file manager instead of being
written immediately to disk. As a consequence, the database server cannot guarantee
that the committed data actually reaches the disk. Database server recovery depends
on the guarantee that data written to disk is actually on disk. In the event of system
failure, if the data is not present on disk, the database server automatic-recovery
mechanism might not be able to execute properly. The end result would be incon-
sistent data.

When you decide to allocate cooked space to store your data, you must take
the following steps:

1. Create a cooked file.

2. Change the ownership and permissions.

These steps are described in detail in “Allocating a File for Disk Space on
UNIX” on page 14-7.

What Is an Offset?

Although Informix recommends that you use an entire disk partition when
you allocate a chunk on a raw disk device (see “Strive to Associate Partitions
with Chunks” on page 13-34 for more information), you can subdivide parti-
tions or cooked files into smaller chunks using offsets.
Where Is Data Stored? 13-9

What Is a Page?
An offset allows you to indicate the number of kilobytes into a device or
cooked file that are needed to reach a given chunk. For example, suppose that
you create a 1,000 kilobyte chunk that you want to divide into two chunks of
500 kilobytes each. You can use an offset of zero kilobytes to mark the
beginning of the first chunk and an offset of 500 kilobytes to mark the
beginning of the second chunk.

You can specify an offset whenever you create a dbspace or blobspace, add a
chunk to a dbspace or blobspace, or drop a chunk from a dbspace or
blobspace. The maximum offset that you can specify is 2 gigabytes. This
offset is equal to the maximum chunk size, also 2 gigabytes.

You might also need to specify an offset to prevent the database server from
overwriting partition information. “Allocating Raw Disk Space on UNIX” on
page 14-8 explains when and how to specify an offset.

What Is a Page?
A page is the physical unit of disk storage that the database server uses to read
from and write to Informix databases. The size of a page varies from
computer to computer. A page typically holds either 2 or 4 kilobytes. Because
your hardware determines the size of your page, you cannot alter this value.
Figure 13-1 illustrates the concept of a page, represented by a darkened sector
of a disk platter.

Figure 13-1
A Page on Disk
13-10 Administrator’s Guide for Informix Dynamic Server

What are Blobpages?
A chunk contains a certain number of pages, as illustrated in Figure 13-2. A
page is always entirely contained within a chunk; that is, a page cannot cross
chunk boundaries.

For information on how the database server structures data within a page,
see Chapter 38, “Disk Structures and Storage.”

What are Blobpages?
A blobpage is the unit of disk-space allocation that the database server uses
to store TEXT or BYTE data within a blobspace. You specify blobpage as a
multiple of the database server page size. Because the database server
allocates blobpages as contiguous spaces, it is more efficient to store TEXT or
BYTE data in blobpages that are as close to the size of the data as possible.
Figure 13-3 illustrates the concept of a blobpage, represented as a multiple
(three) of a data page.

Figure 13-2
A Chunk, Logically

Separated into a
Series of Pages

Chunk

Page

Figure 13-3
A Blobpage on Disk
Where Is Data Stored? 13-11

What are Blobpages?
Just as with pages in a chunk, a certain number of blobpages compose a
chunk in a blobspace, as illustrated in Figure 13-4. A blobpage is always
entirely contained in a chunk and cannot cross chunk boundaries.

How Big Should Blobpage Be?

When you create a blobspace, try to create a blobpage size that approximates
the size of the most frequently occurring TEXT or BYTE data that the
blobspace holds. For example, if you are storing 160 TEXT or BYTE objects,
and you expect 120 TEXT or BYTE objects to be 12 kilobytes and 40 TEXT or
BYTE objects to be 16 kilobytes, a 12-kilobyte blobpage size stores the objects
most efficiently. This configuration allows the majority (120) of the objects to
be stored in a single blobpage, while the other 40 objects require two
blobpages each. Even though 8 kilobytes are wasted in the second blobpage
(8 kilobytes wasted space per page * 40 pages = 320 kilobytes total wasted
space), this arrangement does not waste as much space as using a blobpage
size of 16 kilobytes (4 kilobytes wasted space per page * 120 pages = 480
kilobytes total wasted space).

In some circumstances, you might want to use the larger, 16-kilobyte
blobpage size. If speed and reducing the number of locks are primary
concerns, use a 16-kilobyte blobpage so that every TEXT or BYTE object can be
stored on a single blobpage. You also might want to use a 16-kilobyte
blobpage size if those blobpages are accessed more frequently than the 12-
kilobyte blobpages.

Figure 13-4
A Chunk in a

Blobspace, Logically
Separated into a

Series of Blobpages

Chunk

Blobpage (defined when
blobspace was created)
13-12 Administrator’s Guide for Informix Dynamic Server

What Is an Extent?
To continue the example, assume that your database server page size is 2
kilobytes. If you decide on a 12-kilobyte blobpage size, specify the blobpage
size parameter as 6 (pages). If your database server page size is 4 kilobytes,
specify the blobpage size parameter as 3 (pages). In general, divide the size
of the TEXT or BYTE object (rounded up to the nearest kilobyte) by the page
size to determine the blobpage size parameter.

If a table has more than one TEXT or BYTE column, and the objects are not
close in size, store each column in a different blobspace, each with an appro-
priately sized blobpage. See “What Is a Table?” on page 13-23.

What Is an Extent?
When you create a table, the database server allocates a fixed amount of space
to contain the data to be stored in that table. When this space fills, the
database server must allocate space for additional storage. The physical unit
of storage that the database server uses to allocate both the initial and subse-
quent storage space is called an extent. Figure 13-5 illustrates the concept of
an extent.

Figure 13-5
An Extent That
Consists of Six

Contiguous Pages
on a Raw Disk

Device

Chunk

Page

Extent
Where Is Data Stored? 13-13

What Is an Extent?
An extent consists of a collection of contiguous pages that store data for a
given table. (See “What Is a Table?” on page 13-23.) Every permanent
database table has two extent sizes associated with it. The initial-extent size is
the number of kilobytes allocated to the table when it is first created. The
next-extent size is the number of kilobytes allocated to the table when the
initial extent (and any subsequent extents) becomes full. Specify the initial-
extent size and next-extent size using the CREATE TABLE and ALTER TABLE
statements. For more information, see the Informix Guide to SQL: Syntax.

Figure 13-6 illustrates the following key concepts concerning extent
allocation:

■ An extent is always entirely contained in a chunk; an extent cannot
cross chunk boundaries.

■ If the database server cannot find the contiguous disk space that is
specified for the next-extent size (six pages in this case), it searches
the next chunk in the dbspace for contiguous space.

Figure 13-6
Process of Extent Allocation

The database
server extends
its search to the
next chunk.

Free
Page

Used
Page

The database server
decides to allocate an
extent and begins a search
for 6 contiguous free

The database
server cannot find
6 contiguous free
pages in chunk 1.

The database server
finds 6 contiguous free
pages and allocates an
extent.

Chunk 1 Chunk 2

Extent
13-14 Administrator’s Guide for Informix Dynamic Server

What Is an Extent?
What Are Disabling I/O Errors?

Informix divides disabling I/O errors into two general categories: destructive
and nondestructive. A disabling I/O error is destructive when the disk that
contains a database becomes damaged in some way. This type of event
threatens the integrity of data, and the database server marks the chunk and
dbspace as down. The database server prohibits access to the damaged disk
until you repair or replace the disk and perform a physical and logical
restore.

A disabling I/O error is nondestructive when the error does not threaten the
integrity of your data. Nondestructive errors occur when someone acciden-
tally disconnects a cable, you somehow erase the symbolic link that you set
up to point to a chunk, or a disk controller becomes damaged.

Before the database server considers an I/O error to be disabling, the error
must meet two criteria. First, the error must occur when the database server
attempts to perform an operation on a chunk that has at least one of the
following characteristics:

■ The chunk has no mirror.

■ The primary or mirror companion of the chunk under question is
off-line.

Second, the error must occur when the database server attempts, but fails, to
perform one of the following operations:

■ Seek, read, or write on a chunk

■ Open a chunk

■ Verify that chunk information on the first used page is valid

The database server performs this verification as a sanity check
immediately after it opens a chunk.

You can prevent the database server from marking a dbspace as down while
you investigate disabling I/O errors. If you find that the problem is trivial,
such as a loose cable, you can bring the database server off-line and then on-
line again without restoring the affected dbspace from backup. If you find
that the problem is more serious, such as a damaged disk, you can use
onmode -O to mark the affected dbspace as down and continue processing.
Where Is Data Stored? 13-15

What Are the Logical Units of Storage?
What Are the Logical Units of Storage?
The logical units of the database server storage fall into the following
categories:

■ Units of logical storage that function as accounting entities,
including:

❑ Dbspaces

❑ Blobspace

❑ Tblspaces

■ Units of logical storage that are dictated by relational database
design, including:

❑ Databases

❑ Tables

A tblspace, for example, does not correspond to any particular part of a
chunk or even to any particular chunk. The indexes and data that make up a
tblspace might be scattered throughout your chunks. The tblspace, however,
represents a convenient accounting entity for space across chunks devoted to
a particular table. (See “What Is a Table?” on page 13-23.)

The following sections describe these logical storage units.

What Is a Dbspace?
A key responsibility of the database server administrator is to control where
the database server stores data. By storing high-use access tables or critical
dbspaces (root dbspace, physical log, and logical log) on your fastest disk
drive, you can improve performance. By storing critical data on separate
physical devices, you ensure that when one of the disks holding noncritical
data fails, the failure affects only the availability of data on that disk.

These strategies require the ability to control the location of data. The logical
storage unit that provides this ability is the dbspace. The dbspace provides the
critical link between the logical and physical units of storage. It allows you to
associate physical units (such as chunks) with logical units (such as tables).
13-16 Administrator’s Guide for Informix Dynamic Server

What Is a Dbspace?
How Can You Control Where Data Is Stored?

As Figure 13-7 shows, you control the placement of databases or tables (see
“What Is a Table?” on page 13-23) using the IN dbspace option of the CREATE
DATABASE or CREATE TABLE statements.

Before you create a database or table in a dbspace, you must first create the
dbspace. For more information on how to create a dbspace, see “Creating a
Dbspace” on page 14-11.

A dbspace includes one or more chunks, as Figure 13-8 shows. You can add
more chunks at any time. It is a high-priority task of a database server admin-
istrator to monitor dbspace chunks for fullness and to anticipate the need to
allocate more chunks to a dbspace. (See “Monitoring the Database Server for
Disabling I/O Errors” on page 29-52.) When a dbspace contains more than
one chunk, you cannot specify the chunk in which the data resides.

Figure 13-7
Controlling Table Placement with the CREATE TABLE... IN Statement

% onspaces -c -d stores_space -p /dev/rsd0f -o 0 -s 10000

CREATE TABLE stores7 IN stores_space

/dev/rsd0f

 dbspace on UNIX
Where Is Data Stored? 13-17

What Is a Dbspace?
The database server uses the dbspace to store databases and tables. (See
“What Is a Table?” on page 13-23.)

You can mirror every chunk in a mirrored dbspace. As soon as the database
server allocates a mirrored chunk, it flags all space in that mirrored chunk as
full. See “Monitoring Disk Usage” on page 29-53.

You can use ON-Monitor (on UNIX), onspaces, or IECC to perform any of the
following tasks related to dbspace management:

■ Creating a dbspace (page 14-11)

■ Adding a chunk to a dbspace (page 14-14)

■ Dropping a dbspace or blobspace (page 14-19)

Figure 13-8
Dbspaces That Link

Logical and Physical
Units of Storage

Logical units of storage Physical units of storage

ChunksDatabase

Chunk 4

Chunk 3

Chunk 2

Chunk 1
System catalog

Table 2

Table 1
Dbspace 2

Dbspace 1

Dbspace 3
13-18 Administrator’s Guide for Informix Dynamic Server

What Is a Dbspace?
How Does Table Fragmentation Affect Data Storage?

The fragmentation feature gives you additional control over where the
database stores data. You are not limited to specifying the locations of
individual tables and indexes. You can also specify the location of table and
index fragments. For more information about fragmentation, see “What Is
Fragmentation?” on page 15-3.

What Is the Root Dbspace?

The root dbspace is the initial dbspace that the database server creates. The
root dbspace is special because it contains reserved pages and internal tables
(see “What Is a Table?” on page 13-23) that describe and track all other
dbspaces, blobspaces, chunks, databases, and tblspaces. (For more infor-
mation on these topics, see Chapter 38, “Disk Structures and Storage.”) The
initial chunk of the root dbspace and its mirror are the only chunks created
during disk-space initialization. You can add other chunks to the root
dbspace after disk-space initialization.

The following disk-configuration parameters in the ONCONFIG
configuration file refer to the first (initial) chunk of the root dbspace:

■ ROOTPATH

■ ROOTOFFSET

■ ROOTNAME

■ MIRRORPATH

■ MIRROROFFSET

The root dbspace is the default location for all temporary tables created
implicitly by the database server to perform requested data management.
The root dbspace is also the default dbspace location for any database created
with the CREATE DATABASE statement.

“Calculate the Size of the Root Dbspace” on page 13-30 explains how much
space to allocate for the root dbspace. You can also add extra chunks to the
root dbspace after you initialize database server disk space.
Where Is Data Stored? 13-19

What Is a Dbspace?
What Is a Temporary Dbspace?

A temporary dbspace is a dbspace reserved for the exclusive use of
temporary tables. (See “What Is a Temporary Table?” on page 13-24.)

The database server never drops a temporary dbspace unless it is explicitly
directed to do so. A temporary dbspace is only temporary in the sense that
the database server does not preserve any of the dbspace contents when the
database server shuts down abnormally. Temporary dbspaces are designed
exclusively for the storage of temporary tables.

Whenever you initialize the database server, all temporary dbspaces are
reinitialized. The database server clears any tables that might be left over
from the last time that the database server shut down.

The database server does not perform logical or physical logging for
temporary dbspaces. Backup utilities do not include temporary dbspaces as
part of a full-system dbspace backup. You cannot mirror a temporary
dbspace.

For detailed instructions on how to create a temporary dbspace, see
“Creating a Dbspace” on page 14-11.

Important: When the database server is running as a secondary database server in a
high-availability data-replication pair, it requires a temporary dbspace to store any
internal temporary tables generated by read-only queries.

What Are the Advantages of Using Temporary Dbspaces?

The database server logs table creation, the allocation of extents, and the
dropping of the table for a temporary table in a standard dbspace. In contrast,
the database server suppresses all logical logging for implicit temporary
tables and explicit temporary tables created with the WITH NO LOG options
that reside in a temporary dbspace. Logical-log suppression in temporary
dbspaces reduces the number of log records to roll forward during logical
recovery as well, thus improving the performance during critical down time.
13-20 Administrator’s Guide for Informix Dynamic Server

What Is a Blobspace?
The database server does not perform any physical logging in temporary
dbspaces. This practice helps performance in two ways. First, physical
logging itself generates I/O. Reducing I/O always improves performance.
Second, whenever the physical log becomes 75 percent full, a checkpoint
occurs. Checkpoints require a brief period of inactivity to complete, which
can have a negative impact on performance. When temporary tables reside
in temporary dbspaces, the database server does not perform physical
logging for operations on the temporary tables, thus requiring fewer
checkpoints.

Using temporary dbspaces to store temporary tables also reduces the size of
your dbspace backup because the database server does not backup
temporary dbspaces.

What Is a Blobspace?
A blobspace is a logical storage unit composed of one or more chunks that
store only TEXT and BYTE data, also called blobs. A blobspace stores TEXT and
BYTE data in the most efficient way possible. You can store TEXT and BYTE
columns associated with distinct tables (see “What Is a Table?” on
page 13-23) in the same blobspace.

The database server writes data stored in a blobspace directly to disk. This
data does not pass through resident shared memory. If it did, the volume of
data could occupy so many of the buffer-pool pages that other data and index
pages would be forced out. For the same reason, the database server does not
write TEXT or BYTE objects that are assigned to a blobspace to either the
logical or physical log. The database server logs blobspace objects by writing
them directly from disk to the logical-log backup tapes when you back up the
logical logs. Blobspace objects never pass through the logical-log files.

When you create a blobspace, you assign to it one or more chunks. You can
add more chunks at any time. One of the tasks of a database server adminis-
trator is to monitor the chunks for fullness and anticipate the need to allocate
more chunks to a blobspace. For instructions on how to monitor chunks for
fullness, see “Monitoring TEXT and BYTE Data in a Blobspace” on
page 29-63. For instructions on how to create a blobspace, add chunks to a
blobspace, or drop a chunk from a blobspace, see Chapter 14, “Managing
Disk Space.”
Where Is Data Stored? 13-21

What Is a Database?
For information about the structure of a blobspace, see “Structure of a
Blobspace” on page 38-59.

What Is a Database?
A database is a logical storage unit that contains tables (see “What Is a
Table?” on page 13-23) and indexes. Each database also contains a system
catalog that tracks information about many of the elements in the database,
including tables, indexes, stored procedures, and integrity constraints.
Figure 13-9 on page 13-22 shows the tables contained in the stores7 database.

A database resides in the dbspace specified by the CREATE DATABASE
statement. When you do not explicitly name a dbspace in the CREATE
DATABASE statement, the database resides in the root dbspace. When you do
specify a dbspace in the CREATE DATABASE statement, this dbspace is the
location for the following tables:

■ Database system catalog tables

■ Any table that belongs to the database

Figure 13-9
The stores7

Database
customer
table

orders
table

items
table

stock
table

catalog
table

cust_calls
table

call_type
table

manufact
table

state
table

system catalog zip_ix
index

stores7 database

systables
table

sysviews
table
13-22 Administrator’s Guide for Informix Dynamic Server

What Is a Table?
The size limits that apply to databases are related to their location in a
dbspace. To be certain that all tables in a database are created on a specific
physical device, assign only one chunk to the device, and create a dbspace
that contains only that chunk. Place your database in that dbspace. When you
place a database in a chunk assigned to a specific physical device, the
database size is limited to the size of that chunk.

For instructions on how to list the databases that you create, see “Monitoring
Databases” on page 29-43.

What Is a Table?
In relational database systems, a table is a row of column headings together
with zero or more rows of data values. The row of column headings identifies
one or more columns and a data type for each column.

When users create a table, the database server allocates disk space for the
table in a block of pages called an extent. (See “What Is an Extent?” on
page 13-13.) You can specify the size of both the first and any subsequent
extents.

Users can place the table in a specific dbspace by naming the dbspace when
they create the table (usually with the IN dbspace option of CREATE TABLE).
When the user does not specify the dbspace, the database server places the
table in the dbspace where the database resides.

Users can also fragment a table over more than one dbspace. Users must
define a distribution scheme for the table that specifies which table rows are
located in which dbspaces.

Users can also fragment a table over more than one dbspace. Users must
define a distribution scheme for the table that specifies which table rows are
located in which dbspaces. For more information about distribution schemes,
see the Informix Guide to Database Design and Implementation.

A table or table fragment resides completely in the dbspace in which it was
created. The database server administrator can use this fact to limit the
growth of a table by placing a table in a dbspace and then refusing to add a
chunk to the dbspace when it becomes full.
Where Is Data Stored? 13-23

What Is a Temporary Table?
A table, composed of extents, can span multiple chunks, as Figure 13-10
shows.

TEXT or BYTE data can reside either in the dbspace with the rest of the table
data or in a separate blobspace. When you use the Optical Subsystem, you
can also store TEXT or BYTE data in an optical storage subsystem.

For advice on where to store your tables, see “Disk-Layout Guidelines” on
page 13-33 and your Performance Guide.

What Is a Temporary Table?
The two types of temporary tables are explicit temporary tables and implicit
temporary tables.

An explicit temporary table is a temporary table that you create using the
TEMP TABLE option of the CREATE TABLE statement or the INTO TEMP clause
of the SELECT statement. For instance, the following SQL statement explicitly
creates a temporary table:

SELECT * FROM customer INTO TEMP temp_table

Figure 13-10
Table That Spans

More than One
Chunk

Chunk 1 Chunk 2

Two extents, both allocated
to the same table

Extent 1 Extent 2
13-24 Administrator’s Guide for Informix Dynamic Server

What Is a Temporary Table?
When an application creates an explicit temporary table, it exists until the
application takes one of the following actions:

■ The application terminates.

■ The application closes the database in which the table was created
and opens a database in a different database server.

■ The application closes the database in which the table was created.

In this case, the database server drops the table only when the
database uses transaction logging and the temporary table was not
created with the WITH NO LOG option.

When any of these three events occurs, the database server deletes the
temporary table.

An implicit temporary table is a temporary table that the database server
creates as part of processing.

The following statements might require temporary disk space:

■ Statements that include a GROUP BY or ORDER BY clause

■ Statements that use aggregate functions with the UNIQUE or
DISTINCT keywords

■ Statements that use auto-index joins

■ Complex CREATE VIEW statements

■ DECLARE statements that create a scroll cursor

■ Statements that contain correlated subqueries

■ Statements that contain subqueries that occur within an IN or ANY
clause

■ Statements that initiate a sort-merge join

■ CREATE INDEX statements

■ DECLARE statements that use the SCROLL CURSOR option

The database server deletes an implicit temporary table when the processing
that initiated the creation of the table is complete.

If the database server shuts down without adequate time to clean up
temporary tables, it performs temporary table cleanup as part of the next
initialization. (To request shared-memory initialization without temporary
table cleanup, execute oninit with the -p option.)
Where Is Data Stored? 13-25

What Is a Temporary Table?
Where Are Temporary Tables Stored?

The dbspace in which the database server stores temporary tables depends
on whether the table is an explicit or implicit table. The following sections
examine both cases in detail.

Explicit Temporary Tables

When you create an explicit temporary table using the IN dbspace option of
CREATE TEMP TABLE, the database server stores the temporary table in that
dbspace.

When you do not use the IN dbspace option of CREATE TEMP TABLE, or when
you create the explicit table with SELECT... INTO TEMP, the database server
checks the DBSPACETEMP environment variable and the DBSPACETEMP
configuration parameter. (The environment variable supersedes the configu-
ration parameter.) When DBSPACETEMP is set, the database server stores the
explicit temporary table in one of the dbspaces specified in the list.

The database server keeps track of the last dbspace in the list that it used to
store a temporary table. When the database server receives another request
for temporary storage space, it uses the next dbspace in the list. In this way,
the database server spreads I/O evenly across the temporary storage space
that you specify in DBSPACETEMP.

When you do not specify any temporary dbspaces in DBSPACETEMP, or the
temporary dbspaces that you specify have insufficient space, the database
server creates the table in a standard (nontemporary) dbspace according to
the following rules:

■ If you created the temporary table with CREATE TEMP TABLE, the
database server stores this table in the dbspace that contains the
database to which the table belongs.

■ If you created the temporary table with the INTO TEMP option of the
SELECT statement, the database server stores this table in the root
dbspace.
13-26 Administrator’s Guide for Informix Dynamic Server

What Is a Tblspace?
Implicit Temporary Tables

The database server stores implicit temporary tables in one of the dbspaces
that you specify in the DBSPACETEMP environment variable or the
DBSPACETEMP configuration parameter. (The environment variable super-
sedes the configuration parameter.) When DBSPACETEMP is not set, the
database server stores the temporary table in the root dbspace.

When the database server creates implicit temporary tables in the process of
sorting, it checks the PSORT_DBTEMP environment variable in addition to
checking the DBSPACETEMP environment variable and the DBSPACETEMP
configuration parameter. For further information on this topic, see your
Performance Guide.

What Is a Tblspace?
Database server administrators sometimes need to track disk use by a
particular table. A tblspace contains all the disk space allocated to a given
table or table fragment (if the table is fragmented).

The tblspace contains the following types of pages:

■ Pages allocated to data

■ Pages allocated to indexes

■ Pages used to store TEXT or BYTE data in the dbspace (but not pages
used to store TEXT or BYTE data in a blobspace)

■ Bit-map pages that track page use within the table extents
Where Is Data Stored? 13-27

What Is a Tblspace?
Figure 13-11 illustrates the tblspaces for three tables that form part of the
stores7 database. Only one table (or table fragment) exists per tblspace.
Blobpages represent TEXT or BYTE data stored in a dbspace.

Figure 13-11
Three of the Sample

Tblspaces in the
stores7 Database

catalog
tblspace

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Blob-
page

Blob-
page

Blob-
page

Blob-
page

Blob-
page

Bit-map
page

Index
page

Index
page

Index
page

Index
page

Index
page

customer
 tblspace

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Index
page

Index
page

Bit-map
page

orders
tblspace

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Index
page

Index
page

Bit-map
page

Index
page

stores7 Database
13-28 Administrator’s Guide for Informix Dynamic Server

What Is a Tblspace?
What Is Extent Interleaving?

The database server allocates the pages that belong to a tblspace as extents.
Although the pages within an extent are contiguous, extents might be
scattered throughout the dbspace where the table resides (even on different
chunks). Figure 13-12 depicts this situation with two noncontiguous extents
that belong to the tblspace for table_1 and a third extent that belongs to the
tblspace for table_2. A table_2 extent is positioned between the first table_1
extent and the second table_1 extent. When this situation occurs, the extents
are interleaved. Because sequential access searches across table_1 require the
disk head to seek across the table_2 extent, performance is worse than if the
table_1 extents were contiguous. For instructions on how to avoid and
eliminate interleaving extents, see your Performance Guide.

Figure 13-12
Three Extents That Belong to Two Different Tblspaces in a Single Dbspace

Page

Table_1 Extent Table_2 Extent Table_1 Extent
Where Is Data Stored? 13-29

How Much Disk Space Do You Need to Store Your Data?
How Much Disk Space Do You Need to Store Your
Data?
Answering the question “How much space?” is a two-step process. You must
follow these steps:

1. Calculate the size requirements of the root dbspace.

2. Estimate the total amount of disk space to allocate to all the database
server databases, including space for overhead and growth.

These steps are explained in the following sections.

Calculate the Size of the Root Dbspace
To calculate the size of the root dbspace, take the following storage structures
into account:

■ The physical- and logical-log files

■ Temporary tables

■ Data

■ ON-Archive catalog data ♦
■ Control information (reserved pages)

The sections that follow discuss each of these storage structures in turn.

Physical and Logical Logs

The value stored in the ONCONFIG parameter PHYSFILE defines the size of
your physical log. Advice on sizing your physical log is contained in “How
Big Should the Physical Log Be?” on page 20-5.

To calculate the size of the logical-log files, multiply the value of the
ONCONFIG parameter LOGSIZE by the number of logical-log files. Advice on
sizing your logical log is contained in “Logical-Log Size Guidelines” on
page 18-6.

UNIX
13-30 Administrator’s Guide for Informix Dynamic Server

Calculate the Size of the Root Dbspace
Temporary Tables

Analyze end-user applications to estimate the amount of disk space that the
database server might require for implicit temporary tables. “What Is a
Temporary Table?” on page 13-24 contains a list of statements that require
temporary space. Try to estimate how many of these statements are to run
concurrently. The space occupied by the rows and columns that are returned
provides a good basis for estimating the amount of space required.

The database server creates implicit temporary files when you perform a
warm restore. The largest implicit temporary file that the database server
creates during a warm restore is equal to the size of your logical log. You
calculate the size of your logical log by multiplying the value of LOGSIZE by
LOGFILES. For more information on these configuration parameters, see
“What Should Be the Size and Number of Logical-Log Files?” on page 18-11.

You must also analyze end-user applications to estimate the amount of disk
space that the database server might require for explicit temporary tables. See
“What Is a Temporary Table?” on page 13-24.

By default, the database server stores both implicit and explicit temporary
tables in the root dbspace. However, if you decide not to store your
temporary tables in the root dbspace, you can use the DBSPACETEMP
environment variable and configuration parameter to specify a list of
dbspaces for temporary files and tables. See “Where Are Temporary Tables
Stored?” on page 13-26.

Critical Data

Next, decide if users store databases or tables in the root dbspace. If the root
dbspace is the only dbspace that you intend to mirror, place all critical data
there for protection. Otherwise, store databases and tables in another
dbspace.

Estimate the amount of disk space, if any, that you need to allocate for tables
stored in the root dbspace.
Where Is Data Stored? 13-31

Calculate the Size of the Root Dbspace
ON-Archive Catalog Data

If you use ON-Archive to perform dbspace and logical-log backups, include
space estimates for ON-Archive catalog data. For a description of the tables
that compose the ON-Archive catalog, refer to your Archive and Backup Guide.
For instructions on how to calculate the size of each table, see your Perfor-
mance Guide.

Control Information (Reserved Pages)

The total amount of disk space required for the database server control infor-
mation is 3 percent of the size of the root dbspace (sum of physical and logical
log, temporary space, and data) plus 25 pages, expressed as kilobytes (or 25
times the database server page size).

Complete the Root Dbspace Calculation

Now calculate the size of the root dbspace, adding the following values for a
root dbspace size:

■ Physical log

■ Logical log

■ Disk space for temporary tables

■ Disk space for data stored in the root dbspace

■ Disk space for the reserved pages

■ Disk space to accommodate ON-Archive catalog data, if you use
ON-Archive for dbspace and logical-log file backups ♦

You need not store the physical log, the logical log, or the temporary tables in
the root dbspace. Include calculations for these entities only if you plan to
continue to store them in the root dbspace.

If you plan to move the physical and logical logs, the initial configuration for
the root dbspace might differ markedly from the final configuration; you can
resize the root dbspace after you remove the physical and logical logs.
However, the root dbspace must be large enough for the minimum size
configuration during disk initialization.

UNIX

UNIX
13-32 Administrator’s Guide for Informix Dynamic Server

Estimate Space That Databases Require
Estimate Space That Databases Require
The amount of additional disk space required for the database server data
storage depends on the needs of your end users, plus overhead and growth.
Every application that your end users run has different storage requirements.
The following list suggests some of the steps that you can take to calculate the
amount of disk space to allocate (beyond the root dbspace):

1. Decide how many databases and tables you need to store. Calculate
the amount of space required for each one.

2. Calculate a growth rate for each table and assign some amount of
disk space to each table to accommodate growth.

3. Decide which databases and tables you want to mirror.

For instructions about calculating the size of your tables, refer to your Perfor-
mance Guide.

Disk-Layout Guidelines
The following are typical goals for efficient disk layout:

■ Limiting disk-head movement

■ Reducing disk contention

■ Balancing the load

■ Maximizing availability

You must make some trade-offs between these goals when you design your
disk layout. For example, separating the system catalog tables, the logical log,
and the physical log can help reduce contention for these resources.
However, this action can also increase the chances that you have to perform
a system restore.

The sections that follow discuss various strategies for meeting disk-layout
goals.
Where Is Data Stored? 13-33

Dbspace and Chunk Guidelines
Dbspace and Chunk Guidelines
This section lists some general strategies for disk layout that do not require
any information about the characteristics of a particular database.

Strive to Associate Partitions with Chunks

When you allocate disk space (buffered or unbuffered files), you allocate it in
chunks. A dbspace or a blobspace is associated with one or more chunks. You
must allocate at least one chunk for the root dbspace.

Informix recommends that you format your disks so that each chunk is
associated with its own disk partition. You can easily track disk-space use
when you define every chunk as a separate partition (or device). You can also
avoid errors caused by miscalculated offsets.

A disk that is already partitioned might require the use of offsets. For details,
see “Allocating Raw Disk Space on UNIX” on page 14-8.

Mirror Critical Data Dbspaces

Mirror the critical dbspaces: the root dbspace, the dbspace that contains the
physical log, and the dbspace that contains the logical-log files. You specify
mirroring on a chunk-by-chunk basis. Locate the primary and the mirrored
chunk on different disks. Ideally, different controllers handle the different
disks. Figure 13-13 shows a primary chunk and its mirror.

Figure 13-13
Ideal Disk Layout for
Primary Chunk and

Associated Mirrored
ChunkPrimary

chunk
Mirrored

chunk
13-34 Administrator’s Guide for Informix Dynamic Server

Dbspace and Chunk Guidelines
Spread Your Temporary Storage Space Across Multiple Disks

You can use the DBSPACETEMP environment variable and configuration
parameter to store a list of dbspaces used for temporary storage. The list can
include both temporary and standard dbspaces. To achieve load balancing,
design the list so that your temporary disk space is spread across multiple
disks. For instructions on how to set the DBSPACETEMP configuration
parameter, see “DBSPACETEMP” on page 33-19.

Move the Logical and Physical Logs from the Root Dbspace

Whether or not databases use transaction logging, the logical log and
physical log both contain data that the database server accesses frequently.
Reserved pages are also accessed frequently; they contain internal tables that
describe and track all dbspaces, blobspaces, chunks, databases, and
tblspaces.

By default, the database server stores the logical and physical logs together
with the reserved pages in the root dbspace. Storing the logical and physical
logs together is convenient if you have a small, low-volume transaction-
processing system. However, maintaining these files together in the root
dbspace can become a source of contention as your database system grows.

To reduce this contention and provide better load balancing, move the logical
and physical logs to separate partitions or, even better, separate disk drives.
For optimum performance, consider creating two additional dbspaces: one
for the physical log and one for the logical log. When you move the logs,
avoid storing them in a dbspace that contains high-use tables. Instead,
consider storing them in a dbspace dedicated to storing only the physical or
logical log. For more advice on where to store your logs, see “Where Is the
Physical Log Located?” on page 20-8 and “Where Should Logical-Log Files
Be Located?” on page 18-12.

For instructions on how to change the location of the logical and physical log,
see “Changing the Physical-Log Location and Size” on page 21-3 and
“Moving a Logical-Log File to Another Dbspace” on page 19-8.
Where Is Data Stored? 13-35

Table-Location Guidelines
Consider Account Backup-and-Restore Performance

When you plan your disk layout, consider how the configuration that you
choose affects your backup-and-restore procedure. This section describes
two configurations that can have a significant impact on your backup-and-
restore procedure.

Cluster Catalogs with the Data That They Track

When a disk that contains the system catalog of a particular database fails,
the entire database remains inaccessible until you restore the system catalog.
Informix recommends that you do not cluster the system catalog tables for all
databases in a single dbspace but instead place the catalogs with the data that
they track.

Reconsider Separating the Physical and Logical Logs

Although it makes sense from a performance perspective to separate the root
dbspace from the physical and logical logs, and the two logs from one
another, this configuration is the least desirable in terms of recovery.

Whenever a disk that contains critical information (the root dbspace, physical
log, and logical log) fails, the database server comes off-line. In addition, the
database server administrator must restore all the database server data,
starting in off-line mode, from a level-0 backup before processing can
continue.

When you separate the root dbspace from the physical- and logical-log files,
you increase the probability that, if a disk fails, it is one that contains critical
information (either the root dbspace, physical log, or logical log). For infor-
mation on how to fragment to improve backup and restore characteristics,
see your Performance Guide.

Table-Location Guidelines
This section lists some strategies for optimizing the disk layout, given certain
characteristics about the tables in a database. You can implement many of
these strategies with a higher degree of control using table fragmentation. For
a discussion of how to optimize your disk layout using table fragmentation,
refer to your Performance Guide.
13-36 Administrator’s Guide for Informix Dynamic Server

Table-Location Guidelines
Isolate High-Use Tables

You can place a table with high I/O activity on a disk device dedicated to its
use and thus reduce contention for the data stored in the table. When disk
drives have different performance levels, you can put the tables with the
highest frequency of use on the fastest drives. Placing two high-use tables on
separate disk devices reduces competition for disk access when joins are
formed between the two tables or when the two tables experience frequent,
simultaneous access from multiple applications.

To isolate a high-use table on its own disk device, assign the device to a
chunk, and assign the same chunk to a dbspace. Finally, place the frequently
used table in the dbspace just created using the IN dbspace option of CREATE
TABLE. Figure 13-14 illustrates this strategy by showing optimal placement of
three frequently used tables.

Figure 13-14
Example of High-

Use Table IsolationLogical units of storage Physical units of storage

ChunksDatabase

Chunk 3

Chunk 2

Chunk 1

High-use table
#1

High-use table
#3

High-use table
#2

Dbspace 2

Dbspace 1

Dbspace 3
Where Is Data Stored? 13-37

Table-Location Guidelines
To take this strategy a step further, fragment a high-use table over multiple
disk devices. If you choose an appropriate distribution scheme, the database
server routes queries to the appropriate fragment, thereby reducing
contention on any single fragment. For more information, see your Perfor-
mance Guide.

If you have doubts whether spreading your tables across multiple disks can
improve performance for your particular configuration, run the -g iof option
of onstat. This option displays the level of I/O operations against each chunk.
For details, see “-g Monitoring Options” on page 35-76.

Consider Mirroring

You can mirror critical tables and databases to maximize availability. You
specify mirroring on a chunk-by-chunk basis. Locate the primary and
mirrored chunks for critical tables on different disks. Ideally, different
controllers handle the different disks.

Fragmentation gives you a higher level of control over this process. That is,
you can mirror chunks that contain specific table fragments. For more infor-
mation, see your Performance Guide.

Group Your Tables with Backup and Restore in Mind

When you decide where to place your tables, keep in mind that if a device
containing a dbspace fails, all tables in that dbspace are inaccessible.
However, tables in other dbspaces remain accessible. The accessibility (or
inaccessibility) of dbspace might influence which tables you group together
in a particular dbspace.

Although you must perform a cold restore if a dbspace that contains critical
information fails, you need only perform a warm restore if a noncritical
dbspace fails. This situation might influence which dbspace you use to store
critical information. If you use ON-Bar for your backup and restore tool, refer
to your Backup and Restore Guide for more information. If you use ON-Archive
or ontape for your backup and restore tool, refer to your Archive and Backup
Guide for more information.
13-38 Administrator’s Guide for Informix Dynamic Server

Table-Location Guidelines
Fragmentation gives you greater granularity of backup and restore. When
you fragment a table, you can still access the fragments located in the other
dbspaces in the event of a dbspace failure. For more information, see your
Performance Guide.

Place High-Use Tables on Middle Partition of Disk

To minimize disk-head movement, place the most-frequently accessed data
in partitions as close to the middle of the disk as possible. See Figure 13-15.
When a disk device is partitioned, the central partitions generally experience
the fastest access time. Place the least-frequently used data on the outermost
or innermost partitions. This overall strategy minimizes disk-head
movement.

To place high-use tables on the middle partition of the disk, create a chunk
using raw disk space that is composed of cylinders that reside midway
between the spindle and the outer edge of the disk. Then create a dbspace
with this same chunk as the initial and only chunk. When you create your
high-use tables, place them in the newly created dbspace using the IN clause
of the CREATE TABLE statement. For information about using raw disk space,
see “What Is Raw Disk Space on UNIX?” on page 13-6 and “Disk Access on
Windows NT” on page 13-6.

Figure 13-15
Disk Platter with
High-Use Table

Located on Middle
Partitions

Disk platter

Create high-use
table in dbspace

Single chunk in a
dbspace
Where Is Data Stored? 13-39

Sample Disk Layouts
Optimize Table-Extent Sizes

When two or more large, growing tables share a dbspace, their new extents
can become interleaved (see “What Is a Tblspace?” on page 13-27). This inter-
leaving creates gaps between the extents of any one table. (See Figure 13-12
on page 13-29.) Performance might suffer if disk seeks must span more than
one extent. Work with the table owners to optimize the table extent sizes and
thus limit head movement. For advice on how to alleviate this problem, see
your Performance Guide. You can also consider placing the tables in separate
dbspaces.

Sample Disk Layouts
When setting out to organize disk space, the database server administrator
usually has one or more of the following objectives in mind:

■ High performance

■ High availability

■ Ease and frequency of backup and restore

Meeting any one of these objectives has trade-offs. For example, configuring
your system for high performance usually results in taking risks regarding
the availability of data. The sections that follow present an example in which
the database server administrator must make disk-layout choices given
limited disk resources. These sections describe two different disk-layout
solutions. The first solution represents a performance optimization, and the
second solution represents an availability-and-restore optimization.
13-40 Administrator’s Guide for Informix Dynamic Server

Sample Disk Layouts
The setting for the sample disk layouts is a fictitious sporting-goods database
that uses the structure (but not the volume) of the stores7 database. In this
example, the database server is configured to handle approximately
350 users and 3 gigabytes of data. The disk space resources are shown in the
following table.

The database includes two large tables: cust_calls and items. Assume that
both of these tables contain more than 1,000,000 rows. The cust_calls table
represents a record of all customer calls made to the distributor. The items
table contains a line item of every order that the distributor ever shipped.

The database includes two high-use tables: items and orders. Both of these
tables are subject to constant access from users around the country.

Disk Drive Size of Drive High Performance

Disk 1 1.5 gigabytes No

Disk 2 2 gigabytes Yes

Disk 3 2 gigabytes Yes

Disk 4 1.5 gigabytes No
Where Is Data Stored? 13-41

Sample Disk Layouts
The remaining tables are low-volume tables that the database server uses to
look up data such as postal code or manufacturer.

Sample Layout When Performance Is Highest Priority

Figure 13-16 on page 13-43 shows a disk layout optimized for performance.
This disk layout uses the following strategies to improve performance:

■ Migration of the logical log from the rootdbs dbspace to a dbspace on
a separate disk

This strategy separates the logical log and the physical log and
reduces contention for the root dbspace.

■ Location of the two tables that undergo the highest use in dbspaces
on separate disks

Neither of these disks stores the logical log or the physical log.
Ideally you could store each of the items and orders tables on a
separate high-performance disk. However, in the present scenario,
this strategy is not possible because one of the high-performance
disks is needed to store the very large cust_calls table (the other two
disks are too small for this task).

Table Name Maximum Size Access Rate

cust_calls 1.5 gigabytes Low

items 0.5 gigabytes High

orders 50 megabytes High

customers 50 megabytes Low

stock 50 megabytes Low

catalog 50 megabytes Low

manufact 50 megabytes Low

state 50 megabytes Low

call_type 50 megabytes Low
13-42 Administrator’s Guide for Informix Dynamic Server

Sample Disk Layouts
Figure 13-16
Disk Layout Optimized for Performance

cust_calls_space

customerstate call_type

Database Disks

disk 1
(1.5 gigabyte)

disk 2
(2 gigabyte, high performance)

disk 3
(2 gigabyte, high performance)

disk 4
(1.5 gigabyte)

rootdbs

phys_log_space

items_space

log_log_space

look_up2

look_up3

orders_space

manufactstock catalog

orders

items

cust_calls
Where Is Data Stored? 13-43

Sample Disk Layouts
Sample Layout When Availability Is Highest Priority

The weakness of the previous disk layout is that if either disk 1 or disk 2 fails,
the whole database server goes down until you restore the dbspaces on these
disks from backups. In other words, the disk layout is poor with respect to
availability.

An alternative disk layout that optimizes for availability is shown in
Figure 13-16 on page 13-43. This layout mirrors all the critical data spaces
(the system catalog tables, the physical log, and the logical log) to a separate
disk. Ideally you could separate the logical log and physical log (as in the
previous layout) and mirror each disk to its own mirror disk. However, in
this scenario the required number of disks does not exist; therefore, the
logical log and the physical log both reside in the root dbspace.
13-44 Administrator’s Guide for Informix Dynamic Server

Sample Disk Layouts
Figure 13-17
Disk Layout Optimized for Availability.

cust_calls_space

customerstate call_type

Database Disks

disk 1
(1.5 gigabyte)

disk 2
(2 gigabyte high performance)

disk 3
(2 gigabyte high performance)

disk 4
(1.5 gigabyte)

rootdbs

phys_log_space

items_space

log_log_space

look_up1

look_up2

orders_space

manufactstock catalog

orders

items

cust_calls
Where Is Data Stored? 13-45

What Is a Logical-Volume Manager?
What Is a Logical-Volume Manager?
A logical-volume manager (LVM) is a utility that allows you to manage your
disk space through user-defined logical volumes.

Many computer manufacturers ship their computers with a proprietary LVM.
You can use the database server to store and retrieve data on disks that are
managed by most proprietary LVMs. Logical-volume managers provide
some advantages and some disadvantages, as discussed in the remainder of
this section.

Most LVMs can manage multiple gigabytes of disk space. The database server
chunks are limited to a size of 2 gigabytes, and this size can be attained only
when the chunk being allocated has an offset of zero. Consequently, you
should limit the size of any volumes to be allocated as chunks to a size of
2 gigabytes.

Because LVMs allow you to partition a disk drive into multiple volumes, you
can control where data is placed on a given disk. You can improve perfor-
mance by defining a volume that consists of the middle-most cylinders of a
disk drive and placing high-use tables in that volume. For more information,
see “Place High-Use Tables on Middle Partition of Disk” on page 13-39.
(Technically, you do not place a table directly in a volume. You must first
allocate a chunk as a volume, then assign the chunk to a dbspace, and finally
place the table in the dbspace. For more information, see “How Can You
Control Where Data Is Stored?” on page 13-17.)

You can also improve performance by using a logical volume manager to
define a volume that spreads across multiple disks and then placing a table
in that volume. This strategy helps reduce contention between programs that
access the same table, as explained in “Place High-Use Tables on Middle
Partition of Disk” on page 13-39.

Many logical volume managers also allow a degree of flexibility that
standard operating-system format utilities do not. One such feature is the
ability to reposition logical volumes after you define them. Thus getting the
layout of your disk space right the first time is not so critical as with
operating-system format utilities.

LVMs often provide operating-system-level mirroring facilities. For more
information, see “What Mirroring Alternatives Exist?” on page 23-6.
13-46 Administrator’s Guide for Informix Dynamic Server

What Is a Logical-Volume Manager?
Figure 13-18 illustrates the role of fragments in specifying the location of
data.

Usually you fragment a table when you initially create it. The CREATE TABLE
statement takes one of the following forms:

CREATE TABLE tablename ... FRAGMENT BY ROUND ROBIN IN
dbspace1, dbspace2, dbspace3;

or
CREATE TABLE tablename ...FRAGMENT BY EXPRESSION

<Expression 1> in dbspace1,
<Expression 2> in dbspace2,
<Expression 3> in dbspace3;

The FRAGMENT BY ROUND ROBIN and FRAGMENT BY EXPRESSION
keywords refer to two different distribution schemes. Both statements
associate fragments with dbspaces. For more information on fragmentation
schemes, refer to Informix Guide to Database Design and Implementation

Figure 13-18
Dbspaces That Link

Logical Units
(Including Table
Fragments) and

Physical Units of
Storage

Logical units of storage Physical units of storage

Chunks

Chunk 3

Chunk 2

Chunk 1

Dbspace 2

Dbspace 1

Dbspace 3

Database
System catalog

Table 2

Table 1

Fragment 1

Fragment 2

Fragment 3
Where Is Data Stored? 13-47

14
Chapter
Managing Disk Space
Allocating Disk Space 14-4
Do You Need to Specify an Offset? 14-5

Specifying an Offset for the Initial Chunk of
Root Dbspace 14-6

Specifying an Offset for Additional Chunks 14-6
Using Offsets to Create Multiple Chunks 14-6

Allocating a File for Disk Space on UNIX 14-7
Allocating a File for Disk Space on Windows NT 14-8
Allocating Raw Disk Space on UNIX 14-8

Creating a Link to Each Raw Device on UNIX 14-9
Allocating Raw Disk Space on Windows NT. 14-9

Initializing Disk Space. 14-10
Initializing Disk Space with oninit 14-11
Initializing Disk Space with ON-Monitor 14-11

Creating a Dbspace 14-11
Creating a Temporary Dbspace 14-12
Creating a Dbspace with onspaces 14-13
Creating a Dbspace with ON-Monitor 14-13

Adding a Chunk to a Dbspace 14-14
Adding a Chunk 14-14

Adding a Chunk with onspaces 14-15
Adding a Chunk with ON-Monitor 14-15

Creating a Blobspace 14-16
Determining Database Server Page Size 14-17
Creating a Blobspace with onspaces. 14-17
Creating a Blobspace with ON-Monitor 14-17

14-2 Ad
Adding a Chunk to a Blobspace 14-18

Dropping a Chunk from a Dbspace with onspaces 14-18

Dropping a Chunk from a Blobspace 14-19

Dropping a Dbspace or Blobspace 14-19
Dropping a Dbspace or Blobspace with onspaces 14-20
Dropping a Dbspace or Blobspace with ON-Monitor 14-20

Optimizing Blobspace Blobpage Size 14-21
Determining Blobspace Storage Efficiency 14-21
Blobspace Storage Statistics. 14-21
Determining Blobpage Fullness with oncheck -pB 14-22

Interpreting Blobpage Average Fullness 14-23
Apply Efficiency Criteria to Output 14-24
ministrator’s Guide for Informix Dynamic Server

This chapter provides the instructions that you need to manage effec-
tively the disk spaces and data that the database server controls. It assumes
you are familiar with the terms and concepts contained in Chapter 13,
“Where Is Data Stored?”

This chapter covers the following topics:

■ How to allocate disk space

■ How to initialize disk space

■ How to set configuration variables related to disk management

■ How to manage chunks and dbspaces

❑ Allocating, adding, and dropping chunks from dbspaces and
blobspaces

❑ Creating and dropping dbspaces and blobspaces

❑ How to optimize blobpage size

■ How to skip inaccessible fragments

Important: The examples in this chapter use command-line utilities to illustrate how
to create disk spaces for the database server. You can also use INFORMIX-Enterprise
Command Center (IECC), which is a graphical interface, to accomplish the same tasks
more easily. For more information on managing disk space with IECC, see the
“Informix Enterprise Command Center User Guide.”

Your Performance Guide also contains information about managing disk
space. In particular, it describes how to eliminate interleaved extents and
how to reclaim space in an empty extent.
Managing Disk Space 14-3

Allocating Disk Space
Allocating Disk Space
This section explains how to allocate disk space for the database server. Read
the following sections before you allocate disk space:

■ “Unbuffered or Buffered Disk Access” on page 13-6

■ “How Much Disk Space Do You Need to Store Your Data?” on
page 13-30

■ “Disk-Layout Guidelines” on page 13-33

After you allocate the necessary space, you might still need to take additional
steps before the database server can begin to use the space to store data. The
sections that follow contain those additional steps as well.

You need to allocate disk space before you perform these tasks:

■ Initializing disk space

■ Creating a dbspace or blobspace

■ Adding a chunk to an existing dbspace or blobspace

■ Mirroring an existing dbspace or blobspace

You can allocate either an empty file or a portion of raw disk for database
server disk space.

On UNIX, if you allocate raw disk space, Informix recommends that you use
the UNIX ln command to create a link between the character-special device
name and another filename. For more information on this topic, see
“Creating a Link to Each Raw Device on UNIX” on page 14-9.

Using a UNIX file and its inherent operating-system interface for database
server disk space also is referred to as using cooked space.♦

UNIX
14-4 Administrator’s Guide for Informix Dynamic Server

Do You Need to Specify an Offset?
On Windows NT, Informix recommends that you allocate empty NTFS files
for database server disk space. For more information on this recommen-
dation, see “Unbuffered or Buffered Disk Access” on page 13-6. ♦

Do You Need to Specify an Offset?
When you allocate a chunk of disk space to the database server, you might
want to specify an offset for one of the following two purposes:

■ To prevent the database server from overwriting the partition
information

■ To define multiple chunks on a partition, disk device, or cooked file

Many computer systems and some disk-drive manufacturers keep infor-
mation for a physical disk drive on the drive itself. This information is
sometimes referred to as a volume table of contents (VTOC) or disk label. (For
convenience, it will be referred to here as the VTOC.) The VTOC is commonly
stored on the first track of the drive. A table of alternate sectors and bad-
sector mappings (also called revectoring table) might also be stored on the
first track.

If you plan to allocate partitions at the start of a disk, you might need to use
offsets to prevent the database server from overwriting critical information
required by the operating system. For the exact offset required, refer to your
disk-drive manuals.

Warning: If you are running two or more instances of the database server, be
extremely careful not to define chunks that overlap. Overlapping chunks can cause
the database server to overwrite data in one chunk with unrelated data from an
overlapping chunk. This overwrite effectively destroys overlapping data.

WIN NT
Managing Disk Space 14-5

Do You Need to Specify an Offset?
Specifying an Offset for the Initial Chunk of Root Dbspace

For the initial chunk of root dbspace and its mirror, if it has one, specify the
offsets with the ROOTOFFSET and MIRROROFFSET parameters, respectively.
For more information on these parameters, see “ROOTOFFSET” on
page 33-76 and “MIRROROFFSET” on page 33-54.

Specifying an Offset for Additional Chunks

To specify an offset for additional chunks of database server space, you must
supply the offset as a parameter when you assign the space to the database
server with one of the following utilities:

■ onspaces

■ ON-Monitor ♦

For more information on specifying an offset for chunks of database server
space, see “Creating a Dbspace” on page 14-11.

Using Offsets to Create Multiple Chunks

You can create multiple chunks from a disk partition, disk device, or file, by
specifying offsets and assigning chunks that are smaller than the total space
available. The offset specifies the beginning location of a chunk. The database
server determines the location of the last byte of the chunk by adding the size
of the chunk to the offset.

For the first chunk, assign any initial offset, if necessary, and specify the size
as an amount that is less than the total size of the allocated disk space. For
each additional chunk specify the offset to include the sizes of all previously
assigned chunks, plus the initial offset, and assign a size that is less than or
equal to the amount of space remaining in the allocation.

UNIX
14-6 Administrator’s Guide for Informix Dynamic Server

Allocating a File for Disk Space on UNIX
Allocating a File for Disk Space on UNIX
To allocate a file for database server disk space on UNIX, log in as user
informix and concatenate null to the filename that the database server will
use disk space. The file should have permissions set to 660 (rw-rw----). Group
and owner must be set to informix. Figure 14-1 illustrates these steps and
allocates the file /usr/data/my_chunk for disk space.

Figure 14-1
Preparing Cooked File Space

For information on how to create a dbspace or blobspace using the file you
have allocated, refer to “Creating a Dbspace” on page 14-11 and “Creating a
Blobspace” on page 14-16.

Step Command Comments

1. su informix Log in as user informix.

(Enter the password.)

2. cd /usr/data Change directories to the directory where
the cooked space will reside.

3. cat /dev/null > my_chunk Create your chunk by concatenating null
to a file (in this example, a file named
my_chunk).

4. chmod 660 my_chunk Set the permissions of the file to 660
(rw-rw----).

5. ls -lg my_chunk -rw-rw----
1 informix informix
0 Oct 12 13:43 my_chunk

Use ls -l if you are using System V
UNIX. Verify that both group and owner
of the file are informix. You should see
something like this line (which has
wrapped around).

UNIX
Managing Disk Space 14-7

Allocating a File for Disk Space on Windows NT
Allocating a File for Disk Space on Windows NT
To allocate NTFS file space for database server disk space, the first step is to
create a null (zero bytes) file. Perform the following steps to allocate NTFS file
space for a dbspace or blobspace, including a mirror dbspace or blobspace:

1. Log in as a member of the Informix-Admin group.

2. Open an MS-DOS command shell.

3. Change to the directory where you want to allocate the space, as in
the following example:

c:> cd \usr\data

4. Create a null file using the following command:
c:> copy nul my_chunk

5. If you want to verify that the file has been created, use the dir
command to do so.

Once you have allocated the file space, you can create the dbspace or
blobspace as you normally would, using onspaces. For information on how
to create a dbspace or a blobspace, refer to “Creating a Dbspace” on
page 14-11 and “Creating a Blobspace” on page 14-16.

You must also follow the preceding steps prior to adding a chunk to a
dbspace or blobspace.

Allocating Raw Disk Space on UNIX
For specific instructions on how to allocate raw disk space on UNIX, see your
operating-system documentation.

In general, to create raw disk space, you can either repartition your disks or
unmount an existing file system. In either case, take proper precautions to
back up any files before you unmount the device. (See “What Is Raw Disk
Space on UNIX?” on page 13-6.)

Change the group and owner of the character-special devices to informix.
The filename of the character-special device usually begins with the letter r.

Verify that the operating-system permissions on the character-special devices
are crw-rw---- .

WIN NT

UNIX
14-8 Administrator’s Guide for Informix Dynamic Server

Allocating Raw Disk Space on Windows NT
Warning: After you create the raw device that the database server uses for disk space,
carefully heed the following warnings:

■ Do not create file systems on the same raw device that you allocate for the
database server disk space.

■ Do not use the same raw device as swap space that you allocate for the
database server disk space.

Creating a Link to Each Raw Device on UNIX

Create a link between the character-special device name and another
filename with the UNIX link command, usually ln.

The link enables you to replace quickly the disk where the chunk is located.
The convenience becomes important if you need to restore your database
server data. The restore process requires all chunks that were accessible at the
time of the last dbspace backup to be accessible when you perform the
restore. The link means that you can replace a failed device with another
device and link the new device pathname to the same filename that you
previously created for the failed device. You do not need to wait for the
original device to be repaired.

Execute the UNIX command ls -lg (ls -l on System V UNIX) on your device
directory to verify that both the devices and the links exist. The following
example shows links to raw devices. If your operating system does not
support symbolic links, hard links will work as well.

% ls -lg
crw-rw--- /dev/rxy0h
crw-rw--- /dev/rxy0a
lrwxrwxrwx /dev/my_root@->/dev/rxy0h
lrwxrwxrwx /dev/raw_dev2@->/dev/rxy0a

Allocating Raw Disk Space on Windows NT
To allocate raw disk space on Windows NT, specify a physical drive or a disk
partition for onspaces, rather than a filename, when you create a dbspace or
add a chunk to a dbspace. The next example adds a chunk of 5000 kilobytes
of raw disk space, at an offset of 5200 kilobytes, to dbspace dpspc3:

onspaces -a dbspc3 \\.\e: -o 5200 -s 5000

WIN NT
Managing Disk Space 14-9

Initializing Disk Space
You must be a member of the Informix-Admin group when you create a
dbspace or add a chunk to a dbspace. The raw disk space can be formatted or
unformatted disk space.

Warning: If you allocate a formatted drive or disk partition as raw disk space, and it
contains data, the database server will overwrite the data when it begins to use the
disk space. You are responsible to ensure that any data on raw disk space is expend-
able before you allocate the disk space to the database server.

Initializing Disk Space
Disk-space initialization uses the values stored in the configuration file to
create the initial chunk of the root dbspace on disk and to initialize shared
memory. When you initialize disk space, shared memory is automatically
initialized for you as part of the process.

Typically, you initialize disk space just once in the life of an database server.
This action occurs when you bring the database server on-line for the first
time.

Warning: When you initialize the database server disk space, you overwrite whatever
is on that disk space. If you reinitialize disk space for an existing database server, all
data in the earlier database server instance becomes inaccessible and, in effect, is
destroyed.

Only user informix or root can execute oninit and initialize the database
server. The database server must be in off-line mode when you begin initial-
ization. As oninit executes, it reads the configuration file named by the
environment variable ONCONFIG.

You can initialize disk space using one of the following utilities:

■ oninit

■ ON-Monitor ♦UNIX
14-10 Administrator’s Guide for Informix Dynamic Server

Initializing Disk Space with oninit
Initializing Disk Space with oninit
After you configure the database server (refer to Chapter 3, “Configuring the
Database Server”), you can initialize disk space by executing one of the
following commands:

% oninit -i

or

% oninit -i -s

The oninit -i option leaves the database server in on-line mode after initi-
ation. If you use both the -i and -s options, the database server is left in
quiescent mode. For reference information on executing oninit, see
“&Initialize Disk Space and Shared Memory” on page 35-22.

Initializing Disk Space with ON-Monitor
To initialize the database server with ON-Monitor, select Parameters➞

Initialization. The database server displays a series of six screens. Each
screen contains a number of fields that correspond to parameters in the
ONCONFIG configuration file.

Creating a Dbspace
This section explains how to create a standard dbspace (see “What Is a
Dbspace?” on page 13-16) and a temporary dbspace (see “What Is a
Temporary Dbspace?” on page 13-20). You can use either of the following
utilities to create a dbspace:

■ onspaces

■ ON-Monitor ♦

Before you create a dbspace, you must first allocate disk space as described
in “Allocating Disk Space” on page 14-4.

If you are using mirroring, you can mirror the dbspace when you create it.
Mirroring takes effect immediately.

UNIX

UNIX
Managing Disk Space 14-11

Creating a Temporary Dbspace
Specify an explicit pathname for the initial chunk of the dbspace as follows:

■ If you are using raw disk on UNIX ♦
Informix recommends that you use a linked pathname. (See
“Creating a Link to Each Raw Device on UNIX” on page 14-9.)

■ If you are using raw disk on Windows NT

The pathname takes the form: \\.\x:, where x specifies the disk
drive or partition. ♦

■ If you are using a file for database server disk space

The pathname is the complete path and filename.

When the initial chunk of the dbspace that you are creating is file space, the
database server verifies that the disk space is sufficient for the initial chunk.
If the size of the chunk is greater than the available space on the disk, a
message is displayed, and no dbspace is created. However, the cooked file
that the database server created for the initial chunk is not removed. Its size
represents the space left on your file system before you created the dbspace.
Remove this file to reclaim the space.

You must be logged in as user informix or root to create a dbspace.

If you are creating a standard dbspace, the database server can be in on-line
mode. The newly added dbspace (and its mirror, if one exists) is available
immediately.

Creating a Temporary Dbspace
If you are creating a temporary dbspace, you must make the database server
aware of the existence of the newly created temporary dbspace by setting the
DBSPACETEMP configuration variable, the DBSPACETEMP environment
variable, or both. The database server does not begin to use the temporary
dbspace until you take both of the following steps:

■ Set the DBSPACETEMP configuration parameter, the DBSPACETEMP
environment variable, or both.

■ Reinitialize the database server.

UNIX

WIN NT
14-12 Administrator’s Guide for Informix Dynamic Server

Creating a Dbspace with onspaces
Creating a Dbspace with onspaces
To create a dbspace with onspaces, use the -c option of onspaces as shown in
the following example.

This example creates a 10-megabyte mirrored dbspace, dbspce1, using raw
disk space on UNIX. An offset of 5000 kilobytes is specified for both the
primary and mirrored chunks.

onspaces -c -d dbspce1 -p /dev/raw_dev1 -o 5000 -s 10000 -m /dev/raw_dev2 5000

The following example creates a 5000 kilobyte dbspace, dbspc3, with an
offset of 200 kilobytes, from raw disk space (drive e:) on Windows NT:

onspaces -c -d dbspc3 \\.\e: -o 200 -s 5000

The following example creates a 5-megabyte temporary dbspace
named temp_space:

onspaces -c -t -d temp_space -p /dev/raw_dev1 -o 5000 -s 5000

For reference information on creating a dbspace with onspaces, see “Create
a Blobspace, Dbspace, or Temporary Dbspace” on page 35-49.

Creating a Dbspace with ON-Monitor
To create a dbspace with ON-Monitor, follow these instructions:

1. To create a dbspace, select Dbspaces➞Create.

2. Enter the name of the new dbspace in the field Dbspace Name.

3. If you want to create a mirror for the initial dbspace chunk, enter Y in
the Mirror field. Otherwise, enter N.

4. If the dbspace that you are creating is a temporary dbspace, enter Y
in the Temp field. Otherwise, enter N.

5. Enter the full pathname for the initial primary chunk of the dbspace
in the Full Pathname field of the primary-chunk section.

6. Specify an offset in the Offset field.

7. Enter the size of the chunk, in kilobytes, in the Size field.

8. If you are mirroring this dbspace, enter the mirrored-chunk full
pathname, size, and optional offset in the mirrored-chunk section of
the screen.

UNIX
Managing Disk Space 14-13

Adding a Chunk to a Dbspace
Adding a Chunk to a Dbspace
If one of your dbspaces is becoming full, you might want to add a new chunk.
Before you do, however, you must first allocate disk space as described in
“Allocating Disk Space” on page 14-4.

Adding a Chunk
You add a chunk when you need to increase the amount of disk space
allocated to a dbspace or blobspace.

If you are adding a chunk to a mirrored dbspace or blobspace, you must also
add a mirrored chunk.

You must specify an explicit pathname for the chunk. For more information,
see “Creating a Dbspace” on page 14-11.

When you add a chunk allocated as file space, the database server verifies
that the disk space is sufficient for the new chunk by creating and then
removing a file of the size requested. If the size of the chunk is greater than
the available space on the disk, the database server might inadvertently fill
your file system in the process of verifying available disk space.

You must be logged in as user informix or root to add a chunk. You can add
a chunk to a dbspace using either of the following utilities:

■ onspaces

■ ON-Monitor ♦

You can make this change while the database server is in on-line mode. The
newly added chunk (and its associated mirror, if one exists) is available
immediately.

UNIX
14-14 Administrator’s Guide for Informix Dynamic Server

Adding a Chunk
Adding a Chunk with onspaces

To add a chunk to a dbspace, use the -a option of onspaces as illustrated in
the following example. This example adds a 10-megabyte mirrored chunk to
blobsp3. An offset of 200 kilobytes for both the primary and mirrored chunk
is specified. If you are not adding a mirrored chunk, you can omit the
-m option.

% onspaces -a blobsp3 -p /dev/raw_dev1 -o 200 -s 10000 -m /dev/raw_dev2 200

The next example adds a chunk of 5000 kilobytes of raw disk space, at an
offset of 5200 kilobytes, to dbspace dpspc3.

onspaces -a dbspc3 \\.\e: -o 5200 -s 5000

For reference information on adding a chunk to a dbspace with onspaces, see
“Add a Chunk to a Blobspace or Dbspace” on page 35-53.

Adding a Chunk with ON-Monitor

To add a chunk to a dbspace, follow these instructions:

1. Select the Dbspaces menu, Add_chunk option.

2. Use RETURN or the arrow keys to select the blobspace or dbspace that
will receive the new chunk and press CTRL-B or F3.

3. The next screen indicates whether the blobspace or dbspace is
mirrored. If it is, enter Y in the Mirror field.

4. If the dbspace to which you are adding the chunk is a temporary
dbspace, enter Y in the Temp field.

5. If you indicated that the dbspace or blobspace is mirrored, you must
specify both a primary chunk and mirrored chunk. Enter the
complete pathname for the new primary chunk in the Full Pathname
field of the primary-chunk section.

6. Specify an offset in the Offset field.

7. Enter the size of the chunk, in kilobytes, in the Size field.

8. If you are mirroring this chunk, enter the mirrored-chunk complete
pathname, size, and optional offset in the mirror-chunk section of the
screen.

UNIX
Managing Disk Space 14-15

Creating a Blobspace
Creating a Blobspace
Before you create a blobspace, you must first allocate disk space as described
in “Allocating Disk Space” on page 14-4.

Specify an explicit pathname for the initial chunk of the blobspace. For more
information, see “Creating a Dbspace” on page 14-11

You can mirror the blobspace when you create it if mirroring is enabled for
the database server. Mirroring takes effect immediately.

A newly created blobspace is not immediately available for storage of TEXT
or BYTE data. Blobspace logging and recovery require that the statement that
creates a blobspace and the statements that insert TEXT and BYTE data into
that blobspace appear in separate logical-log files. This requirement is true
for all blobspaces, regardless of the logging status of the database. To accom-
modate this requirement, switch to the next logical-log file after you create a
blobspace. (For instructions, see “Backing Up Logical-Log Files to Free
Blobpages” on page 18-22.)

When the initial chunk of the blobspace that you are creating is a file, the
database server verifies that disk space is sufficient for the initial chunk. If the
size of the chunk is greater than the available space on the disk, a message is
displayed, and no blobspace is created. However, the file that the database
server creates for the initial chunk is not removed. Its size represents the
space left on your file system before you attempted to create the blobspace.
You must remove this file to reclaim the space.

You must be logged in as user root or user informix to create a blobspace. You
can create a blobspace while the database server is in on-line mode. You can
use one of the following tools to create a blobspace:

■ onspaces

■ ON-Monitor ♦

Before you create a blobspace, take time to determine what blobpage size is
optimal for your environment. For instructions, see “Optimizing Blobspace
Blobpage Size” on page 14-21.

UNIX
14-16 Administrator’s Guide for Informix Dynamic Server

Determining Database Server Page Size
Determining Database Server Page Size
When you specify blobpage size, you specify it in terms of the database
server pages. You can use one of the following methods to determine the
database server page size for your system:

■ To view the contents of the PAGE_PZERO reserved page, run the
oncheck -pr utility.

■ Select the Shared-Memory option of the ON-Monitor Parameters
menu. ON-Monitor displays a list of shared-memory parameters.
The database server page size is the last entry on the page.

■ Select the Initialize option of the ON-Monitor Parameters menu. The
first entry displayed on the screen is the page size. ♦

Creating a Blobspace with onspaces
To create a blobspace with onspaces, use the -c option as illustrated in the
following example. This example creates a 10-megabyte mirrored blobspace,
blobsp3, with a blobpage size of 10 kilobytes, where the database server page
size is 2 kilobytes. An offset of 200 kilobytes for the primary and mirrored
chunks is specified. The blobspace is created from raw disk space on a UNIX
platform.

% onspaces -c -b blobsp3 -g 5 -p /dev/raw_dev1 -o 200 -s 10000 -m /dev/raw_dev2 200

For reference information on creating a blobspace with onspaces, see “Create
a Blobspace, Dbspace, or Temporary Dbspace” on page 35-49.

Creating a Blobspace with ON-Monitor
To create a blobspace with ON-Monitor, follow these instructions:

1. Select the Dbspaces menu, BLOBSpace option.

2. Enter the name of the new blobspace in the BLOBSpace Name field.

3. If you want to create a mirror for the initial blobspace chunk, enter Y
in the Mirror field. Otherwise, enter N.

UNIX

UNIX
Managing Disk Space 14-17

Adding a Chunk to a Blobspace
4. Specify the blobpage size in terms of the number of disk pages (see
“Determining Database Server Page Size” on page 14-17) per
blobpage in the BLOBPage Size field. For example, if your database
server instance has a disk-page size of 2 kilobytes, and you want
your blobpages to have a size of 10 kilobytes, enter 5 in this field.

5. Enter the complete pathname for the initial primary chunk of the
blobspace in the Full Pathname field of the primary-chunk section.

6. Specify an offset in the Offset field.

7. Enter the size of the chunk, in kilobytes, in the Size field.

8. If you are mirroring this blobspace, enter the mirror-chunk full
pathname, size, and optional offset in the mirror-chunk section of the
screen. ♦

Adding a Chunk to a Blobspace
Adding a chunk to a blobspace is identical to adding a chunk to a dbspace.
Both procedures are explained in “Adding a Chunk” on page 14-14.

Dropping a Chunk from a Dbspace with onspaces
To drop a chunk successfully from a dbspace with onspaces, all pages other
than overhead pages must be freed. If any pages remain allocated to
nonoverhead entities, onspaces returns the following error:

Chunk is not empty.

If this situation occurs, execute oncheck -pe to determine which database
server entity still occupies space in the chunk. Remove it, and reenter the
onspaces command.

You cannot drop the initial chunk of a dbspace. Use the fchunk column of
onstat -d to determine which chunk is the initial chunk of a dbspace. For
more information, see “-d Option” on page 35-72.
14-18 Administrator’s Guide for Informix Dynamic Server

Dropping a Chunk from a Blobspace
The following example drops a chunk from dbsp3 on UNIX. An offset of
300 kilobytes is specified.

% onspaces -d dbsp3 -p /dev/raw_dev1 -o 300

For reference information on dropping a chunk from a dbspace with
onspaces, see “Drop a Chunk” on page 35-55.

Dropping a Chunk from a Blobspace
The procedure for dropping a chunk from a blobspace is identical to the
procedure for dropping a chunk from a dbspace described in “Dropping a
Chunk from a Dbspace with onspaces” on page 14-18 except that the
database server must be in quiescent mode. Other than this condition, you
need only substitute the name of your blobspace wherever a reference to a
dbspace occurs.

Dropping a Dbspace or Blobspace
Before you drop a dbspace, you must first drop all databases and tables that
you previously created in the dbspace. Before you drop a blobspace, you
must drop all tables that have a TEXT or BYTE column that references the
blobspace.

Execute oncheck -pe to verify that no tables or log files are residing in the
dbspace or blobspace.

You cannot drop the root dbspace.

Warning: After you drop a dbspace or blobspace the newly freed chunks are available
for reassignment to other dbspaces or blobspaces. However, before you reassign the
newly freed chunks, you must perform a whole-system backup. If you do not perform
this backup, and you subsequently need to perform a restore, the restore might fail
because the dbspace-backup reserved pages are not up-to-date. If you are using
ON-Bar for your backup and restore system, refer to your “Backup and Restore
Guide.” If you are using ON-Archive or the ontape utility as your backup and
restore tool, refer to your “Archive and Backup Guide.”
Managing Disk Space 14-19

Dropping a Dbspace or Blobspace with onspaces
If you drop a dbspace or blobspace that is mirrored, the mirror spaces are also
dropped.

If you want to drop only a dbspace or blobspace mirror, turn off mirroring.
(See “Ending Mirroring” on page 24-12.) This action drops the dbspace or
blobspace mirrors and frees the chunks for other uses.

You must be logged in as root or informix to drop a dbspace from either
ON-Monitor or onspaces.

Dropping a Dbspace or Blobspace with onspaces
To drop a dbspace or blobspace with onspaces, use the -d option as
illustrated in the following examples.

This example drops a dbspace called dbspce5 and its mirrors.

% onspaces -d dbspce5

This example drops a dbspace called blobsp3 and its mirrors.

% onspaces -d blobsp3

For reference information on dropping a dbspace or blobspace with
onspaces, see “Drop a Blobspace or Dbspace” on page 35-52.

Dropping a Dbspace or Blobspace with ON-Monitor
To drop a dbspace or blobspace with ON-Monitor, follow these instructions:

1. Select the Dbspaces menu, Drop option.

2. Use RETURN or Arrow keys to scroll to the dbspace or blobspace that
you want to drop.

3. Press CTRL-B or F3.

You are asked to confirm that you want to drop the dbspace or blobspace.

UNIX
14-20 Administrator’s Guide for Informix Dynamic Server

Optimizing Blobspace Blobpage Size
Optimizing Blobspace Blobpage Size
Familiarize yourself with the database server approach to blobspace storage
of TEXT and BYTE data before you begin this section. “Structure of a
Blobspace” on page 38-59 and “Blobspace Page Types” on page 38-64
provide background information for this section. This section is not appli-
cable if you store TEXT and BYTE data in dbspaces.

Determining Blobspace Storage Efficiency
When you are evaluating blobspace storage strategy, you can measure
efficiency by two criteria:

■ Blobpage fullness

■ Blobpages required per TEXT or BYTE object

Blobpage fullness refers to the amount of data within each blobpage. TEXT
and BYTE data stored in a blobspace cannot share blobpages. Therefore, if a
single TEXT or BYTE object requires only 20 percent of a blobpage, the
remaining 80 percent of the page is unavailable for use. However, you want
to avoid making the blobpages too small. When several blobpages are
needed to store each TEXT or BYTE object, you increase the overhead cost of
storage. For example, more locks are required for updates because a lock
must be acquired for each blobpage.

Blobspace Storage Statistics
To help you determine the optimal blobpage size for each blobspace, use the
following database server utility commands: oncheck -pB and oncheck -pe.

The oncheck -pB command lists the following statistics for each table (or
database):

■ The number of blobpages used by the table (or database) in each
blobspace

■ The average fullness of the blobpages used by each TEXT or BYTE
object stored as part of the table (or database)
Managing Disk Space 14-21

Determining Blobpage Fullness with oncheck -pB
The oncheck -pe command can provide background information about the
objects stored in a blobspace:

■ Complete ownership information (displayed as database:owner.table)
for each table that has data stored in the blobspace chunk

■ The number of the database server pages used by each table to store
its associated TEXT and BYTE data

Determining Blobpage Fullness with oncheck -pB
The oncheck -pB command displays statistics that describe the average
fullness of blobpages. These statistics provide a measure of storage efficiency
for individual TEXT and BYTE objects in a database or table. If you find that
the statistics for a significant number of TEXT or BYTE objects show a low
percentage of fullness, the database server might benefit from changing the
size of the blobpage in the blobspace.

The following example retrieves storage information for all TEXT and BYTE
objects stored in the table sriram.catalog in the stores7 database:

oncheck -pB stores7:sriram.catalog

Figure 14-2 shows the output of this command.

Space Name is the name of the blobspace that contains one or more TEXT or
BYTE objects stored as part of the table (or database).

 BLOBSpace Report for stores7:sriram.catalog

Total pages used by table7

BLOBSpace usage:
SpacePage Percent Full
NameNumberPages0-25%26-50%51-75%76-100%

blobPIC0x3000801 x
blobPIC0x3000822 x

 Page Size is 61443

bspc10x2000b22 x
bspc10x2000b62 x

 Page Size is 20484

Figure 14-2
Output of

oncheck -pB
14-22 Administrator’s Guide for Informix Dynamic Server

Determining Blobpage Fullness with oncheck -pB
Page Number is the starting address in the blobspace of a specific TEXT or
BYTE object.

Pages is the number of the database server pages required to store this TEXT
or BYTE object.

Percent Full is a measure of the average fullness of all the blobpages that hold
this TEXT or BYTE objects.

Page Size is the size in bytes of the blobpage for this blobspace. Blobpage size
is always a multiple of the database server page size. See “Determining
Database Server Page Size” on page 14-17 for instructions on how to obtain
the page size for your database server.

The example output indicates that four TEXT or BYTE objects are stored as
part of the table sriram.catalog. Two objects are stored in the blobspace
blobPIC in 6144-byte blobpages. Two more objects are stored in the blobspace
bspc1 in 2048-byte blobpages.

The summary information that appears at the top of the display, Total pages
used by table is a simple total of the blobpages needed to store TEXT or BYTE
objects. The total says nothing about the size of the blobpages used, the
number of TEXT or BYTE objects stored, or the total number of bytes stored.

The efficiency information displayed under the Percent Full heading is
imprecise, but it can alert an administrator to trends in the storage of TEXT
and BYTE data.

The following sections use the output shown in Figure 14-2 to demonstrate
the idea of average fullness.

Interpreting Blobpage Average Fullness

The first TEXT or BYTE object listed in Figure 14-2 on page 14-22 is stored in
the blobspace blobPIC and requires one 6144-byte blobpage. The blobpage is
51 to 75 percent full, meaning that the size is between 0.51 * 6144 = 3133 bytes
and 0.75 * 6144 = 4608. The maximum size of this TEXT or BYTE object must
be less than or equal to 75 percent of 6144 bytes, or 4608 bytes.
Managing Disk Space 14-23

Determining Blobpage Fullness with oncheck -pB
The second object listed under blobspace blobPIC requires two 6144-byte
blobpages for storage, or a total of 12,288 bytes. The average fullness of all
allocated blobpages is 51 to 75 percent. Therefore, the minimum size of the
object must be greater than 50 percent of 12,288 bytes, or 6144 bytes. The
maximum size of the TEXT or BYTE object must be less than or equal to
75 percent of 12,288 bytes, or 9216 bytes. The average fullness does not mean
that each page is 51 to 75 percent full. A calculation would yield 51 to
75 percent average fullness for two blobpages where the first blobpage is
100 percent full and the second blobpage is 2 to 50 percent full.

Now consider the two TEXT or BYTE objects in blobspace bspc1. These two
objects appear to be nearly the same size. Both objects require two 2048-byte
blobpages, and the average fullness for each is 76 to 100 percent. The
minimum size for these TEXT or BYTE objects must be greater than 75 percent
of the allocated blobpages, or 3072 bytes. The maximum size for each object
is slightly less than 4096 bytes (allowing for overhead).

Apply Efficiency Criteria to Output

Looking at the efficiency information for blobspace bspc1, a database server
administrator might decide that a better storage strategy for TEXT and BYTE
data would be to double the blobpage size from 2048 bytes to 4096 bytes.
(Blobpage size is always a multiple of the database server page size.) If the
database server administrator made this change, the measure of page
fullness would remain the same, but the number of locks needed during an
update of a TEXT or BYTE object would be reduced by half.

The efficiency information for blobspace blobPIC reveals no obvious suggestion
for improvement. The two TEXT or BYTE objects in blobPIC differ consid-
erably in size, and there is no optimal storage strategy. In general, TEXT or
BYTE objects of similar size can be stored more efficiently than TEXT or BYTE
objects of different sizes.
14-24 Administrator’s Guide for Informix Dynamic Server

15
Chapter
Overview of Table
Fragmentation and PDQ
What Is Fragmentation? 15-3
Fragmentation Goals 15-5
Whose Responsibility Is Fragmentation? 15-6
Fragmentation Strategies 15-6

Fragmenting Tables 15-7
Fragmenting a Temporary Table 15-8
Fragmenting Table Indexes 15-8

Using SQL Statements to Perform Fragmentation Tasks 15-9

What Is PDQ? . 15-10
High Degree of Parallelism. 15-11

When Should You Use PDQ? 15-12
OLTP Applications 15-13

Processing OLTP Queries 15-13
Decision-Support Applications 15-14
Processing Decision-Support Queries 15-15

How Does the Database Server Allocate Resources with PDQ?. . . . 15-16
Parameters Used for Controlling PDQ 15-16

PDQ Priority 15-17

How Does the Database Server Use PDQ? 15-18
SQL Operations That Take Advantage of PDQ 15-18

Parallel Delete 15-18
Parallel Inserts. 15-19
Parallel Index Builds 15-20

SQL Operations That Do Not Use PDQ 15-21
Update Statistics 15-21
Stored Procedures and Triggers 15-22
Correlated and Uncorrelated Subqueries 15-22

Outer Index Joins. 15-23
Remote Tables 15-23

15-2 Ad
ministrator’s Guide for Informix Dynamic Server

This chapter provides an overview of the table fragmentation and
parallel database query (PDQ) features of your database server.

Table fragmentation allows you to store the parts of a table on different disks.
Table fragmentation allows you to store large amounts of data in a single
table and to balance the workload of large queries and high-transaction
volumes across multiple disks.

Parallel database query (PDQ) is an Informix database server feature that can
improve performance dramatically when the database server processes
queries initiated by decision-support applications. PDQ features allow the
database server to distribute the work for one aspect of a query among
several processors. For example, if a query requires an aggregation, the
database server can distribute the work for the aggregation among several
processors. PDQ also includes tools for memory-resource management.

PDQ delivers maximum performance benefits when the data that is being
queried is in fragmented tables. For information on how to use PDQ and
fragmentation for maximum performance, refer to your refer to your Perfor-
mance Guide.

What Is Fragmentation?
Fragmentation is a database server feature that enables you to define groups
of rows or index keys within a table according to some algorithm or scheme.
You can store each group or fragment (also referred to as partitions) in a
separate dbspace that is associated with a specific physical disk. You create
the fragments and assign them to dbspaces with SQL statements.

From the perspective of an end user or client application, a fragmented table
is identical to a nonfragmented table. Client applications do not require any
modifications to allow them to access the data that is contained in
fragmented tables.
Overview of Table Fragmentation and PDQ 15-3

What Is Fragmentation?
The database server stores the location of each table and index fragment,
along with other related information, in the system catalog table named
sysfragments. You can use this table to access information about your
fragmented tables and indexes. For the complete listing of the information in
this system catalog table, refer to the Informix Guide to SQL: Reference.

Because the database server has information on which fragments contain
which data, the database server can route client requests for data to the
appropriate fragment without accessing irrelevant fragments, as Figure 15-1
illustrates. For more information on fragment elimination, refer to your
Performance Guide.

The following sections cover these fragmentation topics:

■ Fragmentation goals

■ Fragmentation strategies

■ Summary of SQL statements for fragmentation

Figure 15-1
Routing Client

Requests To The
Appropriate Table

Fragments

Disks

Unified table
image as viewed
by the client
application

Table fragments
as stored by the
database server

Client applications
Client

Client Client
15-4 Administrator’s Guide for Informix Dynamic Server

Fragmentation Goals
Fragmentation Goals
Consider fragmenting your tables if you have at least one of the following
goals:

■ Improved single-user response time

To improve the performance of individual queries, use fragmen-
tation with parallel database query (PDQ) to scan in parallel
fragments that are spread across multiple disks.

■ Improved concurrency

Fragmentation can reduce contention for data that is located in large
tables that are used by multiple queries and OLTP applications.
Fragmentation reduces contention because each fragment resides on
a separate I/O device, and the database server directs queries to the
appropriate fragment.

■ Improved availability

If a fragment becomes unavailable, the database server can still
access the remaining fragments.

■ Improved backup-and-restore characteristics

Fragmentation gives you a finer backup-and-restore granularity.
This granularity can reduce the time that is required for backup-and-
restore operations. In addition, you can improve the performance of
backup-and-restore operations if you use ON-Bar or ON-Archive to
perform these operations in parallel.

Each of the preceding goals has its own implications for the fragmentation
strategy that you ultimately implement. “Fragmentation Strategies” on
page 15-6 discusses these issues. Your primary fragmentation goal deter-
mines, or at least influences, how you implement your fragmentation
strategy.

In deciding whether to use fragmentation to meet any of the preceding goals,
keep in mind that fragmentation requires some additional administration
and monitoring activity. For more information about fragmentation, refer to
your Performance Guide.
Overview of Table Fragmentation and PDQ 15-5

Whose Responsibility Is Fragmentation?
Whose Responsibility Is Fragmentation?
Some overlap exists between the responsibilities of the database server
administrator and those of the DBA (database administrator) with respect to
fragmentation. The DBA creates the database schema. This schema can
include table fragmentation. The database server administrator, on the other
hand, lays out the disk space and creates the dbspaces where the fragmented
tables reside. Because these responsibilities cannot be performed in isolation,
implementing fragmentation requires a cooperative effort between the
database server administrator and the DBA.

Fragmentation Strategies
A fragmentation strategy consists of two parts:

■ A distribution scheme

The scheme that you use to group rows or index keys into fragments
is called the distribution scheme. You specify the distribution scheme
in the FRAGMENT BY clause of the CREATE TABLE, CREATE INDEX, or
ALTER FRAGMENT statement.

■ The set of dbspaces in which you locate the fragments

You specify the set of dbspaces in the IN clause of these SQL
statements.

The database server supports the following distribution schemes:

■ Round-robin. This type of fragmentation places rows one after
another in fragments, rotating through the series of fragments to
distribute the rows evenly.

For INSERT statements, the database server uses a hash function on a
random number to determine the fragment in which to place the
row. For INSERT cursors, the database server places the first row in a
random fragment, and the second and subsequent rows are assigned
to fragments in sequence. If one of the fragments is full, that
fragment is skipped.
15-6 Administrator’s Guide for Informix Dynamic Server

Fragmentation Strategies
■ Expression-based. This type of fragmentation puts rows into
fragments based on a fragmentation expression that you specify. This
expression defines criteria, or rules, for assigning a set of rows to
each fragment. The expression can take the form of a range or some
other arbitrary rule. You can specify a remainder fragment that holds
all rows that do not match the criteria for any other fragment,
although a remainder fragment reduces the efficiency of the
expression-based distribution scheme.

Fragmenting Tables

Formulating a fragmentation strategy for a table requires you to make the
following decisions:

1. Decide what your primary fragmentation goal is.

Your fragmentation goals depend, to a large extent, on the types of
applications that access the table.

2. Decide how the table should be fragmented.

You must make the following decisions:

■ Whether to fragment the table data, the table index, or both

This decision is usually based on your primary fragmentation
goal.

■ What is the ideal distribution of rows or index keys for the table

This decision is also based on your primary fragmentation goal.

3. Decide on a distribution scheme.

4. To complete the fragmentation strategy, you must decide on the
number and location of the fragments.

For more information on the decisions that you must make to formulate a
fragmentation strategy, see the Informix Guide to Database Design and Imple-
mentation. For information on optimizing the performance of your
fragmentation scheme, refer to your Performance Guide.
Overview of Table Fragmentation and PDQ 15-7

Fragmentation Strategies
Fragmenting a Temporary Table

Just as you fragment permanent tables, you also can fragment an explicit
temporary table across multiple disks.

To create a temporary, fragmented table, use the TEMP keyword of the
CREATE TABLE statement. You can specify what distribution scheme and
which dbspaces to use for the temporary table. For more information on the
types of temporary tables, refer to “Temporary Tables” on page 13-31.

You can define your own fragmentation strategy for an explicit temporary
table, or you can let the database server dynamically determine the fragmen-
tation strategy. For more information, refer to your Performance Guide.

Fragmenting Table Indexes

You can fragment both table data and table indexes. When you create an
index, you can:

■ create an attached index by omitting the storage specification from the
CREATE INDEX statement.

When you do, the attached index takes on the same fragmentation
strategy as the table. Each fragment of an attached index resides in
the same dbspace as the corresponding table data.

You create an attached index by omitting the FRAGMENT BY and IN
clauses from the CREATE INDEX statement.

CREATE TABLE tb1 (a int)
FRAGMENT BY EXPRESSION

(a >= 0 and a < 5) IN dbspace1,
(a >= 5 and a < 10) IN dbspace2

.

.

.

;
CREATE INDEX idx1 ON tb1(a);
15-8 Administrator’s Guide for Informix Dynamic Server

Using SQL Statements to Perform Fragmentation Tasks
■ create a detached index by including an explicit storage specification
in the CREATE INDEX statement.

When you do, the detached index uses its own fragmentation
strategy, which can differ from that of the table. A fragment in a
detached index can reside in a different dbspace than the corre-
sponding table data.

You can use only the expression-based distribution scheme to
fragment an index. You cannot use the round-robin distribution
scheme for an index. For more information on the CREATE INDEX
statement, refer to the Informix Guide to SQL: Syntax.

Fragmenting table data and table indexes can greatly affect performance. For
detailed information on fragmenting table data and table indexes, see your
Performance Guide.

Using SQL Statements to Perform Fragmentation Tasks
To perform most fragmentation tasks, you use appropriate SQL statements.
Figure 15-2 lists the fragmentation tasks and the SQL statements to accom-
plish these tasks.

For details on how to accomplish these fragmentation tasks, refer to the
Informix Guide to Database Design and Implementation. For the syntax of these
SQL statements, refer to the Informix Guide to SQL: Syntax.

Figure 15-2
Fragmentation Tasks and Corresponding SQL Statements

Fragmentation Task SQL Statements

Creating a new fragmented table CREATE TABLE statement,
FRAGMENT BY clause

Creating a fragmented table from a single
nonfragmented table

ALTER FRAGMENT statement,
INIT clause

Creating a fragmented table from more than one
nonfragmented table

ALTER FRAGMENT statement,
ATTACH clause

Modifying distribution scheme for a fragmented
table

ALTER FRAGMENT statement,
MODIFY clause

(1 of 2)
Overview of Table Fragmentation and PDQ 15-9

What Is PDQ?
What Is PDQ?
PDQ refers to the techniques that the database server can use to distribute the
execution of a single query over several processors. The database server can
also use PDQ for queries that consume large quantities of non-CPU resources,
in particular large quantities of memory and many disk scans.

A query that is processed with PDQ techniques is called a PDQ query. When
the database server processes a PDQ query, it first divides the query into
subplans. The database server then allocates the subplans to a number of
threads that process the subplans in parallel. Because each subplan repre-
sents a smaller amount of processing time when compared to the original
query, and because each subplan is processed simultaneously with all other
subplans, the database server can drastically reduce the time that is required
to process the query. Figure 15-3 illustrates this concept.

Adding a fragment to a table ALTER FRAGMENT statement,
ADD clause

Removing a fragment from a table ALTER FRAGMENT statement,
DROP clause

Reinitializing a fragmentation scheme ALTER FRAGMENT statement,
INIT clause

Converting a fragmented table to a non-
fragmented table

ALTER FRAGMENT statement,
INIT clause

Creating a fragmented index CREATE INDEX statement

Adding an explicit rowid column to a fragmented
table

ALTER TABLE statement,
ADD ROWID clause

Fragmentation Task SQL Statements

(2 of 2)
15-10 Administrator’s Guide for Informix Dynamic Server

High Degree of Parallelism
PDQ consists of five principal components:

■ Parallel scan

■ Parallel join

■ Parallel sort

■ Parallel aggregate

■ Parallel group

High Degree of Parallelism
The degree of parallelism for a query refers to the number of subplans that
the database server executes in parallel to run the query. For example, a two-
table join that six threads execute (with each thread executing one sixth of the
required processing) has a higher degree of parallelism than one that two
threads execute.

The database server determines the best degree of parallelism for each
component of a PDQ query, based on values set by the database adminis-
trator, by the user, and by the client application, as well as various internal
considerations such as the number of available virtual processors (VPs), the
fragmentation of the tables that are being queried, the complexity of the
query, and so on.

Figure 15-3
Parallel Database

QueryCPU

CPU

CPU
Subplan

Subplan

Subplan

Query
Overview of Table Fragmentation and PDQ 15-11

When Should You Use PDQ?
At times, the database server uses the components themselves in parallel. For
example, consider what occurs when the database server must process a
complex join. First, the database server scans the data in parallel. As soon as
it has scanned sufficient data to begin the join, it does so. Just after the join
begins, the database server begins the sort and performs other required
processing until the full join is completed.

You gain the most benefit from PDQ when you use fragmented tables on a
multiprocessor computer. However, PDQ can provide performance gains
even with nonfragmented tables on a uniprocessor computer.

PDQ provides performance advantages on both uniprocessor computers and
multiprocessor computers.

■ On a uniprocessor computer, PDQ allows the database server to
submit I/O requests to multiple disks in parallel and to take full
advantage of the memory on the computer.

■ On a multiprocessor computer, PDQ distributes the execution of a
query across available processors.

If you want to derive the full performance benefits that PDQ can offer,
Informix recommends that you run PDQ on a multiprocessor computer.

When Should You Use PDQ?
Applications that access data stored in a relational database can be divided
into the following two types:

■ On-line transaction-processing (OLTP) applications

■ Decision-support applications

The complex queries that are typical of decision-support applications can
benefit from PDQ.

The next sections describe the characteristics of OLTP and decision-support
applications.
15-12 Administrator’s Guide for Informix Dynamic Server

OLTP Applications
OLTP Applications
OLTP applications are characterized by quick, indexed access to a small
number of data items. An order-entry system is an example of a typical OLTP
system. The transactions handled by OLTP applications are usually simple
and predefined.

OLTP applications can be characterized as follows:

■ Simple transactions that involve small amounts of data

■ Indexed access to data

■ Many users

■ Frequent requests

■ Very fast response times

Processing OLTP Queries

The default behavior of the database server is ideal for OLTP transactions,
optimizing performance for short transactions that require rapid response
times. All queries have the same priority for CPU, memory, and disk I/O.

Queries that require quick response and generate only a small amount of
information should not use PDQ. For example, the following queries should
not use PDQ:

■ Do we have a hotel room available in Berlin on December 8?

■ Does the store in Mill Valley have green tennis shoes in size 4?

Warning: Users must not set the PDQPRIORITY environment variable to a non-
zero value for OLTP queries.

The impact of PDQ on OLTP queries can be dramatic. One PDQ parameter
limits the number of simultaneous queries the database server can perform.
Suppose the number of simultaneous queries is set to 4. If another query
requests service, it must wait until one of the previous four queries finishes.
If the four queries are decision-support queries, the delay could be several
minutes. Typical OLTP queries must be processed immediately.
Overview of Table Fragmentation and PDQ 15-13

Decision-Support Applications
Decision-Support Applications
Decision-support applications provide information for strategic planning,
decision making, and report preparation. Decision-support applications
frequently generate queries that require the database server to scan entire
tables and manipulate large amounts of data. These queries can require
operations such as multiple joins, temporary tables, and hundreds, if not
thousands, of calculations. For example, the following queries should use the
PDQ features of the database server:

■ Based on the predicted number of housing starts, the known age of
existing houses, and the observed roofing choices for houses in
different areas and price ranges, what roofing materials should we
order for each of our regional distribution centers?

■ How does the cost of health-care plan X compare with the cost of
health-care plan Y, considering the demographic profile of our
company? Would plan X be better for some regions and plan Y for
others?

Such operations require large amounts of data and large amounts of memory.
As a result, the execution times for decision-support applications are far
longer than the execution times required for typical OLTP applications. Other
typical decision-support applications include payroll, inventory reporting,
and end-of-period accounting reports. These applications are frequently
executed in a batch environment.

Queries that contain one or more of the following operations require large
quantities of memory:

■ Merge joins

■ Hash joins

■ Sorting

■ Groups

Other factors can also influence how the database server allocates resources
to a query. Consider the following SELECT statement:

SELECT col1, col2 FROM table1 ORDER BY col1
15-14 Administrator’s Guide for Informix Dynamic Server

Processing Decision-Support Queries
If no indexes exist on table1, a sort is required, and hence the database server
must allocate memory and temporary disk space to sort the query. However,
if column col1 is indexed, the query does not require these resources.

Decision-support applications have the following characteristics:

■ Complex queries that involve large amounts of data

■ Large memory requirements

■ Few users

■ Periodic requests

■ Relatively long response times

When both OLTP and decision-support queries are running on the same
computer, Dynamic Server must balance its resources so that all users receive
the best possible performance.

The database server uses the PDQ priority value of a query to determine when
to use PDQ to process a query in parallel. For more information on PDQ
priority, refer to “PDQ Priority” on page 15-17.

Processing Decision-Support Queries
If a user sets the PDQ priority greater than 0 for a given query, the database
server treats the query as a PDQ query and controls the PDQ resources
allocated to it. PDQ resources include memory, CPU VPs, disk I/O, and scan
threads. The database server determines the degree to which it will paral-
lelize the query based on the following factors:

■ The value of PDQ priority

■ The availability of computer-system resources (CPUs, memory, and
disk I/O)

■ The value of parameters (NUMCPUVPS, DS_TOTAL_MEMORY, and so
forth) set by the database server administrator

The parameters that control PDQ resources are discussed in the following
section.
Overview of Table Fragmentation and PDQ 15-15

How Does the Database Server Allocate Resources with PDQ?
How Does the Database Server Allocate Resources
with PDQ?
This section discusses the tools that you can use to balance resource use.

Parameters Used for Controlling PDQ
Figure 15-4 summarizes the configuration parameters, environment
variables, and the SQL statement that control how the database server
allocates resources to PDQ. The value set by the SQL statement supersedes
values set by the environment variables, and values set by environment
variables supersede values set by configuration parameters.

Figure 15-4
Parameters Used for Controlling PDQ

Configuration
Parameters

Environment
Variables

SQL
Statements Purpose of Parameter

DS_MAX_QUERIES Maximum number of PDQ queries that can be
active at any one time

DS_MAX_SCANS Maximum number of PDQ scan threads that
can execute concurrently

DS_TOTAL_MEMORY Maximum amount of memory that can be
allocated for use by PDQ

MAX_PDQPRIORITY Percentage of user’s requested PDQ priority
value that the database server grants

OPTCOMPIND OPTCOMPIND Indicate a preferred join type to the query
optimizer

PDQPRIORITY SET PDQPRIORITY Request priority and percentage of PDQ
resources for an application or a specific query
15-16 Administrator’s Guide for Informix Dynamic Server

Parameters Used for Controlling PDQ
For more information on PDQ parameters, refer to the sources shown in the
following table.

PDQ Priority

Users specify what part of database-server resources to devote to PDQ
queries by setting the PDQPRIORITY environment variable or using the SET
PDQPRIORITY SQL statement. Users can use the SQL statement SET
PDQPRIORITY to control the parallelism of individual SQL statements and the
PDQPRIORITY environment variable to control the resources allocated to an
individual user.

Users can set PDQ priority to OFF, LOW, or HIGH (values 0, 1, 100, respec-
tively) or integer values between 0 and 100. The values 0 and 1 have special
meanings:

■ A PDQ priority value of 0 (the default) means that the features of
PDQ are not used.

■ A PDQ priority value of 1 means to do parallel scans only.

■ All other values (2 through 100) represent the percent of the
available PDQ resources that the query requests during its execution.

A query running with a PDQ priority of 100 uses all available memory and
scan resources. If PDQ priority is less than 100, the query consumes propor-
tionally fewer resources. You can limit the percentage of PDQ resources that
the database server actually allocates to users by setting the
MAX_PDQPRIORITY configuration parameter.

Parameter Refer To

 MAX_PDQPRIORITY page 33-52 and your Performance Guide

DS_MAX_QUERIES page 33-26 and your Performance Guide

DS_MAX_SCANS page 33-27 and your Performance Guide

DS_TOTAL_MEMORY page 33-28 and your Performance Guide

OPTCOMPIND page 33-68 and your Performance Guide
Overview of Table Fragmentation and PDQ 15-17

How Does the Database Server Use PDQ?
The environment variable and the SQL statement use the same range of
values for setting PDQ priority. In addition, the DEFAULT option for the SET
PDQPRIORITY statement allows an application to revert to the value for PDQ
priority as set by the environment variable, if any. DEFAULT is the symbolic
equivalent of the -1 value.

For more information about the environment variable and the SQL statement,
refer to the Informix Guide to SQL: Reference and the Informix Guide to SQL:
Syntax, respectively.

Important: The database server does not decide whether a query should be a PDQ
query. If the PDQ priority of a query is greater than zero, the processing of the query
is controlled by the PDQ parameters, even if the query does not use any parallel
processing.

How Does the Database Server Use PDQ?
This section describes the types of SQL operations that the database server
processes in parallel and the situations that limit the degree of parallelism
that the database server can use. In the following discussions, a query is any
SELECT statement.

SQL Operations That Take Advantage of PDQ
The database server takes the following two steps to process the DELETE,
INSERT, and UPDATE statements:

1. Fetch the qualifying rows.

2. Apply the action of deleting, inserting, or updating.

Parallel Delete

The database server performs the first step of a DELETE statement in parallel,
with one exception; the database server does not process the first part of a
DELETE statement in parallel if the targeted table has a referential constraint
that can cascade to a child table.
15-18 Administrator’s Guide for Informix Dynamic Server

SQL Operations That Take Advantage of PDQ
Parallel Inserts

The database server performs the following types of inserts in parallel:

■ SELECT...INTO TEMP inserts using explicit temporary tables

■ INSERT INTO...SELECT inserts using implicit temporary tables

For information on implicit and explicit temporary tables, refer to
Chapter 13, “Where Is Data Stored?” and the Informix Guide to SQL: Syntax.

Explicit Inserts Using SELECT...INTO TEMP

The database server can insert rows in parallel into explicit temporary tables
that you specify in SQL statements of the form SELECT....INTO TEMP. For
example, the database server can perform the inserts in parallel into the
temporary table, temp_table, as shown in the following example:

SELECT * FROM table1 INTO TEMP temp_table

The database server performs this type of parallel insert provided that you
set PDQ priority > 0 and DBSPACETEMP is set to a list of two or more
dbspaces.

The first item, PDQ priority > 0, is a requirement that you must meet for any
query that you want the database server to perform in parallel.

The second item, that DBSPACETEMP is set to a list of two or more dbspaces,
is required because of the way that the database server performs the insert.
To perform the insert in parallel, the database server first creates a
fragmented temporary table. So that the database server knows where to
store the fragments of the temporary table, you must specify a list of two or
more dbspaces in the DBSPACETEMP configuration parameter or the
DBSPACETEMP environment variable. In addition, you must set DBSPAC-
ETEMP to indicate storage space for the fragments before you execute the
SELECT...INTO statement.

The database server performs the parallel insert by writing in parallel to each
of the fragments in a round-robin fashion. Performance improves as you
increase the number of fragments.
Overview of Table Fragmentation and PDQ 15-19

SQL Operations That Take Advantage of PDQ
Implicit Inserts with INSERT INTO...SELECT

The database server can also insert rows in parallel into implicit tables that it
creates when it processes SQL statements of the form INSERT INTO...SELECT.
For example, the database server processes the following INSERT statement
in parallel:

INSERT INTO target_table SELECT * FROM source_table

The target table can be either a permanent table or a temporary table.

The database server processes this type of INSERT statement in parallel only
when the target tables meet the following criteria:

■ The value of PDQ priority is greater than 0.

■ The target table is fragmented into two or more dbspaces.

■ The target table has no enabled referential constraints or triggers.

■ The target table is not a remote table.

■ In a database with logging, the target table does not contain filtering
constraints.

■ The target table does not contain columns of TEXT or BYTE data type.

The database server does not process parallel inserts that reference a stored
procedure. For example, the database server never processes the following
statement in parallel:

INSERT INTO table1 EXECUTE PROCEDURE ins_proc

Parallel Index Builds

Index builds can take advantage of PDQ and can be parallelized. The
database server performs both scans and sorts in parallel for index builds.
The following operations initiate index builds:

■ CREATE INDEX

■ Add a unique, primary key

■ Add a referential constraint

■ Enable a referential constraint
15-20 Administrator’s Guide for Informix Dynamic Server

SQL Operations That Do Not Use PDQ
When PDQ is in effect, the scans for index builds are controlled by the PDQ
configuration parameters described in “Parameters Used for Controlling
PDQ” on page 15-16.

If you have a computer with multiple CPUs, the database server uses two sort
threads to sort the index keys. The database server uses two sort threads
during index builds without the user setting the PSORT_NPROCS
environment variable.

SQL Operations That Do Not Use PDQ
The database server does not process the following types of queries in
parallel:

■ Queries started with an isolation mode of Cursor Stability

Subsequent changes to the isolation mode do not affect the paral-
lelism of queries already prepared. This situation results from the
inherent nature of parallel scans, which scan several rows
simultaneously.

■ Queries that use a cursor declared as FOR UPDATE or with the WITH
HOLD qualifier

■ An UPDATE statement that has an update trigger that updates in the
For Each Row section of the trigger definition

■ Data definition language (DDL) statements

For a complete list, see the Informix Guide to SQL: Syntax.

Update Statistics
The SQL UPDATE STATISTICS statement, which is not processed in parallel, is
affected by PDQ because it must allocate the memory used for sorting. Thus
the behavior of the UPDATE STATISTICS statement is affected by the memory
management associated with PDQ.

Even though the UPDATE STATISTICS statement is not processed in parallel,
the database server must allocate the memory that this statement uses for
sorting.
Overview of Table Fragmentation and PDQ 15-21

Stored Procedures and Triggers
Stored Procedures and Triggers
Statements that involve stored procedures are not executed in parallel.
However, statements within procedures are executed in parallel.

When the database server executes a stored procedure, it does not use PDQ to
process nonrelated SQL statements contained in the procedure. However,
each SQL statement taken as an independent statement can be executed in
parallel using intraquery parallelism when possible. As a consequence, you
should limit the use of procedure calls from within data manipulation
language (DML) statements if you want to exploit the parallel-processing
abilities of the database server. For a complete list of DML statements, see the
Informix Guide to SQL: Syntax.

The database server uses intraquery parallelism to process the statements in
the body of an SQL trigger in the same way that it processes statements in
stored procedures.

Correlated and Uncorrelated Subqueries
The database server does not use PDQ to process correlated subqueries. Only
one thread at a time can execute a correlated subquery. While one thread
executes a correlated subquery, other threads that request to execute the
subquery are blocked until the first one completes.

For uncorrelated subqueries, only the first thread that makes the request
actually executes the subquery. Other threads simply use the results of the
subquery and can do so in parallel.

As a consequence, Informix strongly recommends that, whenever possible,
you build your queries using joins rather than subqueries so that your
queries can take advantage of PDQ.
15-22 Administrator’s Guide for Informix Dynamic Server

Remote Tables
Outer Index Joins

The database server reduces the PDQ priority of queries that contain OUTER
index joins to LOW (if it is set to a higher value) for the duration of the query.
If a subquery or a view contains OUTER index joins, the database server
lowers the PDQ priority of only that subquery or view, not of the parent query
or any other subquery.

Remote Tables
A remote table has all its fragments in the same remote database. Although
the database server can process the data stored in a remote table in parallel,
the data is communicated serially because the database server allocates a
single thread to submit and receive the data from the remote table.

The database server lowers the PDQ priority of queries that require access to
a remote database to LOW. In that case, all local scans are parallel, but all local
joins and remote access are nonparallel.
Overview of Table Fragmentation and PDQ 15-23

n
V
Logging and Log

Administration
Se
ct

io

16
Chapter
What Is Logging?
Which Database Server Processes Require Logging? 16-3

What Database Server Activity Is Logged?. 16-5
Activity That Is Always Logged 16-6
Activity Logged for Databases with Transaction Logging 16-7
Are Blobs Logged? 16-7

What Is Transaction Logging? 16-8
The Database-Logging Status 16-8

Unbuffered Transaction Logging 16-9
Buffered Transaction Logging 16-9
ANSI-Compliant Transaction Logging 16-10
Databases with Different Log-Buffering Status. 16-10

When to Use Transaction Logging 16-10
When to Buffer Transaction Logging 16-11
Who Can Set or Change Logging Status? 16-11

16-2 Ad
ministrator’s Guide for Informix Dynamic Server

This chapter describes Informix database server logging. First, the
chapter describes logging with respect to the database server functionality. It
addresses the following questions:

■ Which database server features require logging?

■ What database server activity is logged?

Next, the chapter describes logging with respect to databases. You specify
whether a database uses transaction logging and, if it does, what log-buffering
mechanism it uses. The chapter addresses the following questions:

■ What is the database logging status?

■ When should transaction logging be used?

■ When should buffered transaction logging be used?

■ Who can set or change the database logging status?

Which Database Server Processes Require
Logging?
As the database server operates—as it processes transactions, keeps track of
data storage, ensures data consistency, and so on—it automatically generates
logical-log records for some of the actions it takes. Most of the time, the
database server makes no further use of the log records. However, when the
database server needs to roll back a transaction, to execute a fast recovery
after a system failure, for example, the log records are critical. The log records
are at the heart of the database server data-recovery mechanisms.

Tip: If you use ON-Bar for your backup and restore tool, see your “Backup and
Restore Guide” or information on how to restore your data from a dbspace backup. If
you use ON-Archive or ontape for your backup and restore tool, see your “Archive
and Backup Guide.”
What Is Logging? 16-3

Which Database Server Processes Require Logging?
The database server stores the log records in a logical log. The logical log is
made up of logical-log files that the database server manages on disk until they
have been safely transferred off-line (backed up). The database server admin-
istrator keeps the off-line log records (in the backed-up logical-log files) until
they are needed during a data restore, or until the administrator decides that
the records are no longer needed for a restore. For information about logical-
log administration topics, see Chapter 18, “What Is the Logical Log?”

The database server uses logical-log records when it performs various
functions that recover data and ensure data consistency, as follows:

■ Fast recovery

If the database server shuts down in an uncontrolled manner, the
database server uses the log records to recover all transactions that
occurred since the most-recent checkpoint—when all the data in
shared memory and all the data on disk were the same (also known
as physically consistent)—and to roll back any uncommitted transac-
tions. The database server uses the log records in the second phase of
fast recovery when it returns the entire database server to a state of
logical consistency up to the point of the most-recent logical-log
record. (For more information, see “Details of Fast Recovery” on
page 22-5.)

■ Transactions roll back

If a database has transaction logging turned on (see “What Is Trans-
action Logging?” on page 16-8), and a transaction must be rolled
back, the database server uses the log records to reverse the changes
made on behalf of the transaction.

■ Data restoration

During a data restore, you combine the backup tapes of the logical-
log files with the most-recent database server dbspace backup tapes
to re-create the database server system up to the point of the most-
recently backed-up logical-log record. After the dbspace backup
tapes have been restored, the database server essentially uses the log
records to reimplement all the logged activity since the last dbspace
backup.
16-4 Administrator’s Guide for Informix Dynamic Server

What Database Server Activity Is Logged?
■ Deferred checking

If a transaction uses the SET CONSTRAINTS statement to set checking
to DEFERRED, the database server does not check the constraints
until the transaction is committed. If a constraint error occurs while
the transaction is being committed, the database server uses logical-
log records from the transaction to roll back the transaction.

■ Cascading deletes

Cascading deletes on referential constraints use log records to ensure
that a transaction can be rolled back if a parent row is deleted and the
system fails before the children rows are deleted.

■ Distributed transactions

Each database server involved in a distributed transaction keeps
logical-log records of the transaction. This process ensures data
integrity and consistency, even if a failure occurs on one of the
database servers that is performing the transaction. For more infor-
mation, see “Two-Phase Commit and Logical-Log Records” on
page 30-30.

■ High-availability data replication (HDR)

High-availability data replication uses logical-log records to
maintain consistent data on two different database servers so that
one of the database servers can be used quickly as a backup database
server if the other fails. For a more detailed discussion of how high-
availability data replication uses logical-log records, see “How Does
High-Availability Data Replication Work?” on page 25-8.

What Database Server Activity Is Logged?
The database server does not generate log records for every operation
because it does not need a record of every action.The database server needs
log records only to perform the functions listed in “Which Database Server
Processes Require Logging?” on page 16-3. Also, the space required to store
a record of everything the database server did would quickly be
overwhelming.
What Is Logging? 16-5

Activity That Is Always Logged
The logical-log records themselves are variable length. This arrangement
increases the number of log records that can be written to a page in the
logical-log buffer. However, the database server often flushes the logical-log
buffer before the page is full.

Two types of logged activity are possible in the database server:

■ Activity that is always logged

■ Activity that is logged only for databases that use transaction
logging

The following sections explain the two different types of activity. For more
information on the format of logical-log records, see Chapter 37, “Inter-
preting Logical-Log Records.”

Activity That Is Always Logged
Some database operations always generate logical-log records, even if none
of the databases on the database server use transaction logging. See “What Is
Transaction Logging?” on page 16-8. These operations are as follows:

■ SQL data definition statements for all databases:

■ Dbspace backup events

■ Checkpoint events

■ Administrative changes to the database server configuration

This category includes changes to the number and location of
chunks, dbspaces, and blobspaces.

■ Allocation of new extents to tables

■ A change to the logging status of a database

ALTER INDEX CREATE VIEW
ALTER TABLE DROP INDEX
CREATE DATABASE DROP PROCEDURE
CREATE INDEX DROP SYNONYM
CREATE PROCEDURE DROP TABLE
CREATE SCHEMA DROP TRIGGER
CREATE SYNONYM DROP VIEW
CREATE TABLE RENAME COLUMN
CREATE TRIGGER RENAME TABLE
16-6 Administrator’s Guide for Informix Dynamic Server

Activity Logged for Databases with Transaction Logging
Activity Logged for Databases with Transaction Logging
If a database uses transaction logging, all SQL data manipulation statements
(DML), except SELECT, against that database generate one or more log
records. These statements are as follows:

■ DELETE

■ INSERT

■ LOAD

■ SELECT INTO TEMP

■ UNLOAD

■ UPDATE

If these statements are rolled back, the rollback also generates log records.

Are Blobs Logged?
Blob data (TEXT and BYTE data types) is potentially too voluminous to
include in a logical-log record. If blob data were always included, the many
kilobytes of data per blob could overwhelm the space allocated for the logical
log. However, not all blobs are that large, and not every blob would
overwhelm the logical log.

The database server assumes that you designed your databases so that
smaller blobs are stored in dbspaces, and larger blobs are stored in
blobspaces. For information on how to locate blob data, see your Performance
Guide. Based on this assumption, the database server takes the following
action:

■ The database server includes blob data in log records for blobs stored
in dbspaces.

■ The database server does not include blob data in log records for
blobs stored in blobspaces.
What Is Logging? 16-7

What Is Transaction Logging?
The database server still needs access to the blobs in blobspaces in order to
fulfill the goals of logging, explained in “Which Database Server Processes
Require Logging?” on page 16-3. Consider how a blobspace operation can be
rolled back or used in fast recovery if the logical log does not contain a copy
of the data that was originally inserted. The answer is that the log keeps a
pointer to the location of the actual data. “Blobspace Logging” on page 18-27
describes this mechanism.

What Is Transaction Logging?
A database is said to have or use transaction logging, or have transaction
logging turned on, when SQL data manipulation statements in a database
generate logical-log records.

The database-logging status indicates whether a database uses transaction
logging. You can set the database-logging status (turn on transaction logging,
for example) when you create the database. You can also change the database
status (turn off transaction logging, for example) after the database is created.
For information on how to change the database-logging status, see “Who Can
Set or Change Logging Status?” on page 16-11 and Chapter 17, “Managing
Database-Logging Status.”

Even if you turn off transaction logging for all databases in a database server,
the database server always logs some events, as listed in “Activity That Is
Always Logged” on page 16-6.

The Database-Logging Status
Every database that the database server manages has a logging status. The
logging status indicates whether the database uses transaction logging and,
if so, which log-buffering mechanism the database employs. To find out the
transaction-logging status of a database, use the database server utilities, as
explained in “Monitoring Databases” on page 29-43. The database-logging
status indicates any of the following types of logging:

■ No logging

■ Unbuffered transaction logging
16-8 Administrator’s Guide for Informix Dynamic Server

The Database-Logging Status
■ Buffered transaction logging

■ ANSI-compliant transaction logging

The last three items in this list refer to different log-buffering mechanisms. As
explained in “How the Database Server Uses Shared Memory” on page 11-6,
information that the database server manages passes through shared
memory to disk. Logical-log records are no exception. Before the database
server writes logical-log records to the logical log, which is on disk, the
records must pass through shared memory. They do this through the logical-
log buffers, explained in “Flushing the Logical-Log Buffer” on page 11-53.

In one sense, all the database server logging is buffered because all log
records pass through the logical-log buffer in shared memory before the
database server writes them to the logical log on disk. However, the point at
which the database server flushes the logical-log buffer is different for
buffered transaction logging and unbuffered transaction logging.

Unbuffered Transaction Logging

If transactions are made against a database that uses unbuffered logging, the
records in the logical-log buffer are guaranteed to be written to disk before
the COMMIT statement (and before the PREPARE statement for distributed
transactions) returns to the application. The database server flushes the
records as soon as any transaction in the buffer is committed (that is, a
commit record is written to the logical-log buffer).

When the database server flushes the buffer, only the used pages are written
to disk. Used pages include pages that are only partially full, however, so
some space is wasted. For this reason, the logical-log files on disk fill up faster
than if all the databases on the same database server used buffered logging.

Buffered Transaction Logging

If transactions are against a database that uses buffered logging, the records
are held (buffered) in the logical-log buffer for as long as possible; they are not
flushed from the logical-log buffer in shared memory to the logical log on
disk until one of the following situations occurs:

■ The buffer is full.

■ A commit on a database with unbuffered logging flushes the buffer.
What Is Logging? 16-9

When to Use Transaction Logging
■ A checkpoint occurs.

■ The connection is closed.

ANSI-Compliant Transaction Logging

The ANSI-compliant database-logging status indicates that the database
owner created this database using the MODE ANSI keywords. ANSI-
compliant databases all use unbuffered transaction logging, enforcing the
ANSI rules for transaction processing.

Databases with Different Log-Buffering Status

All databases use the same logical log and the same logical-log buffers.
Therefore, transactions against databases with different log-buffering
statuses can write to the same logical-log buffer. In that case, if transactions
exist against databases with buffered logging and against databases with
unbuffered logging, the database server flushes the buffer either when it is
full or when transactions against the database(s) with unbuffered logging
complete.

When to Use Transaction Logging
You must use transaction logging with a database to take advantage of any
of the features listed in “Which Database Server Processes Require Logging?”
on page 16-3.

If you are satisfied with your recovery source, you can decide not to use
transaction logging for a database to reduce the amount of the database
server processing. For example, if you are loading many rows into a database
from a recoverable source such as tape or an ASCII file, you might not need
transaction logging, and the loading would proceed faster without it.
However, if other users are active in the database, you would not have log
records of their transactions until you reinitiate logging, which must wait for
a level-0 dbspace backup.

If you use a distributed environment, the logging status of the databases
must be the same (all buffered, all unbuffered, all ANSI compliant, or all
without transaction logging). If one of the databases in a distributed query
uses transaction logging, the others must also.
16-10 Administrator’s Guide for Informix Dynamic Server

When to Buffer Transaction Logging
When to Buffer Transaction Logging
If a database does not use logging, you do not need to consider whether
buffered or unbuffered logging is more appropriate.

ANSI-compliant databases always use unbuffered logging. You cannot
change the buffering status of ANSI-compliant databases.

Unbuffered logging is the best choice for most databases because it
guarantees that all committed transactions can be recovered. In the event of
a failure, only uncommitted transactions at the time of the failure are lost.
However, with unbuffered logging, the database server flushes the logical-
log buffer to disk more frequently, and the buffer contains many more
partially full pages, so it fills the logical log faster than buffered logging does.

If you use buffered logging, and a failure occurs, you cannot expect the
database server to recover the transactions that were in the logical-log buffer
when the failure occurred. Thus, you could lose some committed transac-
tions. In return for this risk, performance during alterations improves
slightly. Buffered logging is best for databases that are updated frequently
(when the speed of updating is important), as long as you can re-create the
updates in the event of failure. You can tune the size of the logical-log buffer
to find an acceptable balance for your system between performance and the
risk of losing transactions to system failure.

Who Can Set or Change Logging Status?
The user who creates a database with the CREATE DATABASE statement
establishes the logging status for that database. If the CREATE DATABASE
statement does not specify a logging status, the database is created without
logging. For more information on the CREATE DATABASE statement, see the
Informix Guide to SQL: Syntax.

Only the database server administrator can change the logging status, which
is described in Chapter 17, “Managing Database-Logging Status.” End users
can switch from unbuffered to buffered (but not ANSI-compliant) transaction
logging, and from buffered to unbuffered transaction logging, for the duration
of a session. The SET LOG statement performs this change within an appli-
cation. For more information on the SET LOG statement, see the Informix
Guide to SQL: Syntax.
What Is Logging? 16-11

17
Chapter
Managing Database-Logging
Status
About Changing Logging Status 17-3

Modifying Database-Logging Status with ON-Archive 17-5
Turning On Transaction Logging with ON-Archive 17-5
Canceling a Logging Operation with ON-Archive 17-6
Ending Logging with ON-Archive 17-6
Changing Buffering Status with ON-Archive 17-7
Making a Database ANSI Compliant with ON-Archive 17-7

Modifying Database-Logging Status with ontape 17-7
Turning On Transaction Logging with ontape 17-7
Ending Logging with ontape 17-8
Changing Buffering Status with ontape 17-8
Making a Database ANSI Compliant with ontape 17-9

Modifying Database Logging Status with ON-Monitor 17-9

17-2 Ad
ministrator’s Guide for Informix Dynamic Server

This chapter provides instructions on changing the database-logging
status for databases that the database server manages. As a database server
administrator, you can alter the logging status of a database as follows:

■ Add transaction logging (buffered or unbuffered) to a database.

■ End transaction logging for a database.

■ Change transaction logging from buffered to unbuffered.

■ Change transaction logging from unbuffered to buffered.

■ Make a database ANSI compliant.

For information about database-logging status, and discussions of when to
use transaction logging and when to buffer transaction logging, see
Chapter 16, “What Is Logging?” To find out the current logging status of a
database, see “Monitoring Databases” on page 29-43.

About Changing Logging Status
Figure 17-1 on page 17-4 shows the database-logging-status transitions that
the database server administrator can perform and indicates whether they
take place immediately or require a level-0 dbspace backup.

When you add logging (in any form) to a database that formerly did not use
transaction logging, the change is not complete until you perform a level-0
dbspace backup on all the dbspaces and blobspaces that contain data in the
database.
Managing Database-Logging Status 17-3

About Changing Logging Status
To change the logging status of ANSI-compliant databases, unload and reload
the data.

Figure 17-1
Logging-Status Transitions

Some general points about changing the database-logging status follow:

■ Use the same backup tool (ON-Archive, ON-Bar, or ontape) to add
logging and create the dbspace backup.

If you use ON-Bar for your backup and restore tool, see your Backup
and Restore Guide for information on how to restore your data from a
dbspace backup. If you use ON-Archive or ontape for your backup
and restore tool, see your Archive and Backup Guide.

■ To make any change in the logging status of a database, no users can
access the database. Once you start to make the change, the database
server places an exclusive lock on the database to prevent other users
from accessing the database.

■ A database remains locked to users until the logging-mode change is
complete. Some changes occur immediately, but if you add logging
to a database that formerly did not have logging, the change is not
complete until the next level-0 dbspace backup of all the dbspaces
that contain data for the database.

Converting
from:

Converting to:

No logging Unbuffered logging Buffered logging ANSI compliant

No logging Not
applicable

Level-0 dbspace backup
(of affected dbspaces)

Level-0 dbspace backup
(of affected dbspaces)

Level-0 dbspace backup
(of affected dbspaces)

Unbuffered
logging

Immediate Not applicable Immediate Immediate

Buffered
logging

Immediate Immediate Not applicable Immediate

ANSI
compliant

Illegal Illegal Illegal Not applicable
17-4 Administrator’s Guide for Informix Dynamic Server

Modifying Database-Logging Status with ON-Archive
■ When you use ON-Archive, the database server must be in on-line
mode in order to make changes. For ontape or ON-Monitor, the
database server can be in either on-line or quiescent mode.
(ON-Monitor is available only on UNIX.)

■ If a failure occurs during a logging-mode change, check the flags for
the database after you restore the database server (or dbspace). For
more information, see “Monitoring Databases” on page 29-43.

■ Once you choose either buffered or unbuffered logging, you can
change from one logging status to the other in an application that
uses the SQL statement SET LOG. This change lasts for the duration of
the session.

Modifying Database-Logging Status with
ON-Archive
If you use ON-Archive as your backup tool, use the MODIFY/ DBLOGGING
command to modify database-logging status. Reference information for
ON-Archive is in your Archive and Backup Guide.

Turning On Transaction Logging with ON-Archive
Before you make this change, read “About Changing Logging Status” on
page 17-3.

To add buffered logging to a database called stores7 with ON-Archive, use
the following command:

Onarchive> MODIFY/DBLOGGING=stores7/MODE=BUFFERED

To add unbuffered logging, use UNBUFFERED as the parameter with the
MODE qualifier.
Managing Database-Logging Status 17-5

Canceling a Logging Operation with ON-Archive
Canceling a Logging Operation with ON-Archive
After you turn on logging for a database with ON-Archive, you can turn
logging off again (and unlock the database) before the next level-0 dbspace
backup of all the dbspaces in the database.

To determine if a database is locked because logging has been turned on but
the database has not yet been backed up, issue the following query to the
sysmaster database:

SELECT name FROM sysdatabases WHERE flags > 255

To turn logging off for a database called stores7 with ON-Archive (after it has
been turned on, but before the change is completed by a level-0 dbspace
backup), use the following command:

Onarchive> MODIFY/DBLOGGING=stores7/MODE=CANCELCHANGE

The change takes place immediately; the database is unlocked. You can
cancel any number of commands to add transaction logging to a database
with the same command.

Ending Logging with ON-Archive
Before you make this change, read “About Changing Logging Status” on
page 17-3.

To end logging for a database called stores7 with ON-Archive, use the
following command:

Onarchive> MODIFY/DBLOGGING=stores7/MODE=NOLOGGING
17-6 Administrator’s Guide for Informix Dynamic Server

Changing Buffering Status with ON-Archive
Changing Buffering Status with ON-Archive
Before you make this change, read “About Changing Logging Status” on
page 17-3.

To change the buffering status for a database called stores7 with transaction
logging using ON-Archive, use one of the following commands, depending
on whether or not you want the database to have buffered logging:

Onarchive> MODIFY/DBLOGGING=stores7/MODE=BUFFERED
Onarchive> MODIFY/DBLOGGING=stores7/MODE=UNBUFFERED

Making a Database ANSI Compliant with ON-Archive
Before you make this change, read “About Changing Logging Status” on
page 17-3. Once you change the logging status to ANSI compliant, you cannot
easily change it again. You must unload and reload the data.

To make a database called stores7 ANSI compliant with ON-Archive, use the
following command:

Onarchive> MODIFY/DBLOGGING=stores7/MODE=ANSI

Modifying Database-Logging Status with ontape
If you use ontape as your backup tool, you can use ontape to change the
logging status of a database. Reference information for ontape is in your
Archive and Backup Guide.

Turning On Transaction Logging with ontape
Before you make this change, read “About Changing Logging Status” on
page 17-3.

You add logging to a database with ontape at the same time that you create
a level-0 dbspace backup.
Managing Database-Logging Status 17-7

Ending Logging with ontape
For example, to add buffered logging to a database called stores7 with
ontape, execute the following command:

% ontape -s -B stores7

To add unbuffered logging to a database called stores7 with ontape, execute
the following command:

% ontape -s -U stores7

In addition to turning on transaction logging, these commands create full-
system dbspace backups. When ontape prompts you for a backup level,
specify a level-0 dbspace backup.

Tip: With ontape, you must perform a level-0 backup of all dbspaces. The
ON-Archive utility permits greater archiving granularity, so you can restrict the
dbspace backup to only those dbspaces that contain the database data.

Ending Logging with ontape
Before you make this change, read “About Changing Logging Status” on
page 17-3.

To end logging for a database called stores7 with ontape, execute the
following command:

% ontape -N stores7

Changing Buffering Status with ontape
Before you make this change, read “About Changing Logging Status” on
page 17-3.

To change the buffering status from buffered to unbuffered logging on a
database called stores7 using ontape without creating a dbspace backup,
execute the following command:

% ontape -U stores7

To change the buffering status from unbuffered to buffered logging on a
database called stores7 using ontape without creating a dbspace backup,
execute the following command:

% ontape -B stores7
17-8 Administrator’s Guide for Informix Dynamic Server

Making a Database ANSI Compliant with ontape
Making a Database ANSI Compliant with ontape
Before you make this change, read “About Changing Logging Status” on
page 17-3. Once you change the logging status to ANSI compliant, you cannot
easily change it again. You must unload and reload the data. For information
about how to load and unload data, see the Informix Migration Guide.

To make databases ANSI compliant, you use different commands for
databases that already use transaction logging and for those that do not use
transaction logging.

To make a database called stores7, which already uses transaction logging
(either unbuffered or buffered), into an ANSI-compliant database with
ontape, execute the following command:

% ontape -A stores7

To make a database called stores7, which does not already use transaction
logging, into an ANSI-compliant database with ontape, execute the following
command:

% ontape -s -A stores7

In addition to making a database ANSI compliant, this command also creates
a dbspace backup at the same time. Specify a level-0 dbspace backup when
you are prompted for a level.

Modifying Database Logging Status with
ON-Monitor
Before you make any changes, read “About Changing Logging Status” on
page 17-3.

You can use ON-Monitor to make any logging-status changes that can occur
immediately. If you want to add logging to (or make ANSI compliant) a
database that does not use logging, you cannot use ON-Monitor; you must
use ON-Archive or ontape.

To change the logging status for a database from within ON-Monitor, select
the Logical-Logs menu, Databases option.

UNIX
Managing Database-Logging Status 17-9

Modifying Database Logging Status with ON-Monitor
Use the Arrow keys to select the database from which you want to remove
logging. Press CTRL-B or F3.

When the logging-options screen appears, ON-Monitor displays the current
log status of the database. Use the Arrow keys to select the status you want.
Press CTRL-B or F3.
17-10 Administrator’s Guide for Informix Dynamic Server

18
Chapter
What Is the Logical Log?
What Is the Logical Log? 18-3

What Is a Logical-Log File? 18-4

How Big Should the Logical Log Be?. 18-5
Performance Considerations 18-5
Long-Transaction Consideration 18-6
Logical-Log Size Guidelines 18-6
Determining the Size of the Logical Log 18-7

Preserving Log Space for ON-Archive Tasks 18-8
Enabling the Logs-Full High-Water Mark 18-9
Emergency Log Backup 18-9

Building the System-Monitoring Interface 18-10
Recovery. 18-10
Small Logs, Many Users 18-10
Administrative Activity When Logs Need Backing Up 18-10

What Should Be the Size and Number of Logical-Log Files?. 18-11

Where Should Logical-Log Files Be Located? 18-12

How Are Logical-Log Files Identified? 18-12

What Are the Status Flags of Logical-Log Files? 18-13

Point-In-Time Recovery 18-15

Why Do Logical-Log Files Need to Be Backed Up? 18-15

18-2 Ad
When Are Logical-Log Files Freed? 18-16
When Does the Database Server Attempt to Free a Log File? . . . 18-16
What Happens If the Next Logical-Log File Is Not Free? 18-16
Avoiding Long Transactions 18-18

Factors That Influence the Rate at Which
Logical-Log Files Fill 18-18

Factors That Prevent Closure of Transactions 18-19
Setting High-Water Marks 18-20

What Are the Logical-Log Administration Tasks Required
for Blobspaces? 18-21

Switching Logical-Log Files to Activate Blobspaces 18-21
Switching Logical-Log Files to Activate New

Blobspace Chunks 18-22
Backing Up Logical-Log Files to Free Blobpages 18-22

Why Do You Have to Back Up Logical-Log Files to
Free Blobpages?. 18-22

What Is the Logging Process? 18-25
Dbspace Logging 18-25

Read Page into Shared-Memory Buffer Pool 18-25
Copy the Page Buffer into the Physical-Log Buffer 18-26
Read Data into Buffer and Create Logical-Log Record 18-26
Flush Physical-Log Buffer to the Physical Log 18-26
Flush Page Buffer 18-27
Flush Logical-Log Buffer 18-27

Blobspace Logging. 18-27
ministrator’s Guide for Informix Dynamic Server

As the database server administrator, you have responsibilities to
configure and manage the logical log. These responsibilities include the
following tasks:

■ Allocating an appropriate amount of disk space for the logical log

■ Choosing an appropriate number of logical-log files

■ Monitoring the logical-log file status

■ Backing up the logical-log files to tape

The information in this chapter will help you perform these tasks. In
addition, this chapter gives background information on the database server
logging process.

If you use ON-Bar as your backup and restore tool, see your Backup and
Restore Guide for additional information about logical logs. If you use
ON-Archive or ontape as your backup and restore tool, see your Archive and
Backup Guide.

For information on how to perform other logical-log tasks, see Chapter 19,
“Managing Logical-Log Files.”

What Is the Logical Log?
To keep a history of database and database server changes since the time of
the last dbspace backup, the database server generates and stores log records.
The database server stores the log records in the logical log, which is made
up of logical-log files. The log is called logical because the log records
represent units of work related to the logical operations of the database
server, as opposed to physical operations. At any time, the combination of
database server backup tapes plus database server logical-log files contains a
complete copy of your database server data.
What Is the Logical Log? 18-3

What Is a Logical-Log File?
All the databases managed by a single database server instance store their log
records in the same logical log, regardless of whether they use transaction
logging or whether their transaction logging is buffered. For information on
transaction logging, see Chapter 16, “What Is Logging?”

Most end users should not be concerned with the logical log and logical-log
files. They might be concerned with the buffering status of a database during
their transactions, or even occasionally with the transaction-logging status of
a database, as explained in“Who Can Set or Change Logging Status?” on
page 16-11.

Most of the administration of the logical log concerns the management of
individual logical-log files, but one administrative task relates to the logical
log as a whole: determining how much disk space to allocate to the logical
log.

What Is a Logical-Log File?
Logical-log files are not files in the operating-system sense of the word file.
Logical-log files are part of the disk space managed by the database server;
each logical-log file is a separate allocation of disk space. Together, the
logical-log files make up the logical log. You must always have at least three
logical-log files.

The database server administrator needs to be concerned with the logical-log
files that make up the logical log because, if the files are not managed
properly, the database server can suspend processing and, in the worst case,
shut down.

The database server administrator must choose an appropriate number, size,
and physical location for logical-log files. The following sections discuss
these topics:

■ “What Should Be the Size and Number of Logical-Log Files?” on
page 18-11

■ “Where Should Logical-Log Files Be Located?” on page 18-12
18-4 Administrator’s Guide for Informix Dynamic Server

How Big Should the Logical Log Be?
The database server administrator must also ensure that the next logical-log
file is always backed up and free. The following sections discuss this topic:

■ “Why Do Logical-Log Files Need to Be Backed Up?” on page 18-15

■ “When Are Logical-Log Files Freed?” on page 18-16

Some logical-log file administration tasks relate to managing blobspaces
effectively, as discussed in “What Are the Logical-Log Administration Tasks
Required for Blobspaces?” on page 18-21.

How Big Should the Logical Log Be?
In determining how much disk space to allocate, you must balance disk space
and performance considerations. If you allocate more disk space than
necessary, space is wasted. If you do not allocate enough disk space,
however, performance might be adversely affected.

Performance Considerations
For a given level of system activity, the less logical-log disk space that you
allocate, the sooner that logical-log space fills up, and the greater the
likelihood that user activity is blocked due to logical-log file backups and
checkpoints, as follows:

■ Logical-log file backups

When the logical-log files that make up the logical log fill, you have
to back them up. See “Why Do Logical-Log Files Need to Be Backed
Up?” on page 18-15. The backup process can hinder transaction
processing that involves data located on the same disk as the logical-
log files. If enough logical-log disk space is available, however, you
can wait for periods of low user activity before you back up the
logical-log files.
What Is the Logical Log? 18-5

Long-Transaction Consideration
■ Checkpoints

At least one checkpoint record must always be written to the logical
log. If you need to free the logical-log file that contains the last check-
point, the database server must write a new checkpoint record to the
current logical-log file. See “When Are Logical-Log Files Freed?” on
page 18-16. So if the frequency with which logical-log files are
backed up and freed increases, the frequency at which checkpoints
occur increases. Because checkpoints block user processing, this will
have an adverse affect on performance. Because other factors (such
as the physical-log size) also determine the checkpoint frequency,
this effect might not be significant.

These performance considerations are related to how fast the logical log fills.
The rate at which the logical log fills, in turn, depends on other factors such
as the level of user activity on your system and the logging status of the
databases. You need to tune the logical-log size, therefore, to find the
optimum value for your system.

Long-Transaction Consideration
In addition to the performance considerations discussed in the previous
section, you risk a long-transaction situation if logical-log disk space is insuf-
ficient. For more information on the long-transaction situation, refer to
“Avoiding Long Transactions” on page 18-18.

Logical-Log Size Guidelines
Use the LOGSIZE configuration parameter to set the size of the logical log. It
is difficult to predict how much logical-log space your database server
system requires until it is fully in use. The following expression gives the
minimum total-log-space configuration, in kilobytes, that Informix
recommends:

LOGSIZE = (users * maxrows) * 512
18-6 Administrator’s Guide for Informix Dynamic Server

Determining the Size of the Logical Log
Set users to the maximum number of users that you expect to access the
database server concurrently. If you set the NETTYPE parameter, you can use
the value that you assigned to the NETTYPE users field. If you configured
more than one connection by setting multiple NETTYPE configuration param-
eters in your configuration file, sum the users fields for each NETTYPE, and
substitute this total for users in the preceding formula.

For more information about LOGSIZE and NETTYPE, see Chapter 33, “Config-
uration Parameters.”

You can increase the amount of space devoted to the logical log as necessary
and in several ways. The easiest way is to add another logical-log file, as
explained in “Adding a Logical-Log File” on page 19-4. To obtain better
overall performance for applications that perform frequent updates of blobs
in blobspaces, reduce the size of the logical log. For more information, see
your Performance Guide.

Determining the Size of the Logical Log
The LOGFILES parameter is the number of logical-log files. If all your logical-
log files are the same size, you can calculate the total space allocated to the
logical-log files as follows:

total logical log space = LOGFILES * LOGSIZE

If you add logical-log files that are not the size specified by LOGSIZE, you
cannot use the (LOGFILES * LOGSIZE) expression to calculate the size of the
logical log. Instead, you need to add the sizes of the individual logs file on
disk. For information on how to access the size of logical-log files, see
“Monitoring Logical-Log Files” on page 29-44. For more information about
LOGFILES, see Chapter 33, “Configuration Parameters.”
What Is the Logical Log? 18-7

Preserving Log Space for ON-Archive Tasks
Preserving Log Space for ON-Archive Tasks
If you use ON-Archive for your backup and restore tool, you can occasionally
encounter a deadlock during peak activity on high-volume, on-line trans-
action-processing (OLTP) systems. The deadlock occurs when OLTP activity
fills the logical log faster than ON-Archive can back up the logs to tape and
free them.

Prior to marking a backed-up log as free, the database server updates the
ON-Archive catalog tables to record the occurrence of the logical-log backup.
This update itself generates logical-log activity, leading to a possible
deadlock as the logs continue to fill. When a deadlock of this type occurs, the
database server administrator must use the emergency log backup procedure
even though a continuous logical-log backup is already in progress.
Figure 18-1 illustrates how a deadlock of this type occurs.

The ON-Archive high-water-mark feature provides a solution for logical-log
deadlocks of this type. When you enable this feature, the database server
blocks OLTP activity when the next-to-last log fills, rather than the last log, as
it usually does. In doing so, the database server preserves the last logical-log
file for record logging generated by administrative activities such as a backup
of the logical log. Figure 18-2 illustrates how the high-water mark feature
prevents logical-log deadlocks.

UNIX

Figure 18-1
ON-Archive with High-Water Mark Off

Logs
approaching full

Backup starts.

Logs fill completely;
deadlock results.

Archive tape

ON-Archive
writes to log.

Backup fails.

ON-Archive copies
oldest log to tape.

ON-Archive
Archive tape

ON-Archive
18-8 Administrator’s Guide for Informix Dynamic Server

Enabling the Logs-Full High-Water Mark
For more information on the emergency backup procedure, see your Archive
and Backup Guide.

Enabling the Logs-Full High-Water Mark
To enable the logs-full high-water mark, set the LBU_PRESERVE configuration
parameter to 1. When you set LBU_PRESERVE to 1, the database server blocks
DB-Access, ESQL/C, and all other clients from generating log records in the
last logical-log file when the logs-full condition is reached. The default value
of LBU_PRESERVE is 0, or off.

Whenever you change the value of LBU_PRESERVE, you must reinitialize
shared memory for the change to take effect.

Emergency Log Backup
Although the logs-full high-water mark eliminates the need for emergency
backup in the deadlock scenario described in the preceding sections, four
known scenarios still require the database server administrators to use
emergency log backup. Each case is examined in detail in the following
sections.

Figure 18-2
ON-Archive with High-Water Mark On

Backup starts. Backup completes.

ON-Archive ON-Archive

High-water
mark

ON-Archive
writes to
logical log.

Archive completes;
oldest log is archived.

ON-Archive copies
oldest log to tape.

Logs full
What Is the Logical Log? 18-9

Emergency Log Backup
Building the System-Monitoring Interface

A privileged client is responsible for building the system-monitoring
interface (SMI). This client can potentially invade the last log file. If you do not
configure sufficient log space or a sufficient number of log files, the privi-
leged client might not succeed in building SMI without a log backup. This
situation can cause the logical log to fill.

Recovery

When you start the database server after an uncontrolled shutdown, it needs
log space to roll back any transactions that were uncommitted when the
shutdown occurred. The threads that perform the recovery have privileges
that allow them to use the last log file. Because of this privilege, the logical
log might become full, but only in the unlikely case that the number and size
of transactions open when the shutdown occurred exceed the size of the
logical log.

Small Logs, Many Users

Perhaps you configure your logical log files as follows:

Logical Log Size < 2 * page_size * number of users

If all users enter transactions of maximum complexity, applications might
invade the last log with OLTP activity. Only when you set the size of the log
much smaller than two pages per user can a logs-full condition occur.

Administrative Activity When Logs Need Backing Up

Certain administrative clients have the privilege to invade the last logical-log
file. The following list gives examples of such administrative clients:

■ onspaces ■ ON-Archive

■ onparams ■ oncatlgr

■ oncheck ■ onautovop

■ ontape ■ ondatartr

■ onmonitor
18-10 Administrator’s Guide for Informix Dynamic Server

What Should Be the Size and Number of Logical-Log Files?
Because these clients can invade the last logical log, certain circumstances
might require you to perform an emergency log backup. For example, when
the logical log approaches full, and you proceed to do large quantities of
administrative work, you might need to perform an emergency log backup.

What Should Be the Size and Number of Logical-Log
Files?
After you know how much disk space to allocate for the entire logical log,
you can make decisions about how many log files you want, and of what size.

When you think about the size of the logical-log files, consider these points:

■ The minimum size for a logical-log file is 200 kilobytes.

■ The maximum size for a logical-log file is essentially unbounded.

■ If your tape device is slow, ensure that logical-log files are small
enough to be backed up in a timely fashion.

■ Smaller log files mean smaller granularity of recovery because you
potentially lose the last unbacked-up logical-log file if the disk that
contains the logical-log files goes down.

When you think about the number of logical-log files, consider these points:

■ You must always have at least three logical-log files.

■ You should create enough logical-log files so that you can switch log
files if needed without running out of free logical-log files.

■ The number of logical-log files affects the frequency of logical-log
backups and, consequently, the rate at which blobspace blobpages
can be reclaimed. See “Backing Up Logical-Log Files to Free
Blobpages” on page 18-22.

■ The number of logical-log files cannot exceed the value of the
ONCONFIG parameter LOGSMAX.
What Is the Logical Log? 18-11

Where Should Logical-Log Files Be Located?
Where Should Logical-Log Files Be Located?
When the database server initializes disk space, it places the logical-log files
and the physical log in the root dbspace. You have no control over this action.
To improve performance (specifically, to reduce the number of writes to the
root dbspace and minimize contention), move the logical-log files out of the
root dbspace to a dbspace on a disk that is not shared by active tables or the
physical log. See “Moving a Logical-Log File to Another Dbspace” on
page 19-8.

To improve performance further, separate the logical-log files into two
groups and store them on two separate disks (neither of which contains
data). For example, if you have six logical-log files, you might locate files 1,
3, and 5 on disk 1, and files 2, 4, and 6 on disk 2. This arrangement improves
performance because the same disk drive never has to handle writes to the
current logical-log file and backups to tape at the same time.

The logical-log files contain critical information and should be mirrored for
maximum data protection. If you move logical-log files to a different
dbspace, plan to start mirroring on that dbspace.

How Are Logical-Log Files Identified?
Each logical-log file, whether backed up to tape or not, has a unique ID
number. The sequence begins with 1 for the first logical-log file filled after
you initialize the database server disk space. When the current logical-log file
becomes full, the database server switches to the next logical-log file and
increments the unique ID number for the new log file by one.

The actual disk space allocated for each logical-log file has an identification
number known as the logid. For example, if you configure six logical-log files,
these files have logid numbers one through six. As logical-log files are backed
up and freed (see “Why Do Logical-Log Files Need to Be Backed Up?” on
page 18-15), the database server reuses the disk space for the logical-log files.
However, the database server continues to increment the unique ID numbers
by one. Figure 18-3 on page 18-13 illustrates the relationship between the
logid numbers and the unique ID numbers.
18-12 Administrator’s Guide for Informix Dynamic Server

What Are the Status Flags of Logical-Log Files?
Figure 18-3
Logical-Log File-Numbering Sequence

For information on how to display the unique ID and logid numbers of a
logical-log file, refer to “Monitoring Logical-Log Files” on page 29-44.

What Are the Status Flags of Logical-Log Files?
All logical-log files have one of the following three status flags in the first
position: Added (A), Free (F), or Used (U). Descriptions of all the individual
logical-log status flags follow.

Logid number

1st rotation
unique ID
number

2nd rotation
unique ID
number

3rd rotation
unique ID
number

4th rotation
unique ID
number

1 1 7 13 19

2 2 8 14 20

3 3 9 15 21

4 4 10 16 22

5 5 11 17 23

6 6 12 18 24

Status Flag Description

Added (A) A logical-log file has an added status when the logical-log file is
newly added. It does not become available for use until you
complete a level-0 backup of the root dbspace.

Free (F) A logical-log file is free when it is available for use. A logical-log file
is freed after it is backed up, all transactions within the log file are
closed, and the latest record of a checkpoint is in a subsequent log.

Used (U) A logical-log file is used when it is still needed by the database
server for recovery (rollback of a transaction or finding the last
checkpoint record).

(1 of 2)
What Is the Logical Log? 18-13

What Are the Status Flags of Logical-Log Files?
Figure 18-4 shows the possible log-status flag combinations.

Figure 18-4
Logical-Log Status Flags

Tip: A logical-log file has a status flag of F only if the system has been reinitialized.
A logical log with just the two status flags U-B (and not L) is available only if it is
not spanned by an active transaction.

To find out the status of a logical-log file, use the methods explained in
“Monitoring Logical-Log Files” on page 29-44.

Backed-Up (B) A log file has a backed-up status after the log file has been backed
up.

Current (C) A log file has a current status if the database server is currently
filling the log file.

Last (L) A log file has a status of last if the log file contains the most recent
checkpoint record in the logical log. This file and subsequent files
cannot be freed until the database server writes a new checkpoint
record to a different logical-log file.

Status Flag Status of Logical-Log File

A------ Log has been added since the last level-0 dbspace backup. Not
available for use.

F------ Log is free. Available for use.

U Log has been used but not backed up.

U-B---- Log is backed up but still needed for recovery.

U-B---L Log is backed up but still needed for recovery. Contains last check-
point record.

U---C Log is the current log file.

U---C-L Log is the current log file. It contains the last checkpoint record.

Status Flag Description

(2 of 2)
18-14 Administrator’s Guide for Informix Dynamic Server

Point-In-Time Recovery
Point-In-Time Recovery
The process of restoring logical logs to a particular point in time is performed
after you perform a physical (cold) restore, and it takes effect during a logical
restore.

If you use ON-Bar as your backup and restore tool, see your Backup and
Restore Guide for additional information about restoring logical logs to a
particular point in time.

If you use ON-Archive as your backup and restore tool, see your Archive and
Backup Guide for additional information about restoring logical logs to a
particular point in time. ♦

Why Do Logical-Log Files Need to Be Backed Up?
The process of copying a logical-log file to tape is referred to as backing up a
logical-log file. Backing up logical-log files achieves the following two
objectives:

■ It stores the logical-log records on tape so that they can be rolled
forward if a data restore is needed.

■ It makes logical-log-file space available for new logical-log records.

Use ON-Bar, ON-Archive, or ontape to perform a logical-log file backup,
depending on which of these tools you use as your backup and restore tool.

Logical-log-file backups can be initiated implicitly as part of continuous
logging, or explicitly by the database server administrator or operator. If you
use ON-Bar as your backup and restore tool, see your Backup and Restore Guide
for more information. If you use ON-Archive or ontape as your backup and
restore tool, see your Archive and Backup Guide.

UNIX
What Is the Logical Log? 18-15

When Are Logical-Log Files Freed?
When Are Logical-Log Files Freed?
If you back up a logical-log file, that file is not necessarily free to receive new
log records. The following three criteria must be satisfied before the database
server frees a logical-log file for reuse:

■ The log file is backed up to tape.

■ All records within the log file are associated with closed transactions.

■ The log file does not contain the most-recent checkpoint record.

When Does the Database Server Attempt to Free a Log File?
The database server attempts to free logical-log files under the following
conditions:

■ When the database server first writes to a new logical-log file, it
attempts to free the previous log.

■ Each time that the database server commits or rolls back a trans-
action, it attempts to free the logical-log file in which the transaction
began.

The attempt succeeds only if the three criteria listed in the preceding section
(“When Are Logical-Log Files Freed?”) are met.

What Happens If the Next Logical-Log File Is Not Free?
If the database server attempts to switch to the next logical-log file but finds
that the next log file in sequence is still in use, the database server immedi-
ately suspends all processing. Even if other logical-log files are free, the
database server cannot skip a file in use and write to a free file out of
sequence. Processing stops to protect the data within the log file.
18-16 Administrator’s Guide for Informix Dynamic Server

What Happens If the Next Logical-Log File Is Not Free?
The logical-log file might be in use for either of the following two reasons:

■ The file is not backed up.

If the log file is not backed up, processing resumes when you
perform the backup. If you are using ontape to back up logical-log
files, you can back up this log file as you would any other log file.

If you are using ON-Archive to back up logical-log files, you cannot
use onarchive to back up this log file. The onarchive command must
be able to access the sysmaster database, which it cannot do because
processing is suspended. Instead, you must use the ondatartr utility
to back up the logical-log files in this situation. For more information,
see your Archive and Backup Guide. ♦

■ The file contains an open transaction.

The open transaction is the long transaction discussed in “Avoiding
Long Transactions” on page 18-18. In this situation, you have to
recover the database server data from dbspace backup tapes in a full-
system restore.

A situation whereby the database server must suspend processing because
the next log file contains the last checkpoint never occurs.The database server
always forces a checkpoint when it enters the last available log, if the
previous checkpoint record is located in the log that follows the last available
log. For example, if four logical-log files have the status shown in the
following list, the database server forces a checkpoint when it switches to
logical-log file 3.

logid Logical-Log File Status

1 U-B----

2 U---C--

3 F

4 U-B---L

UNIX
What Is the Logical Log? 18-17

Avoiding Long Transactions
Avoiding Long Transactions
A long transaction is a transaction that starts in one logical-log file and is not
committed when the database server needs to reuse that same logical-log file.
In other words, a long transaction spans more than the total space allocated
to the logical log.

Because the database server cannot free a logical-log file until all records
within the file are associated with closed transactions, the long transaction
prevents the first logical-log file from becoming free and available for reuse.

To prevent long transactions from developing, take the following
precautions:

■ Ensure that the logical-log file does not fill too fast.

■ Ensure that transactions do not remain open too long.

■ Set high-water marks to have the database server automatically slow
down processing when a long transaction is developing.

The subsequent sections explain these steps.

Factors That Influence the Rate at Which Logical-Log Files Fill

Several factors influence how fast the logical log fills. It is difficult to know
exactly which factor is the most important for a given instance of the database
server, so you need to use your own judgment to estimate how quickly your
logical log fills and how to prevent long-transaction conditions:

■ Size of the logical log

A smaller logical log fills faster than a larger logical log. If you need
to make the logical log larger, you can add another logical-log file,
explained in “Adding a Logical-Log File” on page 19-4.

■ Number of logical-log records

The more logical-log records written to the logical log, the faster it
fills. If databases managed by your database server use transaction
logging, transactions against those databases fill the logical log faster
than transactions against databases without transaction logging.
18-18 Administrator’s Guide for Informix Dynamic Server

Avoiding Long Transactions
■ Type of log buffering

As explained in “Unbuffered Transaction Logging” on page 16-9,
databases that use unbuffered transaction logging fill the logical log
faster than databases that use buffered transaction logging.

■ Size of individual logical-log records

The sizes of the logical-log records vary, depending on both the
processing operation and the database server environment. In
general, the longer the data rows, the larger the logical-log records.
Also, updates can use up to twice as much space as inserts or deletes
because they might contain both before-images and after-images.
Inserts store only the after-image, and deletes store only the before-
image.

■ Frequency of rollbacks

The frequency of rollbacks affects the rate at which the logical log
fills. More rollbacks fill the logical log faster. The rollbacks
themselves require logical-log file space although the rollback
records are small. In addition, rollbacks increase the activity in the
logical log.

Factors That Prevent Closure of Transactions

Several factors influence when transactions close. Be aware of these factors so
that you can prevent long-transaction problems:

■ Transaction duration

The duration of a transaction might be beyond your control. For
example, a client that does not write many logical-log records might
cause a long transaction if the users permit transactions to remain
open for long periods of time. (For example, a user who is running
an interactive application might leave a terminal to go to lunch part
of the way through a transaction.)

The larger the logical-log space, the longer a transaction can remain
open without a long-transaction condition developing. However, a
large logical log by itself does not ensure that long transactions do
not develop. Application designers should consider the transaction-
duration issue, and users should be aware that leaving transactions
open can be detrimental.
What Is the Logical Log? 18-19

Avoiding Long Transactions
■ High CPU and logical-log activity

The amount of CPU activity can affect the ability of the database
server to complete the transaction. Repeated writes to the logical-log
file increase the amount of CPU time that the database server needs
to complete the transaction. Increased logical-log activity can imply
increased contention of logical-log locks and latches as well.

Setting High-Water Marks

The database server alters processing at two critical points to manage the
long-transaction condition. To tune both points, you can set values in the
ONCONFIG file.

The first critical point is the long-transaction high-water mark described in
“LTXHWM” on page 33-51. When the logical log reaches the long-
transaction high-water mark, the database server recognizes that a long
transaction exists and begins searching for an open transaction in the oldest,
used (but not freed) logical-log file. If a long transaction is found, the
database server directs the thread to begin to roll back the transaction. More
than one transaction can be rolled back if more than one long transaction
exists.

The transaction rollback itself generates logical-log records, however, and as
other processes continue writing to the logical-log file, the logical log
continues to fill.

The second critical point is the exclusive-access, long-transaction high-water
mark described in “LTXEHWM” on page 33-50. When the logical log reaches
the exclusive-access, long-transaction high-water mark, the database server
dramatically reduces log-record generation. Most threads are denied access
to the logical log. Only threads that are currently rolling back transactions
(including the long transaction) and threads that are currently writing
COMMIT records are allowed access to the logical log. Restricting access to
the logical log preserves as much space as possible for rollback records that
are being written by the user threads that are rolling back transactions.

If the long transaction(s) cannot be rolled back before the logical log fills, the
database server shuts down. If this situation occurs, you must perform a data
restore. During the data restore, you must not roll forward the last logical-log
file. Doing so re-creates the problem by filling the logical log again.
18-20 Administrator’s Guide for Informix Dynamic Server

What Are the Logical-Log Administration Tasks Required for Blobspaces?
The default values for the configuration parameters LTXHWM and LTXEHWM
are 50 and 60, respectively. These values eliminate any risk of a long trans-
action having too little log space in which to roll back. The database server
initialization emits a warning if your ONCONFIG file contains values greater
than 50 and 60 for these parameters. To overcome these warnings, reduce
your parameters to conform. If your logspace is finely tuned such that your
LTXHWM percentage represents precisely what your longest transaction
requires, you will need to add an amount to your log space equal to the
difference between your current LTXHWM value and the recommended value
of 50.

What Are the Logical-Log Administration Tasks
Required for Blobspaces?
Applications that use blobspaces require the following logical-log
administration tasks:

■ Switching log files to activate blobspaces

■ Switching log files to activate new blobspace chunks

■ Backing up log files to free deleted blobspace pages

The following sections explain these tasks.

Switching Logical-Log Files to Activate Blobspaces
You must switch to the next logical-log file after you create a blobspace if you
intend to insert blobs in the blobspace right away. The database server
requires that the statement that creates a blobspace and the statements that
insert blobs into that blobspace appear in separate logical-log files. This
requirement is independent of the logging status of the database.

For instructions on switching to the next log file, see “Switching to the Next
Logical-Log File” on page 19-15.
What Is the Logical Log? 18-21

Switching Logical-Log Files to Activate New Blobspace Chunks
Switching Logical-Log Files to Activate New Blobspace
Chunks
You must switch to the next logical-log file after you add a new chunk to an
existing blobspace if you intend to insert blobs in the blobspace that will use
the new chunk. The database server requires that the statement that creates a
chunk in a blobspace and the statements that insert blobs into that blobspace
appear in separate logical-log files. This requirement is independent of the
logging status of the database.

For instructions on switching to the next log file, see “Switching to the Next
Logical-Log File” on page 19-15.

Backing Up Logical-Log Files to Free Blobpages
When you delete data stored in blobspace pages, those pages are not neces-
sarily freed for reuse. The blobspace pages are only free when both of the
following actions have occurred:

■ The TEXT or BYTE data has been deleted, either through an UPDATE
to the column or by deleting the row.

■ The logical log that stores the INSERT of the row that has TEXT or
BYTE data is backed up.

The following sections explain the reasons for this functionality.

Why Do You Have to Back Up Logical-Log Files to Free Blobpages?

Blobs stored in blobspaces generally require much greater amounts of disk
space than other data types. For this reason, if an application inserts a row
that contains TEXT or BYTE data, the database server does not write the actual
column data to the logical-log file. The database server writes only the
blobspace overhead pages (which include the free-map page and the bit-map
page) to the logical log.
18-22 Administrator’s Guide for Informix Dynamic Server

Backing Up Logical-Log Files to Free Blobpages
The free-map page contains an entry for each blobpage in the blobspace
chunk. Each entry contains the following information:

■ A flag that indicates whether the page is used or free

■ The unique ID of the logical-log file that was current when the page
was written to

■ The associated tblspace number of the data stored on the page

For more information on the free-map page, see “Blobspace Page Types” on
page 38-64.

When an application deletes a row that contains TEXT or BYTE data, the
database server marks each blobpage that contained part of the deleted data
as FREE in the free-map overhead page. The database server writes a log
record to the logical log to record the changes to the free-map page. If the
database server has not yet backed up the logical-log file that contains the
transaction that inserted the TEXT or BYTE data, the database server does not
write over the deleted blobpages on subsequent inserts of TEXT or BYTE data.
Figure 18-5 illustrates this scenario.

Figure 18-5
No Write to Deleted Blobpages If Logical-Log File Is Not Backed Up

LOAD FROM 'file1'
INSERT INTO tab1 (col1)

Log file 1

DELETE col1 FROM tab1

LOAD FROM 'file2'
INSERT INTO tab1 (col1)

Blobspace chunk
What Is the Logical Log? 18-23

Backing Up Logical-Log Files to Free Blobpages
The database server does not write over the deleted blobpages in the scenario
shown in Figure 18-5 because it might need to perform a fast recovery and
roll forward the transaction that contains the original insert. If the original
data was overwritten, the database server would have no way of repro-
ducing the transaction.

When you back up the logical-log file that contains the original insert,
however, the database server copies the actual TEXT or BYTE data to tape.
After the data is saved to tape and available for a recovery, the database
server can write over the deleted blobpages, as shown in Figure 18-6.

Figure 18-6
Write to Deleted Blobpages If Logical-Log File Is Backed Up

LOAD FROM 'file1'
INSERT INTO tab1 (col1)

DELETE col1 FROM tab1

LOAD FROM 'file2'
INSERT INTO tab1 (col1)

log file 1

Ba
ck

ed
 u

p log file 2

Blobspace chunk
18-24 Administrator’s Guide for Informix Dynamic Server

What Is the Logging Process?
What Is the Logging Process?
This section describes in detail the logging process for both dbspace and
blobspace logging. This information is not required for performing normal
database server administration tasks.

Dbspace Logging
The database server uses the following logging process for operations that
involve data stored in dbspaces:

1. Read the data page from disk to the shared-memory page buffer.

2. Copy the unchanged page to the physical-log buffer.

3. Write the new data into the page buffer, and create a logical-log
record of the transaction, if needed.

4. Flush physical-log buffer to the physical log on disk.

5. Flush the page buffer, and write it back to disk.

6. Flush the logical-log buffer to a logical-log file on disk.

Read Page into Shared-Memory Buffer Pool

In general, an insert or an update begins when a thread requests a row. The
database server identifies the page on which the row resides and attempts to
locate the page in the shared-memory buffer pool. If the page is not already
in shared memory, the database server reads the page from disk. “How a
Database Server Thread Accesses a Buffer Page” on page 11-43 explains this
process in more detail.
What Is the Logical Log? 18-25

Dbspace Logging
Copy the Page Buffer into the Physical-Log Buffer

Before the database server modifies a dbspace data page, it stores a copy of
the unchanged page in the physical-log page buffer. The database server
eventually flushes the physical-log page buffer that contains this before-image
to the physical log on disk. The before-image of the page plays a critical role
in fast recovery. Until the database server performs a new checkpoint, subse-
quent modifications to the same page do not require another before-image to
be stored in the physical-log buffer. For more information, refer to “Flushing
the Physical-Log Buffer” on page 11-47.

The database server knows if a page is already in the physical log. If the time
stamp on the page is more recent than the time stamp for the last checkpoint,
the page has been changed since the checkpoint and is therefore already in
the physical log.

Read Data into Buffer and Create Logical-Log Record

The thread that performs the modifications receives data from the appli-
cation. After the database server stores a copy of the unchanged data page in
the physical-log buffer, the thread writes the new data to the page buffer and
writes records necessary to roll back or re-create the operation to the logical-
log buffer. For more information, refer to “When the Logical-Log Buffer
Becomes Full” on page 11-54.

Flush Physical-Log Buffer to the Physical Log

The database server must flush the physical-log buffer before it flushes the
data buffer. Flushing the physical-log buffer ensures that a copy of the
unchanged page is available until the changed page is written to the physical
log. For more information, refer to “Flushing the Physical-Log Buffer” on
page 11-47.
18-26 Administrator’s Guide for Informix Dynamic Server

Blobspace Logging
Flush Page Buffer

At some point after the database server flushes the physical-log buffer, the
database server flushes the data buffer and writes the modified data page to
disk. This action occurs at the next checkpoint, or when a page cleaner deter-
mines that the page should be written to disk. The database server does not
flush the data buffer as the transaction is committed. For more information,
see “How the Database Server Flushes Data to Disk” on page 11-46.

Flush Logical-Log Buffer

To flush the logical-log buffer, the database server writes the logical-log
records to the current logical-log file on disk. For more information, see
“Flushing the Logical-Log Buffer” on page 11-53.

A logical-log file cannot become free, and available for reuse, until all trans-
actions represented in the log file are completed and the log file is backed up
to tape. This requirement ensures that all open transactions can be rolled
back, if required.

Blobspace Logging
The database server logs blobspace data, but the data does not pass through
either shared memory or the logical-log files on disk. The database server
copies data stored in a blobspace directly from disk to tape. Records of
modifications to the blobspace overhead pages (the free-map and bit-map
pages) are the only blobspace data that reaches the logical log. By logging
these overhead pages, the logical-log file records track blobpage allocation
and deallocation (when TEXT or BYTE data is deleted from blobpages), but
not the actual TEXT or BYTE data. Blobspace data is recorded in the logical log
only when a log file is backed up to tape.
What Is the Logical Log? 18-27

Blobspace Logging
Blobspace logging occurs in the following three steps:

1. Blobspace data flows from the network, through temporary buffers
in the database server process memory space, and is written directly
to disk. If the TEXT or BYTE object requires more than one blobpage,
the database server creates links and pointers as needed.

2. A record of the operation (insert, update, or delete) is written to the
logical-log buffer, if the database uses logging. The TEXT or BYTE
data is not included in the record (but the information about where
the TEXT or BYTE data is placed is included by way of the overhead
pages).

3. When a logical-log backup begins, the database server uses the
logical-log ID number stored in the blobspace free-map page to
determine which blobpages to copy to tape. If you use ON-Bar as
your backup and restore tool, see your Backup and Restore Guide for
more details on logical-log backups. If you use ON-Archive as your
backup and restore tool, see your Archive and Backup Guide.
18-28 Administrator’s Guide for Informix Dynamic Server

19
Chapter
Managing Logical-Log Files
Adding a Logical-Log File 19-4
Using ON-Monitor to Add a Log File 19-5
Using onparams to Add a Log File 19-5
Adding a Log File with a New Size 19-5

Dropping a Logical-Log File. 19-6
Using ON-Monitor to Drop a Logical-Log File 19-7
Using onparams to Drop a Logical-Log File 19-7

Moving a Logical-Log File to Another Dbspace 19-8
An Example of Moving Logical-Log Files 19-8

Changing the Size of Logical-Log Files 19-9

Changing Logical-Log Configuration Parameters 19-10
Changing LOGSIZE or LOGFILES 19-10

Using ON-Monitor to Change LOGSIZE or LOGFILES. . . . 19-11
Using a Text Editor to Change LOGSIZE or LOGFILES. . . . 19-11

Changing LOGSMAX, LTXHWM, or LTXEHWM 19-12
Changing LOGSMAX, LTXHWM, or LTXEHWM

with ON-Monitor 19-12
Editing the ONCONFIG File to Change LOGSMAX,

LTXHWM, or LTXEHWM 19-13

Freeing a Logical-Log File 19-13
Freeing a Log File with Status A 19-13
Freeing a Log File with Status U 19-14
Freeing a Log File with Status U-B 19-14
Freeing a Log File with Status U-C or U-C-L 19-14
Freeing a Log File with Status U-B-L 19-15

Switching to the Next Logical-Log File 19-15

19-2 Ad
ministrator’s Guide for Informix Dynamic Server

This chapter contains information on managing the database server
logical-log files with command line utilities. You must manage logical-log
files even if none of your databases uses transaction logging.

The chapter covers the following tasks:

■ Adding a logical-log file

■ Dropping a logical-log file

■ Moving a logical-log file

■ Changing the size of a logical-log file

■ Changing the logical-log configuration parameters

■ Freeing a logical-log file

■ Switching to the next logical-log file

Several of the tasks described in this chapter can be accomplished through
INFORMIX-Enterprise Command Center (IECC). For instructions on backing
up logical-log files, enabling logical logging, and disabling logical logging
through IECC, see the INFORMIX-Enterprise Command Center User Guide.

For background information regarding the logical log, refer to Chapter 18,
“What Is the Logical Log?”

For instructions on backing up logical-log files with ON-Bar, refer to your
Backup and Restore Guide. For instructions on backing up logical-log files with
ON-Archive or ontape, refer to your Archive and Backup Guide.
Managing Logical-Log Files 19-3

Adding a Logical-Log File
Adding a Logical-Log File
You might add a log file for the following reasons:

■ To increase the disk space allocated to the logical log

■ To change the size of your logical-log files

■ As part of moving logical files to a different dbspace

You add log files one at a time. You cannot add a log file during a dbspace
backup (quiescent or on-line). The database server must be in quiescent
mode to add a logical-log file.

A newly added log file does not become available until you create a level-0
dbspace backup of the root dbspace. This requirement ensures that the
dbspace backup copy of the reserved pages contains information about the
current number of logical-log files. Use your backup tool to create the level-0
dbspace backup.

You can use either of the following utilities to add the log file:

■ onparams

■ ON-Monitor

If you use ON-Monitor, the size of the new log file is always the value
specified by LOGSIZE. ♦

You must use the onparams utility to add a new log file with a different size
than LOGSIZE.

Verify that you will not exceed the maximum number of logical-log files
allowed in your configuration, specified as LOGSMAX. If you need to, you can
increase LOGSMAX (as described in “Changing LOGSMAX, LTXHWM, or
LTXEHWM” on page 19-12) and reinitialize shared memory for the change
to take effect.

You must be logged in as either informix or root to make this change.

UNIX
19-4 Administrator’s Guide for Informix Dynamic Server

Using ON-Monitor to Add a Log File
Using ON-Monitor to Add a Log File
Bring the database server to quiescent mode. Select Parameters➞ Add-Log
option to add a logical-log file.

Enter the name of the dbspace where the new logical-log file will reside in the
field labelled Dbspace Name. The size of the log file automatically appears
in the Logical Log Size field.

After you add the log file, the status of the new log file is A. The newly added
log file becomes available after you create a level-0 dbspace backup of the
root dbspace. For information on creating a level-0 dbspace backup with
ON-Bar, refer to the Backup and Restore Guide. For information on creating a
level-0 dbspace backup with ON-Archive or ontape, refer to the Archive and
Backup Guide.

Using onparams to Add a Log File
The following command adds a logical-log file to the dbspace called
logspace, using the log-file size specified by the LOGSIZE configuration
parameter:

onparams -a -d logspace

The status of the new log file is A. The newly added log file becomes available
after you create a level-0 dbspace backup of the root dbspace. For information
on creating a level-0 dbspace backup with ON-Bar, refer to your Backup and
Restore Guide. For information on creating a level-0 dbspace backup with
ON-Archive or ontape, refer to your Archive and Backup Guide.

For reference information on using onparams to add a logical-log file, see
“Add a Logical-Log File” on page 35-44.

Adding a Log File with a New Size
To add a logical-log file with a size different from that specified by LOGSIZE
(in this case, 250 kilobytes) to a dbspace called logspace, execute the
following command:

onparams -a -d logspace -s 250

Adding a log file of a new size does not change the value of LOGSIZE.

UNIX
Managing Logical-Log Files 19-5

Dropping a Logical-Log File
The status of the new log file is A. The newly added log file becomes available
after you create a level-0 dbspace backup of the root dbspace. For information
on creating a level-0 dbspace backup with ON-Bar, refer to your Backup and
Restore Guide. For information on creating a level-0 dbspace backup with
ON-Archive or ontape, refer to your Archive and Backup Guide

For reference information on using onparams to add a logical-log file, see
“Add a Logical-Log File” on page 35-44.

Dropping a Logical-Log File
You can drop a log to increase the amount of the disk space available within
a dbspace.

The database server requires a minimum of three logical-log files at all times.
(Log files that are newly added and have status A do not count toward this
minimum of three.) You cannot drop a log if your logical log is composed of
only three log files.

You drop log files one at a time. After your configuration reflects the desired
number of logical-log files, create a level-0 dbspace backup of the root
dbspace. This action ensures that the dbspace backup copy of the reserved
pages contains information about the current number of logical-log files. This
information prevents the database server from attempting to use the dropped
log files during a restore.

You can only drop a log file that has a status of Free (F) or newly Added (A).

You must know the logid number of each logical log that you intend to drop.
For information on obtaining a display of the logical-log files and logid
numbers, see “Monitoring Logical-Log Files” on page 29-44.

To make this change, you must log in as either informix or root, and the
database server must be in quiescent mode.
19-6 Administrator’s Guide for Informix Dynamic Server

Using ON-Monitor to Drop a Logical-Log File
Using ON-Monitor to Drop a Logical-Log File
Select Parameters➞Drop-Log to drop a logical-log file. Use the arrow keys to
select the log you want to drop and press CTRL-B or F3. You are asked to
confirm your choice.

Create a level-0 dbspace backup of the root dbspace after your configuration
reflects the desired number of logical-log files. For information on creating a
level-0 dbspace backup with ON-Bar, refer to your Backup and Restore Guide.
For information on creating a level-0 dbspace backup with ON-Archive or
ontape, refer to your Archive and Backup Guide.

Using onparams to Drop a Logical-Log File
Execute the following command to drop a logical-log file whose logid
number is 21:

onparams -d -l 21

Create a level-0 dbspace backup of the root dbspace after your configuration
reflects the number of logical-log files you want. For information on creating
a level-0 dbspace backup with ON-Bar, refer to your Backup and Restore Guide.
For information on creating a level-0 dbspace backup with ON-Archive or
ontape, refer to your Archive and Backup Guide.

See “Drop a Logical-Log File” on page 35-45 for reference information on
using onparams to drop a logical-log file.

UNIX
Managing Logical-Log Files 19-7

Moving a Logical-Log File to Another Dbspace
Moving a Logical-Log File to Another Dbspace
You might want to move a logical-log file for performance reasons or to make
more space in the dbspace, as explained in “Where Should Logical-Log Files
Be Located?” on page 18-12. To find out the location of logical-log files, see
“Monitoring Logical-Log Files” on page 29-44.

Changing the location of the logical-log files is actually a combination of two
simpler actions:

■ Dropping logical-log files from their current dbspace

■ Adding the logical-log files to their new dbspace

Although moving the logical-log files is not difficult, it can be time-
consuming because you must create two separate level-0 dbspace backups of
the root dbspace as part of the procedure. For an example of the procedure,
see “An Example of Moving Logical-Log Files” on page 19-8.

An Example of Moving Logical-Log Files
The database server must be in quiescent mode to make these changes.

The following procedure provides an example of how to move six logical-log
files from the root dbspace to another dbspace, dbspace_1:

1. Free all log files except the current log file.

See “Freeing a Logical-Log File” on page 19-13.

2. Verify that the value of LOGSMAX is greater than or equal to the
number of log files after the move plus 3.

In this case, the value of LOGSMAX must be greater than or equal to
9. Change the value of LOGSMAX, if necessary. See “Changing
LOGSMAX, LTXHWM, or LTXEHWM” on page 19-12.

3. Drop all but three of the logical-log files.

You cannot drop the current log file. If you have only three
logical-log files in the root dbspace, skip this step.

See “Dropping a Logical-Log File” on page 19-6.
19-8 Administrator’s Guide for Informix Dynamic Server

Changing the Size of Logical-Log Files
4. Add the new log files to the different dbspace.

In this case, add six new log files to dbspace_1. See “Adding a
Logical-Log File” on page 19-4.

5. Create a level-0 dbspace backup of the root dbspace to make the new
log files available to the database server.

For information on creating a level-0 dbspace backup with ON-Bar,
refer to your Backup and Restore Guide. For information on creating a
level-0 dbspace backup with ON-Archive or ontape, refer to your
Archive and Backup Guide.

6. Switch the logical-log files to start a new current log file.

See “Switching to the Next Logical-Log File” on page 19-15.

7. Back up the former current log file to free it.

For information on backing up logical-log files with ON-Bar, refer to
your Backup and Restore Guide. For information on backing up logical-
log files with ON-Archive or ontape, refer to your Archive and Backup
Guide.

8. Drop the three log files that remain in the root dbspace.

For information on dropping a logical-log file, refer to “Dropping a
Logical-Log File” on page 19-6.

Changing the Size of Logical-Log Files
You can change the size of logical-log files in two ways:

■ Use onparams to add a new log file of a different size.

This change has no effect on LOGSIZE. The log files that you add are
available after the next level-0 dbspace backup of the root dbspace
(instead of after reinitializing disk space). See “Adding a Log File
with a New Size” on page 19-5.

■ Change the LOGSIZE configuration parameter.

Changing LOGSIZE changes the default size for all subsequent
logical-log files added but is time-consuming because it requires that
you reinitialize disk space to see the change. See “Changing
LOGSIZE or LOGFILES” on page 19-10.
Managing Logical-Log Files 19-9

Changing Logical-Log Configuration Parameters
Changing Logical-Log Configuration Parameters
The following configuration parameters affect the logical-log file and how the
database server works with it:

■ LOGSIZE (described on page 33-43)

■ LOGFILES (described on page 33-42)

■ LOGSMAX (described on page 33-44)

■ LTXHWM (described on page 33-51)

■ LTXEHWM (described on page 33-50)

The following sections explain the procedure for changing each of these
parameters.

Changing LOGSIZE or LOGFILES
You must be logged in as root or informix to change these configuration
parameters. You can change LOGSIZE or LOGFILES in two ways:

■ Using ON-Monitor ♦
■ Using a text editor

In each case, the changes to LOGSIZE and LOGFILES do not take effect until
you reinitialize the disk. To retain your existing data when you reinitialize the
disk, you must unload the data beforehand and reload it once the disk is
initialized. This process makes changing these parameters relatively difficult.

If you want to increase the number of log files, you can add log files more
easily one at a time, as discussed in “Adding a Logical-Log File” on
page 19-4. Similarly, if you want to change the size of the log files, you might
find it easier to add new log files of the desired size and then drop the old
ones.

UNIX
19-10 Administrator’s Guide for Informix Dynamic Server

Changing LOGSIZE or LOGFILES
Using ON-Monitor to Change LOGSIZE or LOGFILES

You can use ON-Monitor to change the value of LOGSIZE or LOGFILES.

To change these values

1. Unload all the database server data.

You cannot rely on dbspace backup tapes to unload and restore the
data because a restore returns the parameters to their previous value.

2. Select Parameters➞Initialize option to reinitialize disk space.

3. Change the value of LOGSIZE or LOGFILES.

Change the value of LOGSIZE in the field labelled Log.Log Size, or
change the value of LOGFILES in the field labelled Number of
Logical Logs.

4. Proceed with the database server disk-space initialization.

5. Re-create all databases and tables.

6. Reload all the database server data.

For information about the onload utility and about unloading data, see the
Informix Migration Guide.

Using a Text Editor to Change LOGSIZE or LOGFILES

You can change the value of LOGSIZE or LOGFILES by using an editor to edit
the ONCONFIG file.

To change these values

1. Change the value of LOGSIZE or LOGFILES.

2. Unload all the database server data.

You cannot rely on dbspace backup tapes to unload and restore the
data because a restore returns the parameters to their previous value.

3. Use oninit to reinitialize disk space.

4. Re-create all databases and tables.

5. Reload all the database server data.

For information about the onload utility and about moving tables and data,
see the Informix Migration Guide.

UNIX
Managing Logical-Log Files 19-11

Changing LOGSMAX, LTXHWM, or LTXEHWM
Changing LOGSMAX, LTXHWM, or LTXEHWM
You can change the value of LOGSMAX, LTXHWM, or LTXEHWM with the
following methods:

■ Using ON-Monitor ♦
■ Editing the ONCONFIG file

Each of these methods is explained in the following sections. Changes to
these configuration parameters take effect when you reinitialize shared
memory.

You must be logged in as root or informix to change these configuration
parameters.

Changing LOGSMAX, LTXHWM, or LTXEHWM with ON-Monitor

You can use ON-Monitor to change LOGSMAX, LTXHWM, or LTXEHWM while
the database server is in on-line mode.

Select Parameters➞Shared-Memory option to change one or more of the
values. ON-Monitor displays the current values, and you can change the
values as follows.

Reinitialize shared memory for the change or changes to take effect. See
“Adding a Segment to the Virtual Portion of Shared Memory” on page 12-15.

To change this value Change this ON-Monitor field

LOGSMAX MAX # of Logical Logs

LTXHWM Long TX HWM

LTXEHWM Long TX HWM Exclusive

UNIX

UNIX
19-12 Administrator’s Guide for Informix Dynamic Server

Freeing a Logical-Log File
Editing the ONCONFIG File to Change LOGSMAX, LTXHWM, or
LTXEHWM

You can change the value of LOGSMAX, LTXHWM, or LTXEHWM by using a
text editor to edit the ONCONFIG file.

Change the value of the parameter that you wish to change.

Reinitialize shared memory for the change to take effect. See “Adding a
Segment to the Virtual Portion of Shared Memory” on page 12-15.

Freeing a Logical-Log File
For a description of what constitutes a free logical-log file, see “What Are the
Status Flags of Logical-Log Files?” on page 18-13.

You might want to free a logical-log file for the following reasons:

■ So that the database server does not stop processing

■ To free the space used by deleted blobpages

The procedures for freeing log files vary, depending on the status of the log
file. Each procedure is described in the following sections. To find out the
status of logical-log files, see “Monitoring Logical-Log Files” on page 29-44.

Freeing a Log File with Status A
If a log file is newly added (status A), create a level-0 dbspace backup of the
root dbspace to activate the log file and make it available for use. For infor-
mation on creating a level-0 dbspace backup with ON-Bar, refer to your
Backup and Restore Guide. For information on creating a level-0 dbspace
backup with ON-Archive or ontape, refer to your Archive and Backup Guide.
Managing Logical-Log Files 19-13

Freeing a Log File with Status U
Freeing a Log File with Status U
If a log file contains records but is not yet backed up (status U), back up the
file using the dbspace backup and backup tool that you usually use. For
information on backing up logical-log files with ON-Bar, refer to your Backup
and Restore Guide. For information on backing up logical-log files with
ON-Archive or ontape, refer to your Archive and Backup Guide.

If backing up the log file does not change the status to free (F), its status
changes to either U-B or U-B-L. See “Freeing a Log File with Status U-B” or
“Freeing a Log File with Status U-B-L” on page 19-15.

Freeing a Log File with Status U-B
If a log file is backed up but still in use (status U-B), some transactions in the
log file are still under way. If you do not want to wait until the transactions
complete, take the database server to quiescent mode. See “Immediately
from On-Line to Quiescent” on page 7-7. Any active transactions are rolled
back.

Freeing a Log File with Status U-C or U-C-L
If you want to free the current log file (status C), follow these steps:

1. Execute the following command:
% onmode -l

(Be sure to type a lowercase L on the command line, not a number 1.)
This command switches the current log file to the next available log
file.

2. Back up the original log file with the dbspace backup and backup
tool that you usually use. For information on backing up logical-log
files with ON-Bar, refer to your Backup and Restore Guide. For infor-
mation on backing up logical-log files with ON-Archive or ontape,
refer to your Archive and Backup Guide.

After all full log files are backed up, you are prompted to switch to
the next available logical-log file and back up the new current log file.
You do not need to do this because you just switched to this log file.
19-14 Administrator’s Guide for Informix Dynamic Server

Freeing a Log File with Status U-B-L
After you follow these steps, if the log file now has status U-B or U-B-L, refer
to “Freeing a Log File with Status U-B” on page 19-14 or “Freeing a Log File
with Status U-B-L.”

Freeing a Log File with Status U-B-L
If a log file is backed up to tape and all transactions within it are closed, but
the file is not free (status U-B-L), this logical-log file contains the most-recent
checkpoint record.

To free log files with a status U-B-L, the database server must create a new
checkpoint. You can execute the following command to force a checkpoint:

onmode -c

You can also use ON-Monitor to force a checkpoint. To force a checkpoint
with ON-Monitor, select the Force-Ckpt option. ♦

Switching to the Next Logical-Log File
You might want to switch to the next logical-log file before the current log file
becomes full for the following reasons:

■ To activate new blobspaces

■ To activate new blobspace chunks

■ To back up the current log

The database server can be in on-line mode to make this change. Execute the
following command to switch to the next available log file:

onmode -l

The change takes effect immediately. (Be sure that you type a lowercase L on
the command line, not a number 1.)

UNIX
Managing Logical-Log Files 19-15

20
Chapter
What Is Physical Logging?
What Is Physical Logging? 20-3
What Is the Purpose of Physical Logging? 20-4

Fast Recovery Uses Physically Logged Pages 20-4
Backup Uses Physically Logged Pages 20-4

What Database Server Activity Is Physically Logged? 20-4
Are Blobs Physically Logged? 20-5

How Big Should the Physical Log Be? 20-5
Can the Physical Log Become Full? 20-7

Where Is the Physical Log Located? 20-8

Details of Physical Logging 20-9
Page Is Read into the Shared-Memory Buffer Pool. 20-9
A Copy of the Page Buffer Is Stored in the

Physical-Log Buffer 20-10
Change Is Reflected in the Data Buffer 20-10
Physical-Log Buffer Is Flushed to the Physical Log 20-10
Page Buffer Is Flushed 20-11
When a Checkpoint Occurs 20-11
How the Physical Log Is Emptied 20-11

20-2 Ad
ministrator’s Guide for Informix Dynamic Server

This chapter defines the terms and explains the concepts that you
need to know to perform effectively the tasks described in Chapter 21,
“Managing the Physical Log.” The chapter covers the following topics:

■ What physical logging is and what purposes it serves

■ What the physical log is, and some guidelines for it size and location

■ Details of the physical-logging process

What Is Physical Logging?
Physical logging is the process of storing the pages that the database server is
going to change before the changed pages are actually recorded. Before the
database server modifies a page in the shared-memory buffer pool, it stores
an unmodified copy of the page (called a before-image) in the physical-log
buffer in shared memory.

The physical log is a set of contiguous disk pages where the database server
stores before-images.

The database server maintains the before-image page in the physical-log
buffer in shared memory for those pages until one or more page cleaners
flush the pages to disk. (See “Checkpoints” on page 11-57.) Once a check-
point occurs, the database server empties the physical log (except in the
special circumstances explained in “Can the Physical Log Become Full?” on
page 20-7).
What Is Physical Logging? 20-3

What Is the Purpose of Physical Logging?
What Is the Purpose of Physical Logging?
This seemingly odd activity of storing copies of pages before they are
changed ensures that the unmodified pages are available in case the database
server fails or the backup procedure needs them to provide an accurate
snapshot of the database server data. These snapshots are potentially used in
two activities: fast recovery and the database server backup.

Fast Recovery Uses Physically Logged Pages

After a failure, the database server uses the before-images in the physical log
to restore all pages on the disk to their state at the last checkpoint. When the
before-image pages are combined with the logical-log records stored since
the checkpoint, the database server can return all data to physical and logical
consistency, up to the point of the most-recently completed transaction.
Chapter 22, “What Is Fast Recovery?” explains this procedure in more detail.

Backup Uses Physically Logged Pages

When you perform an on-line dbspace backup, the database server checks
disk pages to see which should be backed up. As part of this process, the
database server periodically reads the pages in the physical log. If the
database server finds pages in the physical log that meet the backup criterion,
they are copied to the backup tape. For more detailed information, see your
Archive and Backup Guide if you use ON-Archive as your backup and restore
tool or your Backup and Restore Guide if you use ON-Bar.

What Database Server Activity Is Physically Logged?
All dbspace page modifications except the following ones are physically
logged:

■ Pages that do not have a valid database server address

This situation usually occurs when the page was used by some other
database server or a table that was dropped.

■ Pages that the database server has not allocated and that are located
in a dbspace where no table has been dropped since the last check-
point
20-4 Administrator’s Guide for Informix Dynamic Server

How Big Should the Physical Log Be?
In case of multiple modifications before the next checkpoint, only one
before-image is logged in the physical log (the first before-image).

Storing all before-images of page modifications in the physical log might
seem excessive. But the database server stores the before-images in the
physical log only until the next checkpoint. To control the amount of data that
the database server logs, you can tune the checkpoint interval configuration
parameter CKPTINTVL.

Are Blobs Physically Logged?

The database server pages in the physical log can be any database server
page except a blobspace blobpage. Even overhead pages (such as chunk free-
list pages, blobspace free-map pages, and blobspace bit-map pages to the
free-map pages) are copied to the physical log before data on the page is
modified and flushed to disk, but blobspace blobpages are not. For further
information about blobspace logging, see “Are Blobs Logged?” on page 16-7.

How Big Should the Physical Log Be?
When you consider how large to make your physical log, you can begin by
using the following formula to calculate an approximate size:

Physical Log Size = userthreads * max_log_pages_per_critical_section * 4

This formula is based on how much physical logging space the database
server needs in a worst-case scenario. This scenario takes place when a check-
point occurs because the log becomes 75 percent full. If all the update threads
are in a critical section (see “Critical Sections” on page 11-56) and perform
physical logging of the maximum number of pages in their critical section,
the database server must fit this logging into the final 25 percent of the
physical log to prevent a physical-log overflow.

To obtain an estimate for the number of userthreads, execute onstat -u during
peak processing. The last line of onstat -u contains the maximum number of
concurrent user threads. Substitute this number for userthreads in the
formula.
What Is Physical Logging? 20-5

How Big Should the Physical Log Be?
The maximum number of pages (max_log_pages_per_critical_section) that the
database server can physically log in a critical section is five. The number
four in the formula is necessary because the following part of the formula
represents only 25 percent of the physical log:

userthreads * max_log_pages_per_critical_section

The exception to this rule occurs if you are using tblspace blobs in a database
without logging. Here, substitute the size of the most-frequently occurring
blob in the dbspace for the maximum log pages per critical section.

Also consider the following issues:

■ How much updating of data does the database server perform?

Operations that do not perform updates do not generate before-
images. If the applications that use your database server do not
perform much updating, you might not need a very big physical log.
If the size of your database is fixed, but you frequently update the
data, a lot of physical logging occurs. If the size of the database is
growing, but applications rarely update the data, not much physical
logging occurs.

The database server writes the before-image of only the first update
made to a page. Thus, if your application repeatedly updates the
same pages, you need a smaller physical log than if your application
performs a lot of updating but seldom updates the same page.

■ How frequently do checkpoints occur?

Because the physical log is emptied after each checkpoint, the
physical log only needs to be large enough to hold before-images
from changes between checkpoints. If your physical log frequently
approaches full, you might consider decreasing the checkpoint
interval, CKPTINTVL, so that checkpoints occur more frequently.
However, decreasing the checkpoint interval beyond a certain point
has an impact on performance.

If you plan to increase the checkpoint interval, or if you anticipate
increased activity, you will probably want to increase the size of the
physical log.

The size of the physical log is specified by the ONCONFIG parameter
PHYSFILE. (See “PHYSFILE” on page 33-71.)
20-6 Administrator’s Guide for Informix Dynamic Server

How Big Should the Physical Log Be?
Can the Physical Log Become Full?

Because a checkpoint is initiated that logically empties the physical log when
it becomes 75 percent full, it is unlikely that the log would become 100
percent full before the checkpoint completes. To assure further that the
physical log does not become full during a checkpoint, take the following
actions:

■ Configure the database server according to the sizing guidelines for
the physical log and the logical-log files.

■ Fine-tune the size of the physical log by monitoring it during
production activity.

However, the physical log could still become full as described in the
following paragraphs.

Under normal processing, once a checkpoint is requested, and the checkpoint
begins, all threads are prevented from entering critical sections of code. (See
“Critical Sections” on page 11-56.) However, threads currently in critical
sections can continue processing. The physical log can become full if many
threads in critical sections are processing work and if the space that remains
in the physical log is very small. The many writes performed as threads
complete their critical section processing could conceivably cause the
physical log to become full.

Consider the following example. When the database server processes
tblspace blobs stored in a database created with transaction logging, each
portion of the blob that the database server stores on disk can be logged
separately, allowing the thread to exit the critical sections of code between
each portion. However, if the database was created without logging, the
database server must carry out all operations on the tblspace blob in one
critical section. If the blob is large, and the physical log small, this scenario
can cause the physical log to become full. If this situation occurs, the database
server sends the following message to the message log:

Physical log file overflow

The database server then initiates a shutdown. For the suggested corrective
action, refer to this message in your message log.
What Is Physical Logging? 20-7

Where Is the Physical Log Located?
This same unlikely scenario could occur during the rollback of a long trans-
action after the second long-transaction high-water mark, LTXEHWM, is
reached. (See “Avoiding Long Transactions” on page 18-18.) After the
LTXEHWM is reached, and after all threads have exited critical sections, only
the thread that is performing the rollback has access to the physical and
logical logs. However, the writes that are performed as threads complete
their processing could conceivably fill the physical log during the rollback if
the following conditions occur simultaneously:

■ Many threads were in critical sections.

■ The space remaining in the physical log was very small at the time
that the LTXEHWM was reached.

Where Is the Physical Log Located?
When the database server initializes disk space, it places the logical-log files
and the physical log in the root dbspace. You have no initial control over this
placement. To improve performance (specifically, to reduce the number of
writes to the root dbspace and minimize disk contention), you can move the
physical log out of the root dbspace to another dbspace, preferably on a disk
that does not contain active tables or the logical-log files.

The physical log is located in the dbspace specified by the ONCONFIG
parameter PHYSDBS. (See “PHYSDBS” on page 33-70). Change this
parameter only if you decide to move the physical-log file from the root
dbspace. (See “Changing the Physical-Log Location and Size” on page 21-3.)

Because of the critical nature of the physical log, Informix recommends that
you mirror the dbspace that contains the physical log.
20-8 Administrator’s Guide for Informix Dynamic Server

Details of Physical Logging
Details of Physical Logging
This section describes the details of physical logging. It is provided to satisfy
your curiosity; you do not need to understand the information here in order
to manage your physical log.

The database server performs physical logging in the following six steps:

1. Reads the data page from disk to the shared-memory page buffer (if
the data page is not there already)

2. Copies the unchanged page to the physical-log buffer

3. Reflects the change in the page buffer after an application modifies
data

4. Flushes the physical-log buffer to the physical log on disk

5. Flushes the page buffer and writes it back to disk

6. When a checkpoint occurs, flushes the physical-log buffer to the
physical log on disk and empties the physical log

The paragraphs that follow explain each step in detail.

Page Is Read into the Shared-Memory Buffer Pool
When a session requests a row, the database server identifies the page on
which the row resides and attempts to locate the page in the database server
shared-memory buffer pool. If the page is not already in shared memory, it is
read into the resident portion of the database server shared memory from
disk.
What Is Physical Logging? 20-9

A Copy of the Page Buffer Is Stored in the Physical-Log Buffer
A Copy of the Page Buffer Is Stored in the Physical-Log
Buffer
Before a dbspace data page is modified, a copy of the unchanged page is
stored in the physical-log buffer (if the unchanged page is not already stored
in the physical-log buffer since the last checkpoint). This copy of the before-
image of the page is eventually flushed from the physical-log buffer to the
physical log on disk. The before-image of the page plays a critical role in
archiving and fast recovery. (Subsequent modifications of the same page
before the next checkpoint do not require another before-image to be stored
in the physical-log buffer.)

Change Is Reflected in the Data Buffer
The application changes data. The database server reflects these changes in
the shared-memory data buffer.

Data from the application is passed to the database server. After a copy of the
unchanged data page is stored in the physical-log buffer, the new data is
written to the page buffer already acquired.

Physical-Log Buffer Is Flushed to the Physical Log
The database server will probably flush the physical-log buffer before it
flushes the data buffer to ensure that a copy of the unchanged page is
available until the changed page is copied to disk. The before-image of the
page is no longer needed after a checkpoint occurs. (During a checkpoint, all
modified pages in shared memory are flushed to disk, providing a consistent
point from which to recover in case an uncontrolled shutdown occurs.)
20-10 Administrator’s Guide for Informix Dynamic Server

Page Buffer Is Flushed
Page Buffer Is Flushed
After the physical-log buffer is flushed, the shared-memory page buffer is
flushed to disk (but only as a result of a fixed set of conditions such as a
checkpoint), and the data page is written to disk. For conditions that lead to
the flushing of the page buffer, see “How the Database Server Achieves Data
Consistency” on page 11-56.

When a Checkpoint Occurs
A checkpoint can occur at any point in the physical-logging process. After a
checkpoint occurs, the database server is physically consistent. The data on
disk reflects the actual changes that the application made since the data pages
in shared memory were flushed to disk. The database server empties the
physical log logically, allowing current entries to be overwritten.

How the Physical Log Is Emptied
The database server manages the physical log as a circular file, constantly
overwriting unneeded data. The checkpoint procedure empties the physical
log by resetting a pointer in the physical log that marks the beginning of the
next group of required before-images.
What Is Physical Logging? 20-11

21
Chapter
Managing the Physical Log
Changing the Physical-Log Location and Size 21-3
Why Change Physical-Log Location and Size? 21-4
Before You Make the Changes. 21-4
Using ON-Monitor to Change Physical-Log

Location or Size 21-5
Using a Text Editor to Change Physical-Log

Location and Size. 21-5
Using onparams to Change Physical-Log Location or Size 21-6

21-2 Ad
ministrator’s Guide for Informix Dynamic Server

This chapter describes how to change the configuration parameters
associated with the physical log. For background information about the
physical log, see Chapter 20, “What Is Physical Logging?”

Changing the Physical-Log Location and Size
 You can change your physical-log location or size in three ways:

■ Using ON-Monitor ♦
■ Using a text editor to edit the ONCONFIG file

■ Using the onparams utility from the command line

Log in as user informix or root on a UNIX system or as a member of the
Informix-Admin group on a Windows NT system when you make the
changes. The following sections describe each of these methods.

For any of the three methods, to activate the changes to the size or location of
the physical log as soon as you make them, reinitialize shared memory. If you
use onparams, you can reinitialize shared memory in the same step.

Create a level-0 dbspace backup immediately after you reinitialize shared
memory. This dbspace backup is critical for database server recovery.

UNIX
Managing the Physical Log 21-3

Why Change Physical-Log Location and Size?
Why Change Physical-Log Location and Size?
You can move the physical-log file to try to improve performance. When the
database server initializes disk space, it places the disk pages allocated for the
logical log and the physical log in the root dbspace. You might improve
performance by moving the physical log, the logical-log files, or both to other
dbspaces.

For advice on where to place the physical log, see “Where Is the Physical Log
Located?” on page 20-8. For advice on sizing the physical log, see“How Big
Should the Physical Log Be?” on page 20-5.

Before You Make the Changes
The space allocated for the physical log must be contiguous. If you move the
log to a dbspace without adequate contiguous space, or if you increase the
log size beyond the available contiguous space, a fatal shared-memory error
occurs when you attempt to reinitialize shared memory with the new values.
If this error occurs, resize the log, or choose another dbspace with adequate
contiguous space and then reinitialize the database server.

You can check if adequate contiguous space is available with the -pe option
of the oncheck utility. For more information, see “Monitoring Chunks” on
page 29-53.

To change the physical-log location or size, you must log in as user root or
informix on a UNIX system or as a member of the Informix-Admin group on
a Windows NT system.
21-4 Administrator’s Guide for Informix Dynamic Server

Using ON-Monitor to Change Physical-Log Location or Size
Using ON-Monitor to Change Physical-Log Location or Size
Select Parameters➞Physical-Log to change the size or dbspace location, or
both.

The Physical-log Size field displays the current size of the log. Enter the new
size (in kilobytes) if you want to change the size of the log. The Dbspace
Name field displays the current location of the physical log. Enter the name
of the new dbspace if you want to change the log location.

You are prompted, first, to confirm the changes.

Do you really want to shut down?

The second prompt checks if you want to shut the database server down.

Do you really want to continue?

This last message refers to reinitializing shared memory. If you respond Y,
ON-Monitor reinitializes shared memory, and any changes are implemented
immediately. The database server displays messages that the database server
is shutting down and then initializing and recovering. If you respond N, the
values are changed in the configuration file, but the changes do not take effect
until you reinitialize shared memory.

After you reinitialize shared memory, create a level-0 dbspace backup
immediately to ensure that all recovery mechanisms are available.

Using a Text Editor to Change Physical-Log Location and
Size
You can change the value of the following parameters (page numbers point
you to instructions) in the ONCONFIG file with your text editor while the
database server is in on-line mode:

■ PHYSFILE page 33-71

■ PHYSDBS page 33-70

The changes do not take effect until you reinitialize shared memory.

After you reinitialize shared memory, create a level-0 dbspace backup
immediately to ensure that all recovery mechanisms are available.

UNIX
Managing the Physical Log 21-5

Using onparams to Change Physical-Log Location or Size
Using onparams to Change Physical-Log Location or Size
You can find reference information regarding the onparams utility in
“onparams: Modify Log-Configuration Parameters” on page 35-43.

To change the size and location of the physical log, execute the following
command after you bring the database server to quiescent mode:

% onparams -p -s size -d dbspace -y

The following example changes the size and location of the physical log. The
new physical-log size is 400 kilobytes, and the log will reside in the dbspace6
dbspace. The command also reinitializes shared memory with the -y option
so that the change takes effect immediately, as follows:

% onparams -p -s 400 -d dbspace6 -y

After you reinitialize shared memory, create a level-0 dbspace backup to
ensure that all recovery mechanisms are available. If you use ON-Bar as your
backup and restore tool, refer to your Backup and Restore Guide for infor-
mation on performing a level-0 dbspace backup. For information on
performing a level-0 dbspace backup using ON-Archive or ontape, refer to
your Archive and Backup Guide.

size is the new size of the physical log in kilobytes.

dbspace specifies the dbspace where the physical log is to reside.
21-6 Administrator’s Guide for Informix Dynamic Server

22
Chapter
What Is Fast Recovery?
What Is Fast Recovery? 22-3
When Is Fast Recovery Needed? 22-4
When Does the Database Server Initiate Fast Recovery? 22-4
Fast Recovery and Buffered Logging 22-4
Fast Recovery and No Logging 22-5

Details of Fast Recovery 22-5
Returning to the Last-Checkpoint State 22-6
Finding the Checkpoint Record in the Logical Log. 22-6
Rolling Forward Logical-Log Records 22-7
Rolling Back Incomplete Transactions 22-8

22-2 Ad
ministrator’s Guide for Informix Dynamic Server

This chapter describes the database server fast-recovery feature. You
do not need to take any administrative actions with respect to fast recovery;
it is an automatic feature. Read this chapter if you are interested in what fast
recovery is and how it works.

This chapter covers the following topics:

■ A definition of fast recovery

■ The types of failures that fast recovery addresses

■ How the database server detects these failures

■ The details of how fast recovery works

What Is Fast Recovery?
Fast recovery is an automatic, fault-tolerant feature that the database server
executes every time it moves from off-line to quiescent mode or from off-line
to on-line mode.

The fast-recovery process checks if, the last time that the database server
went off-line, it did so in uncontrolled conditions. If so, fast recovery returns
the database server to a state of physical and logical consistency, as described
in “Details of Fast Recovery” on page 22-5.

If the fast-recovery process finds that the database server came off-line in a
controlled manner, the fast-recovery process terminates, and the database
server moves to on-line mode.
What Is Fast Recovery? 22-3

When Is Fast Recovery Needed?
When Is Fast Recovery Needed?
Fast recovery restores the database server to physical and logical consistency
after any failure that results in the loss of the contents of memory for the
database server. Such failures are usually caused by system failures. System
failures do not damage the database but instead affect transactions that are in
progress at the time of the failure.

Fast recovery addresses the following kinds of system failure:

■ The database server is processing tasks for more than 40 users.

■ Dozens of transactions are on-going.

■ Without warning, the operating system fails.

How does the database server bring itself to a consistent state again? What
happens to ongoing transactions? The answer to both questions is fast
recovery.

When Does the Database Server Initiate Fast Recovery?
Every time the administrator brings the database server to quiescent mode or
on-line mode from off-line mode, the database server checks if fast recovery
is needed.

As part of shared-memory initialization, the database server checks the
contents of the physical log. The physical log is empty when the database
server shuts down under control. The move from on-line mode to quiescent
mode includes a checkpoint, which flushes the physical log. Therefore, if the
database server finds pages in the physical log, the database server clearly
went off-line under uncontrolled conditions, and fast recovery begins.

Fast Recovery and Buffered Logging
If a database uses buffered logging (as described in “Buffered Transaction
Logging” on page 16-9), some logical-log records associated with committed
transactions might not be written to the logical log at the time of the failure.
If this occurs, fast recovery is unable to restore those transactions. Fast
recovery can restore only transactions with an associated COMMIT record
stored in the logical log on disk. (For this reason, buffered logging represents
a trade-off between performance and data vulnerability.)
22-4 Administrator’s Guide for Informix Dynamic Server

Fast Recovery and No Logging
Fast Recovery and No Logging
For databases that do not use logging, fast recovery restores the database to
its state at the time of the most recent checkpoint. All changes made to the
database since the last checkpoint are lost.

Details of Fast Recovery
Fast recovery returns the database server to a consistent state as part of
shared-memory initialization. The consistent state means that all committed
transactions are restored, and all uncommitted transactions are rolled back.

Fast recovery is accomplished in the following two stages:

■ The database server uses the physical log to return to the most recent
point of known physical consistency, the most recent checkpoint.

■ The database server uses the logical-log files to return to logical
consistency by rolling forward all committed transactions that
occurred after the last checkpoint and rolling back all transactions
that were left incomplete.

The two stages can also be expressed as the following four steps. Each step is
described in detail in the paragraphs that follow:

1. Use the data in the physical log to return all disk pages to their
condition at the time of the most recent checkpoint.

2. Locate the most recent checkpoint record in the logical-log files.

3. Roll forward all logical log records written after the most recent
checkpoint record.

4. Roll back transactions that do not have an associated COMMIT record
in the logical log.
What Is Fast Recovery? 22-5

Returning to the Last-Checkpoint State
Returning to the Last-Checkpoint State
To accomplish the first step, returning all disk pages to their condition at the
time of the most recent checkpoint, the database server writes the before-
images stored in the physical log to shared memory and then back to disk.
Each before-image in the physical log contains the address of a page that was
updated after the checkpoint. When the database server writes each before-
image page in the physical log to shared memory and then back to disk,
changes to the database server data since the time of the most recent check-
point are undone. Figure 22-1 illustrates this step.

Finding the Checkpoint Record in the Logical Log
In the second step, the database server locates the address of the most recent
checkpoint record in the logical log. The most recent checkpoint record is
guaranteed to be in the logical log on disk.

The address information needed to locate the most recent checkpoint record
in the logical log is contained in the active PAGE_CKPT page of the root
dbspace reserved pages. For more information, see “PAGE_CKPT” on
page 38-9.

Figure 22-1
Writing All

Remaining Before-
Images in the

Physical Log Back
to Disk

Tblspace Physical log

Shared memory
22-6 Administrator’s Guide for Informix Dynamic Server

Rolling Forward Logical-Log Records
The address information from PAGE_CKPT also identifies the location of all
logical-log records written after the most recent checkpoint. Figure 22-2
illustrates this step.

Rolling Forward Logical-Log Records
The third step in fast recovery rolls forward the logical-log records that were
written after the most recent checkpoint record. This action reproduces all
changes to the databases since the time of the last checkpoint, up to the point
where the uncontrolled shutdown occurred. Figure 22-3 illustrates this step.

Figure 22-2
Locating the Most
Recent Checkpoint

Record in the
Logical Log

Checkpoint
record address

Checkpoint record

Reserved page PAGE_CKPT
Logical log

Figure 22-3
Rolling Forward the

Logical-Log
Records Written

Since the Most
Recent Checkpoint

Records since
the checkpoint

dbspace

Logical log

Changes since the
checkpoint rolled
forward.
What Is Fast Recovery? 22-7

Rolling Back Incomplete Transactions
Rolling Back Incomplete Transactions
The final step in fast recovery rolls back all logical-log records that are
associated with transactions that were not committed at the time the system
failed. (Transactions that have completed the first phase of a two-phase
commit are exceptional cases. For more information, see “How the Two-
Phase Commit Protocol Handles Failures” on page 30-10.) This rollback
procedure ensures that all databases are left in a consistent state.

Because one or more transactions possibly spanned several checkpoints
without being committed, this rollback procedure might read backward
through the logical log past the most recent checkpoint record. All logical-log
files that contain records for open transactions are available to the database
server because a log file is not freed until all transactions contained within it
are closed. Figure 22-4 illustrates the rollback procedure. When fast recovery
is complete, the database server goes to quiescent or on-line mode

Figure 22-4
Rolling Back All

Incomplete
Transactions

dbspace

Disk A

Logical log

Uncommitted changes
rolled back
22-8 Administrator’s Guide for Informix Dynamic Server

 V
I
Fault Tolerance
Se
ct

io
n

23
Chapter
What Is Mirroring?
What Is Mirroring? 23-4
What Are the Benefits of Mirroring? 23-4
What Are the Costs of Mirroring? 23-5
What Happens If You Do Not Mirror? 23-5
What Should You Mirror? 23-5
What Mirroring Alternatives Exist? 23-6

The Mirroring Process 23-7
What Happens When You Create a Mirrored Chunk? 23-7
What Are Mirror Status Flags? 23-8
What Is Recovery?. 23-8
What Happens During Processing? 23-9

Disk Writes to Mirrored Chunks 23-9
Disk Reads from Mirrored Chunks. 23-9
Detecting Media Failures 23-10
Recovering a Chunk. 23-10

What Happens If You Stop Mirroring? 23-11
What Is the Structure of a Mirrored Chunk? 23-11

23-2 Ad
ministrator’s Guide for Informix Dynamic Server

The first part of this chapter answers the following basic questions
about the database server mirroring feature:

■ What are the benefits of mirroring?

■ What are the costs of mirroring?

■ What happens if you do not mirror?

■ What should you mirror?

■ What mirroring alternatives exist?

The second part of the chapter discusses the actual mirroring process. The
following aspects of the process are discussed:

■ What happens when you create a mirrored chunk?

■ What are the mirror status flags?

■ What is recovery?

■ What happens during processing?

■ What happens if you stop mirroring?

■ What is the structure of a mirrored chunk?

For instructions on how to perform mirroring tasks, refer to Chapter 24,
“Using Mirroring.”

For instructions on using the INFORMIX-Enterprise Command Center to
perform mirroring tasks, refer to the INFORMIX-Enterprise Command Center
User Guide.
What Is Mirroring? 23-3

What Is Mirroring?
What Is Mirroring?
Mirroring is a strategy that pairs a primary chunk of one defined dbspace or
blobspace with an equal-sized mirrored chunk. Every write to the primary
chunk is automatically accompanied by an identical write to the mirrored
chunk. This concept is illustrated in Figure 23-1. If a failure occurs on the
primary chunk, mirroring enables you to read from and write to the mirrored
chunk until you can recover the primary chunk, all without interrupting user
access to data.

Mirroring is not supported on disks that are managed over a network. The
same database server instance must manage all the chunks of a mirrored set.

What Are the Benefits of Mirroring?
In the event of a media failure, mirroring provides the database server
administrator with a means of recovering data without having to take the
database server off-line. This feature results in greater reliability and less
system downtime. Furthermore, applications can continue to read from and
write to a database whose primary chunks are on the affected media,
provided that the chunks that mirror this data are located on separate media.

Any database that has extreme requirements for reliability in the face of
media failure should be located in a mirrored dbspace. Above all, the root
dbspace, which contains the database server reserved pages, should be
mirrored.

Figure 23-1
Writing Data to Both

the Primary Chunk
and the Mirrored

Chunk

Writes

Mirrored chunkPrimary chunk
Database server
23-4 Administrator’s Guide for Informix Dynamic Server

What Are the Costs of Mirroring?
What Are the Costs of Mirroring?
Disk-space costs as well as performance costs are associated with mirroring.
The disk-space cost is due to the additional space required for storing the
mirror data. The performance cost results from having to perform writes to
both the primary and mirrored chunks. The use of multiple virtual
processors for disk writes reduces this performance cost. The use of split
reads, whereby the database server reads data from either the primary chunk
or the mirrored chunk, depending on the location of the data within the
chunk, actually causes performance to improve for read-only data. For more
information on how the database server performs reads and writes for
mirrored chunks, see “What Happens During Processing?” on page 23-9.

What Happens If You Do Not Mirror?
If you do not mirror your dbspaces, the frequency with which you have to
restore from a dbspace backup in the event of a media failure increases.

When a mirrored chunk suffers a media failure, the database server reads
exclusively from the chunk that is still on-line until you bring the down
chunk back on-line. On the other hand, when an unmirrored chunk goes
down, the database server cannot access the data stored on that chunk. If the
chunk contains logical-log files, the physical log, or the root dbspace, the
database server goes off-line immediately. If the chunk does not contain
logical-log files, the physical log, or the root dbspace, the database server can
continue to operate, but threads cannot read from or write to the down
chunk. Unmirrored chunks that go down must be restored by recovering the
dbspace from a backup.

What Should You Mirror?
Ideally, you should mirror all of your data. If disk space is an issue, however,
you might not be able to do so. In this case, select certain critical chunks to
mirror.

Critical chunks always include the chunks that are part of the root dbspace,
the chunk that stores the logical-log files, and the chunk that stores the
physical logs. If any one of these critical chunks fail, the database server goes
off-line immediately.
What Is Mirroring? 23-5

What Mirroring Alternatives Exist?
If some chunks hold data that is critical to your business, give these chunks
high priority for mirroring.

Also give priority for mirroring to other chunks that store frequently used
data. This action ensures that the activities of many users are not halted if one
widely used chunk goes down.

What Mirroring Alternatives Exist?
Mirroring, as discussed in this manual, is a database server feature. Alter-
native mirroring solutions might be provided by your operating system or
hardware.

If you are considering a mirroring feature provided by your operating system
instead of database server mirroring, compare the implementation of both
features before you decide which to use. The slowest step in the mirroring
process is the actual writing of data to disk. The database server strategy of
performing writes to mirrored chunks in parallel (see “Disk Writes to
Mirrored Chunks” on page 23-9) helps to reduce the time required for this
step. In addition, database server mirroring uses split reads to improve read
performance. (See “Disk Reads from Mirrored Chunks” on page 23-9.)
Operating-system mirroring features that do not use parallel mirror writes
and split reads might provide inferior performance.

Nothing prevents you from running database server mirroring and
operating-system mirroring at the same time. They run independently of
each other. In some cases, you might decide to use both the database server
mirroring and the mirroring feature provided by your operating system. For
example, you might have both database server data and other data on a
single disk drive. You could use the operating-system mirroring to mirror the
other data and database server mirroring to mirror the database server data.

Logical volume managers are an alternative mirroring solution. Some
operating-system vendors provide this type of utility to have multiple disks
appear as one file system. Saving data to more than two disks gives you
added protection from media failure, but the additional writes have a
performance cost.
23-6 Administrator’s Guide for Informix Dynamic Server

The Mirroring Process
Another solution is to use hardware mirroring such as RAID (redundant
array of inexpensive disks). An advantage of this type of hardware mirroring
is that it requires less disk space than database server mirroring does to store
the same amount of data in a manner resilient to media failure. The disad-
vantage is that it is slower than database server mirroring for write opera-
tions.

The Mirroring Process
This section describes the mirroring process in greater detail. For instructions
on how to perform mirroring operations such as creating mirrored chunks,
starting mirroring, changing the status of mirrored chunks, and so on, refer
to Chapter 24, “Using Mirroring.”

What Happens When You Create a Mirrored Chunk?
When you specify a mirrored chunk, the database server copies all the data
from the primary chunk to the mirrored chunk. This copy process is known
as recovery. Mirroring begins as soon as recovery is complete.

The recovery procedure that marks the beginning of mirroring is delayed if
you start to mirror chunks within a dbspace that contains a logical-log file.
Mirroring for dbspaces that contain a logical-log file does not begin until you
create a level-0 backup of the root dbspace. The delay ensures that the
database server can use the mirrored logical-log files if the primary chunk
that contains these logical-log files becomes unavailable during a dbspace
restore. The level-0 backup copies the updated database server configuration
information, including information about the new mirrored chunk, from the
root dbspace reserved pages to the dbspace backup. If you perform a data
restore, the updated configuration information at the beginning of the
dbspace backup directs the database server to look for the mirrored copies of
the logical-log files if the primary chunk becomes unavailable. If this new
dbspace backup information does not exist, the database server is unable to
take advantage of the mirrored log files.
What Is Mirroring? 23-7

What Are Mirror Status Flags?
For similar reasons, you cannot mirror a dbspace that contains a logical-log
file while a dbspace backup is being created. The new information that must
appear in the first block of the dbspace backup tape cannot be copied there
once the backup has begun.

For more information on creating mirrored chunks, refer to Chapter 24,
“Using Mirroring.”

What Are Mirror Status Flags?
Dbspaces and blobspaces have status flags that indicate whether the dbspace
or blobspace is mirrored, unmirrored, or mirrored but requiring a level-0
backup of the root dbspace before mirroring starts.

Chunks have status flags that indicate the following information:

■ Whether the chunk is a primary or mirrored chunk

■ Whether the chunk is currently on-line, down, a new mirrored chunk
that requires a level-0 backup of the root dbspace, or being recovered

For descriptions of these chunk status flags, refer to “-d Option” on
page 35-72. For information on how to display these status flags, refer to
“Monitoring Disk Usage” on page 29-53.

What Is Recovery?
When the database server recovers a mirrored chunk, it performs the same
recovery procedure that it uses when mirroring begins. The mirror-recovery
process consists of copying the data from the existing on-line chunk onto the
new, repaired chunk until the two are considered identical.

When you initiate recovery, the database server puts the down chunk in
recovery mode and copies the information from the on-line chunk to the
recovery chunk. When the recovery is complete, the chunk automatically
receives on-line status. You perform the same steps whether you are recov-
ering the primary chunk of a mirrored pair or recovering the mirrored chunk.

Tip: You can still use the on-line chunk while the recovery process is occurring. If
data is written to a page that has already been copied to the recovery chunk, the
database server updates the corresponding page on the recovery chunk before it
continues with the recovery process.
23-8 Administrator’s Guide for Informix Dynamic Server

What Happens During Processing?
For information on how to recover a down chunk, refer to “Recovering a
Mirrored Chunk” on page 24-11.

What Happens During Processing?
This section discusses some of the details of disk I/O for mirrored chunks and
how the database server handles media failure for these chunks.

Disk Writes to Mirrored Chunks

During database server processing, the database server performs mirroring
by executing two writes for each modification: one to the primary chunk and
one to the mirrored chunk. Virtual processors of the AIO class perform the
actual disk I/O. For more information, refer to “Asynchronous I/O” on
page 9-26.

The requesting thread submits the two write requests (one for the primary
chunk and one for the mirrored chunk) asynchronously. That is, if two AIO
virtual processors are idle, they can perform the two disk writes in parallel.
In the meantime, the requesting thread can perform any additional
processing that does not depend on the result of the mirror I/O.

Disk Reads from Mirrored Chunks

The database server uses mirroring to improve read performance because
two versions of the data reside on separate disks. A data page is read from
either the primary chunk or the mirrored chunk, depending on which half of
the chunk includes the address of the data page. This feature is called a split
read. Split reads improve performance by reducing the disk-seek time. Disk-
seek time is reduced because the maximum distance over which the disk
head must travel is reduced by half. Figure 23-2 on page 23-10 illustrates a
split read.
What Is Mirroring? 23-9

What Happens During Processing?
Detecting Media Failures

The database server checks the return code when it first opens a chunk and
after any read or write. Whenever the database server detects that a primary
(or mirror) chunk device has failed, it sets the chunk-status flag to down (D).
For information on chunk-status flags, refer to “What Are Mirror Status
Flags?” on page 23-8.

If the database server detects that a primary (or mirror) chunk device has
failed, reads and writes continue for the one chunk that remains on-line. This
statement is true even if the administrator intentionally brings down one of
the chunks.

Once the administrator recovers the down chunk and returns it to on-line
status, reads are again split between the primary and mirrored chunks, and
writes are made to both chunks.

Recovering a Chunk

The database server uses asynchronous I/O to minimize the time required for
recovering a chunk. The read from the chunk that is on-line can overlap with
the write to the down chunk, instead of the two processes occurring serially.
That is, the thread that performs the read does not have to wait until the
thread that performs the write has finished before it reads more data.

Figure 23-2
Split Read Reducing

the Maximum
Distance Over

Which the Disk Head
Must Travel

Data on this half of the chunk is
read from the mirrored chunk.

Data on this half of the chunk is
read from the primary chunk.

Primary chunk Mirrored chunk
Database server
23-10 Administrator’s Guide for Informix Dynamic Server

What Happens If You Stop Mirroring?
What Happens If You Stop Mirroring?
When you end mirroring, the database server immediately frees the mirrored
chunks and makes the space available for reallocation. The action of ending
mirroring takes only a few seconds.

Create a level-0 backup of the root dbspace after you end mirroring to ensure
that the reserved pages with the updated mirror-chunk information are
copied to the backup. This action prevents the restore procedure from
assuming that mirrored data is still available.

What Is the Structure of a Mirrored Chunk?
The mirrored chunk contains the same control structures as the primary
chunk. Mirrors of blobspace chunks contain blobspace overhead pages;
mirrors of dbspace chunks contain dbspace overhead pages. For information
on these structures, refer to “Structure of a Mirrored Chunk” on page 38-17.

A display of disk-space use, provided by one of the methods discussed under
“Monitoring Chunks” on page 29-53, always indicates that the mirrored
chunk is full, even if the primary chunk has free space. The full mirrored
chunk indicates that none of the space in the chunk is available for use other
than as a mirror of the primary chunk. The status remains full for as long as
both primary chunk and mirrored chunk are on-line.

If the primary chunk goes down, and the mirrored chunk becomes the
primary chunk, disk-space allocation reports then accurately describe the
fullness of the new primary chunk.
What Is Mirroring? 23-11

24
Chapter
Using Mirroring
Steps Required for Mirroring Data 24-3

Enabling Mirroring 24-4
Enabling Mirroring with ON-Monitor 24-5
Enabling Mirroring by Editing the ONCONFIG File. 24-5

Allocating Disk Space for Mirrored Data 24-5

Starting Mirroring 24-6
Mirroring the Root Dbspace During Initialization 24-7

Setting MIRRORPATH and MIRROROFFSET
with ON-Monitor 24-7

Setting MIRRORPATH and MIRROROFFSET
with a Text Editor 24-7

Starting Mirroring for Unmirrored Dbspaces 24-8
Starting Mirroring for Unmirrored Dbspaces

with ON-Monitor 24-8
Starting Mirroring for Unmirrored Dbspaces

with onspaces 24-8
Starting Mirroring for New Dbspaces 24-8

Starting Mirroring for New Dbspaces with ON-Monitor . . . 24-9
Starting Mirroring for New Dbspaces with onspaces 24-9

Adding Mirrored Chunks 24-9
Adding Mirrored Chunks with ON-Monitor 24-9
Adding Mirrored Chunks with the onspaces Utility 24-9

24-2 Ad
Changing the Mirror Status 24-10
Taking Down a Mirrored Chunk 24-10

Taking Down a Mirrored Chunk with ON-Monitor 24-10
Taking Down a Mirrored Chunk with the

onspaces Utility. 24-11
Recovering a Mirrored Chunk 24-11

Recovering a Mirrored Chunk with ON-Monitor 24-11
Recovering a Mirrored Chunk with onspaces 24-11

Relinking a Chunk to a Device After a Disk Failure 24-12

Ending Mirroring 24-12
Ending Mirroring with ON-Monitor 24-13
Ending Mirroring with onspaces 24-13
ministrator’s Guide for Informix Dynamic Server

This chapter describes the various mirroring tasks that are required to
use the database server mirroring feature. It provides an overview of the
steps required for mirroring data. Then it describes the following tasks:

■ Enabling mirroring

■ Allocating disk space for mirrored chunks

■ Starting mirroring (creating mirrored chunks)

■ Adding chunks to mirrored dbspaces

■ Changing the mirror status of chunks

■ Relinking mirrored chunks after a disk failure

■ Ending mirroring

Steps Required for Mirroring Data
To start mirroring data on a database server that is not running with the
mirroring function enabled, you must perform the following steps:

1. Take the database server off-line and enable mirroring. See
“Enabling Mirroring” on page 24-4.

2. Reinitialize shared memory.

3. Allocate disk space for the mirrored chunks. You can allocate this
disk space at any time, as long as the disk space is available when
you specify mirrored chunks in the next step. See “Allocating Disk
Space for Mirrored Data” on page 24-5.

4. Choose the dbspace that you want to mirror, and create mirrored
chunks by specifying a mirror-chunk pathname and offset for each
primary chunk in that dbspace. The mirroring process starts after
you perform this step. Repeat this step for all the dbspaces that you
want to mirror. See “Starting Mirroring” on page 24-6.
Using Mirroring 24-3

Enabling Mirroring
Enabling Mirroring
When you enable mirroring, you invoke the database server functionality
required for mirroring tasks. However, when you enable mirroring, you do
not initiate the mirroring process. Mirroring does not actually start until you
create mirrored chunks for a dbspace or blobspace. See “Starting Mirroring”
on page 24-6.

To enable mirroring for the database server, you must set the MIRROR
parameter in ONCONFIG to 1. The default value of MIRROR is 0, indicating
that mirroring is disabled.

Enable mirroring when you initialize the database server if you plan to create
a mirror for the root dbspace as part of initialization; otherwise, leave
mirroring disabled. If you later decide to mirror a dbspace, you can change
the value of the MIRROR parameter through ON-Monitor or by editing your
configuration file.

You can change the value of MIRROR while the database server is in on-line
mode, but the change does not take effect until you reinitialize shared
memory (take the database server off-line and then to quiescent or on-line
mode).

If you are logged in on a UNIX system as user informix or root, or on a
Windows NT system as a member of the Informix-Admin group, you can
change the value of MIRROR either by using ON-Monitor or by editing the
ONCONFIG file with a text editor. Informix recommends that you enable
mirroring by editing the ONCONFIG file. If you are not careful when you
enable mirroring with ON-Monitor, you might accidentally reinitialize your
disk.
24-4 Administrator’s Guide for Informix Dynamic Server

Allocating Disk Space for Mirrored Data
Enabling Mirroring with ON-Monitor

To enable mirroring, choose Parameters➞Initialize. In the field that is
labelled Mirror, enter Y. Press ESC to record changes.

A series of screens appears displaying other system parameters. Type ESC at
each screen to maintain the same values. After the last of these screens, a
prompt appears to confirm that you want to continue (to initialize the
database server disk space and destroy all existing data). Respond N (no) to
this prompt.

Warning: If you respond Y (yes) at this prompt, you lose all your existing data.

Reinitialize shared memory (take the database server off-line and then to
quiescent mode) for the change to take effect.

Enabling Mirroring by Editing the ONCONFIG File

Edit the ONCONFIG file. Change the value of MIRROR to 1. Reinitialize shared
memory (take the database server off-line and then to quiescent mode) for
the change to take effect.

Allocating Disk Space for Mirrored Data
Before you can create a mirrored chunk, you must allocate disk space for this
purpose. You can allocate either raw disk space or cooked file space for
mirrored chunks. For a discussion of allocating disk space, refer to
“Allocating Disk Space” on page 14-4.

Always allocate disk space for a mirrored chunk on a different disk than the
corresponding primary chunk with, ideally, a different controller. This setup
allows you to access the mirrored chunk if the disk on which the primary
chunk is located goes down, or vice versa.

Use the UNIX link (ln) command to link the actual files or raw devices of the
mirrored chunks to mirror pathnames. In the event of disk failure, you can
link a new file or raw device to the pathname, eliminating the need to physi-
cally replace the disk that failed before the chunk is brought back on-line.
(See “Relinking a Chunk to a Device After a Disk Failure” on page 24-12.)
Using Mirroring 24-5

Starting Mirroring
Starting Mirroring
Mirroring starts when you create a mirrored chunk for each primary chunk
in a dbspace or blobspace. This action consists of specifying disk space that
you have already allocated, either raw disk space or a cooked file, for each
mirrored chunk. You can use either ON-Monitor or the onspaces utility to
create mirrored chunks.

When you create a mirrored chunk, the database server performs the recovery
process, copying data from the primary chunk to the mirrored chunk. When
this process is complete, the database server begins mirroring data. If the
primary chunk contains logical-log files, the database server does not
perform the recovery process immediately after you create the mirrored
chunk but waits until you perform a level-0 dbspace backup. For an expla-
nation of this behavior see “What Happens When You Create a Mirrored
Chunk?” on page 23-7.

You must always start mirroring for an entire dbspace or blobspace. The
database server does not permit you to select particular chunks in a dbspace
or blobspace to mirror. When you select a space to mirror, you must create
mirrored chunks for every chunk within the space.

You start mirroring a dbspace when you perform the following operations:

■ Create a mirrored root dbspace during system initialization

■ Change the status of a dbspace from unmirrored to mirrored

■ Create a mirrored dbspace or blobspace

Each of these operations requires you to create mirrored chunks for the
existing chunks in the dbspace or blobspace. You can perform all three opera-
tions with ON-Monitor, and you can perform the last two with onspaces as
well.
24-6 Administrator’s Guide for Informix Dynamic Server

Mirroring the Root Dbspace During Initialization
Mirroring the Root Dbspace During Initialization
If you enable mirroring when you initialize the database server, you can also
specify a mirror pathname and offset for the root chunk. The database server
creates the mirrored chunk when it is initialized. However, because the root
chunk contains logical-log files, mirroring does not actually start until you
perform a level-0 dbspace backup. (See “What Happens When You Create a
Mirrored Chunk?” on page 23-7.)

To specify the root mirror pathname and offset, set the configuration param-
eters MIRRORPATH and MIRROROFFSET.

If you do not provide a mirror pathname and offset, but you do want to start
mirroring the root dbspace, you must change the mirroring status of the root
dbspace once the database server is initialized. See “Starting Mirroring for
Unmirrored Dbspaces” on page 24-8.

Setting MIRRORPATH and MIRROROFFSET with ON-Monitor

If you are using ON-Monitor to initialize the database server, you can set the
MIRRORPATH and MIRROROFFSET parameters in the DISK PARAMETERS
screen of the Parameters menu, Initialize option.

Setting MIRRORPATH and MIRROROFFSET with a Text Editor

If you are using oninit to initialize the database server, you must use a text
editor to set the values of MIRRORPATH and MIRROROFFSET in the
ONCONFIG file before you bring up the database server.
Using Mirroring 24-7

Starting Mirroring for Unmirrored Dbspaces
Starting Mirroring for Unmirrored Dbspaces
You can start mirroring for any dbspace or blobspace with either ON-Monitor
or the onspaces utility.

Starting Mirroring for Unmirrored Dbspaces with ON-Monitor

Use the Mirror option of the Dbspaces menu to start mirroring a dbspace. The
first screen displays a list of dbspaces. To select the dbspace that you want to
mirror, move the cursor down the list to the correct dbspace and type CTRL-B.
The Mirror option then displays a screen for each chunk in the dbspace. You
can enter a mirror pathname and offset in this screen. After you enter infor-
mation for each chunk, press ESC to exit the option. The database server
recovers the new mirrored chunks unless they contain logical-log files, in
which case recovery is postponed until after you create a level-0 dbspace
backup.

Starting Mirroring for Unmirrored Dbspaces with onspaces

You can also use the onspaces utility to start mirroring a dbspace or
blobspace. For example, the following onspaces command starts mirroring
for the dbspace db_project, which contains two chunks, data1 and data2:

% onspaces -m db_project\
-p /dev/data1 -o 0 -m /dev/mirror_data1 0\
-p /dev/data2 -o 5000 -m /dev/mirror_data2 5000

For a full description of the onspaces syntax, see “onspaces: Manage
Database Spaces” on page 35-48.

Starting Mirroring for New Dbspaces
You can also start mirroring when you create a new dbspace or blobspace.
You can use either ON-Monitor or the onspaces utility to do this.
24-8 Administrator’s Guide for Informix Dynamic Server

Adding Mirrored Chunks
Starting Mirroring for New Dbspaces with ON-Monitor

To create a dbspace with mirroring, choose the Create option of the Dbspaces
menu. This option displays a screen in which you can specify the pathname,
offset, and size of a primary chunk and the pathname and offset of a mirrored
chunk for the new dbspace.

Starting Mirroring for New Dbspaces with onspaces

You can use the onspaces utility to create a mirrored dbspace. For example,
the following command creates the dbspace db_acct with an initial chunk
/dev/chunk1 and a mirrored chunk /dev/mirror_chk1:

% onspaces -c -d db_acct -p /dev/chunk1 -o 0 -s 2500 -m /dev/mirror_chk1 0

For a full description of the onspaces syntax, see “onspaces: Manage
Database Spaces” on page 35-48.

Adding Mirrored Chunks
If you add a chunk to a dbspace that is mirrored, you must also add a
corresponding mirrored chunk.

Adding Mirrored Chunks with ON-Monitor

In ON-Monitor, the Add-chunk option of the Dbspaces menu displays fields
in which to enter the primary-chunk pathname, offset, and size, and the
mirror-chunk pathname and offset.

Adding Mirrored Chunks with the onspaces Utility

You can also use the onspaces utility to add a primary chunk and its mirrored
chunk to a dbspace. The following example adds a chunk, chunk2, to the
db_acct dbspace. Because the dbspace is mirrored, a mirrored chunk,
mirror_chk2, is also added.

% onspaces -a db_acct -p /dev/chunk2 -o 5000 -s 2500 -m /dev/mirror_chk2 5000

For a full description of the onspaces syntax, see “onspaces: Manage
Database Spaces” on page 35-48.
Using Mirroring 24-9

Changing the Mirror Status
Changing the Mirror Status
You can make the following two changes to the status of a mirrored chunk:

■ Change a mirrored chunk from on-line to down

■ Change a mirrored chunk from down to recovery

You can take down or restore a chunk only if it is part of a mirrored pair. You
can take down either the primary chunk or the mirrored chunk, as long as the
other chunk in the pair is on-line.

For information on how to determine the status of a chunk, refer to
“Monitoring Disk Usage” on page 29-53.

Taking Down a Mirrored Chunk
When a mirrored chunk is down, the database server cannot write to it or read
from it. You might take down a mirrored chunk to relink the chunk to a
different device. (See “Relinking a Chunk to a Device After a Disk Failure”
on page 24-12.) Taking down a chunk is not the same as ending mirroring.
You end mirroring for a complete dbspace, which causes the database server
to drop all the mirrored chunks for that dbspace.

Taking Down a Mirrored Chunk with ON-Monitor

To use ON-Monitor to take down a mirrored chunk, choose the Status option
from the Dbspaces menu. With the cursor on the dbspace that contains the
chunk that you want to take down, press F3 or CTRL-B. The database server
displays a screen that lists all the chunks in the dbspace. Move the cursor to
the chunk that you want to take down, and press F3 or CTRL-B to change the
status (take it down).
24-10 Administrator’s Guide for Informix Dynamic Server

Recovering a Mirrored Chunk
Taking Down a Mirrored Chunk with the onspaces Utility

You can use the onspaces utility to take down a chunk. The following
example takes down a chunk that is part of the dbspace db_acct:

% onspaces -s db_acct -p /dev/mirror_chk1 -o 0 -D

For a full description of the onspaces syntax, see “onspaces: Manage
Database Spaces” on page 35-48.

Recovering a Mirrored Chunk
You recover a down chunk to begin mirroring the data in the chunk that is
on-line.

Recovering a Mirrored Chunk with ON-Monitor

To use ON-Monitor to recover a down chunk, choose the Status option from
the Dbspaces menu. With the cursor on the dbspace that contains the down
chunk, press F3 or CTRL-B. The system displays a screen that lists all the
chunks in the dbspace. Move the cursor to the chunk that is down, and type
F3 or CTRL-B to recover it.

Recovering a Mirrored Chunk with onspaces

You can also use the onspaces utility to recover a down chunk. For example,
to recover a chunk that has the pathname /dev/mirror_chk1 and an offset of
0 kilobytes, issue the following command:

% onspaces -s db_acct -p /dev/mirror_chk1 -o 0 -O

For a full description of the onspaces syntax, see “onspaces: Manage
Database Spaces” on page 35-48.
Using Mirroring 24-11

Relinking a Chunk to a Device After a Disk Failure
Relinking a Chunk to a Device After a Disk Failure
On UNIX, if the disk on which the actual mirror file or raw device is located
goes down, you can relink the chunk to a file or raw device on a different
disk. This action allows you to recover the mirrored chunk before the disk
that failed is brought back on-line. Typical UNIX commands that you can use
for relinking are shown in the following examples.

The original setup consists of a primary root chunk and a mirror root chunk,
which are linked to the actual raw disk devices, as follows:

% ln -lg
lrwxrwxrwx 1 informix 10 May 3 13:38 /dev/root@->/dev/rxy0h
lrwxrwxrwx 1 informix 10 May 3 13:40 /dev/mirror_root@->/dev/rsd2b

Assume that the disk on which the raw device /dev/rsd2b resides has gone
down. You can use the rm command to remove the corresponding symbolic
link, as follows:

% rm /dev/mirror_root

Now you can relink the mirrored chunk pathname to a raw disk device, on a
disk that is running, and proceed to recover the chunk, as follows:

% ln -s /dev/rab0a /dev/mirror_root

Ending Mirroring
When you end mirroring for a dbspace, the database server immediately
releases the mirrored chunks of that dbspace. These chunks are immediately
available for reassignment to other dbspaces or blobspaces. Only users
informix and root on a UNIX system or members of the Informix-Admin
group on a Windows NT system can initiate this action.

You cannot end mirroring if any of the primary chunks in the dbspace are
down. The system can be in on-line mode when you end mirroring.

UNIX
24-12 Administrator’s Guide for Informix Dynamic Server

Ending Mirroring with ON-Monitor
Ending Mirroring with ON-Monitor
To end mirroring for a dbspace or blobspace with ON-Monitor, select the
Mirror option of the Dbspaces menu. Select a dbspace or blobspace that is
mirrored, and type CTRL-B or F3.

Ending Mirroring with onspaces
You can also end mirroring with the onspaces utility. For example, to end
mirroring for the root dbspace, enter the following command:

% onspaces -r rootdbs

For a full description of the onspaces syntax, see “onspaces: Manage
Database Spaces” on page 35-48.
Using Mirroring 24-13

25
Chapter
What Is High-Availability Data
Replication?
What Is Data Replication? 25-4
What Is High-Availability Data Replication?. 25-4

What Are Primary and Secondary Database Servers? 25-5
How Is High-Availability Data Replication Different

from Mirroring? 25-6
How Is High-Availability Data Replication Different

from Two-Phase Commit? 25-7

How Does High-Availability Data Replication Work? 25-8
How Does Data Initially Replicate? 25-8
Reproducing Updates to the Primary Database Server 25-9

How Are the Log Records Sent?. 25-9
What Are the High-Availability Data-Replication Buffers? . . 25-10
When Are Log Records Sent? 25-10
Synchronous Updating 25-11
Asynchronous Updating 25-11

What Threads Handle High-Availability Data Replication? . . . 25-13
Checkpoints Between Database Servers 25-14
How Is Data Synchronization Tracked? 25-14

HIgh-Availability Data-Replication Failures 25-15
What Are High-Availability Data-Replication Failures? 25-15
How Are High-Availability Data-Replication

Failures Detected? 25-16
What Happens When a High-Availability Data-Replication

Failure Is Detected? 25-16
Considerations After High-Availability Data-Replication

Failure . 25-17
Actions to Take If the Secondary Database Server Fails 25-18
Actions to Take If the Primary Database Server Fails 25-18

25-2 Ad
Redirection and Connectivity for Data-Replication Clients 25-22
Designing Clients for Redirection 25-23
Automatic Redirection with DBPATH 25-23

How Does the DBPATH Redirection Method Work? 25-23
What Does the Administrator Need to Do? 25-24
What Does the User Need to Do? 25-24

Administrator-Controlled Redirection with the
Connectivity Information 25-25
How Does the Connectivity Information-Redirection

Method Work? 25-25
What Does the Administrator Need to Do? 25-26
What Does the User Need to Do? 25-29

User-Controlled Redirection with INFORMIXSERVER 25-29
How Does the INFORMIXSERVER Redirection

Method Work? 25-29
What Does the Administrator Need to Do? 25-30
What Does the User Need to Do? 25-30

Handling Redirection Within an Application. 25-30
A Connection Loop and Database Server Type Check 25-31

Comparison of Different Redirection Mechanisms 25-33

Designing High-Availability Data-Replication Clients 25-34
Setting Lock Mode to Wait for Access to Primary

Database Server 25-34
Designing Clients to Use the Secondary Database Server 25-35

No Data Modification Statements 25-35
Locking and Isolation Level 25-37
Using Temporary Dbspaces for Sorting and

Temporary Tables 25-38
ministrator’s Guide for Informix Dynamic Server

This chapter describes Informix high-availability data replication.

High-availability data replication provides synchronous and asynchronous
data replication of an entire database server. Use high-availability data repli-
cation if you require a hot standby. If you want to use asynchronous data
replication, see the Guide to Informix Enterprise Replication.

The chapter discusses the following topics:

■ What data replication is, both in a broad sense and in the context of
the database server

■ How high-availability data replication works

■ How high-availability data replication handles failures

■ How the system administrator or user can redirect a client to connect
to the other database server in the high-availability data-replication
pair

■ What the design considerations are for applications that connect to
the secondary database server

A companion chapter, Chapter 26, “Using High-Availability Data Repli-
cation,” contains instructions on how to accomplish the administrative tasks
that are involved in using high-availability data replication.
What Is High-Availability Data Replication? 25-3

What Is Data Replication?
What Is Data Replication?
Data replication, in the broadest sense, refers to the process of representing
database objects at more than one distinct site.

For example, one way of replicating data is simply to copy a database to a
database server installed on a different computer. This copy allows reports to
access the data without disturbing client applications that use the original
database.

Advantages of data replication are as follows:

■ Clients at the site to which the data is replicated experience
improved performance because those clients can access data locally
rather than connecting to a remote database server over a network.

■ Clients at all sites experience improved availability of replicated
data. If the local copy of the replicated data is unavailable, clients can
still access the remote copy of the data.

These advantages do not come without a cost. Data replication obviously
requires more storage, and updating replicated data can take more
processing time than updating a single object.

You could implement data replication in the logic of client applications by
explicitly specifying where data must be updated. However, this method of
achieving data replication is costly, error prone, and difficult to maintain.
Instead, the concept of data replication is often coupled with replication
transparency. Replication transparency is functionality built into a database
server (instead of into client applications) to handle automatically the details
of locating and maintaining data replicas.

What Is High-Availability Data Replication?
Within the broad framework of data replication, the database server imple-
ments nearly transparent data replication of entire database servers. All the
data managed by one database server is replicated and dynamically updated
on another database server, often at a separate geographical location. High-
availability data replication provides a way to maintain a backup copy of the
entire database server that applications can access quickly in the event of a
catastrophic failure.
25-4 Administrator’s Guide for Informix Dynamic Server

What Is High-Availability Data Replication?
What Are Primary and Secondary Database Servers?

When you configure a pair of database servers to use high-availability data
replication, one database server is called the primary database server, and the
other is called the secondary database server. (In the context of high-avail-
ability data replication, a database server that does not use high-availability
data replication is referred to as a standard database server.)

During normal operation, clients can connect to the primary database server
and use it as they would an ordinary database server. Clients can also use the
secondary database server during normal operation, but only to read data.
The secondary database server does not permit updates from client applica-
tions.

As illustrated in Figure 25-1, the secondary database server is dynamically
updated, with changes made to the data managed by the primary database
server.

If one of the database servers fails, as shown in Figure 25-2, you can redirect
the clients that use that database server to the other database server in the
pair.

Figure 25-1
A Primary and

Secondary Database
Server in a High-
Availability Data-
Replication Pair

Client

Client

Read-only clients

Client

Client
Primary Secondary

Figure 25-2
Database Servers in

a High-Availability
Data-Replication
Pair and Clients

After a Failure

Client

Client

Client

Client

SecondaryPrimary
What Is High-Availability Data Replication? 25-5

What Is High-Availability Data Replication?
If a primary database server fails, you can change the secondary database
server to a standard database server so that it can accept updates.

High-availability data replication has the following features:

■ Provides for quick recovery if one database server experiences a
failure

■ Allows for load balancing across the two database servers

How Is High-Availability Data Replication Different from Mirroring?

High-availability data replication and mirroring are both transparent ways of
making the database server more fault tolerant. However, as shown in
Figure 25-3 on page 25-7, they are quite different.

Mirroring, described in “What Is Mirroring?” on page 23-4, is the mechanism
by which a single database server maintains a copy of a specific dbspace on
a separate disk. This mechanism protects the data in mirrored dbspaces
against disk failure because the database server automatically updates data
on both disks and automatically uses the other disk if one of the dbspaces
fails.

High-availability data replication, on the other hand, duplicates all the data
managed by a database server (not just specified dbspaces) on an entirely
separate database server. Because high-availability data replication involves
two separate database servers, the data that these database servers manage is
protected against all types of database server failures, such as a computer
crash or the catastrophic failure of an entire site, not just disk failures.
25-6 Administrator’s Guide for Informix Dynamic Server

What Is High-Availability Data Replication?
How Is High-Availability Data Replication Different from Two-Phase
Commit?

The two-phase commit protocol, described in detail in Chapter 30,
“Multiphase Commit Protocols,” ensures that transactions are uniformly
committed or rolled back across multiple database servers.

In theory, you could take advantage of two-phase commit to replicate data by
configuring two database servers with identical data, and then defining
triggers on one of the database servers that replicate updates to the other
database server. However, this sort of implementation has numerous
synchronization problems in different failure scenarios. Also, the perfor-
mance of distributed transactions is inferior to dynamic high-availability
data replication.

Figure 25-3
A Comparison of Mirroring and High-Availability Data Replication

disdis

disdis

disdis

Mirroring

disdis

disdis

disdis

High-availability data replication

Computer

Disks

Database server

Database serverDatabase server
What Is High-Availability Data Replication? 25-7

How Does High-Availability Data Replication Work?
How Does High-Availability Data Replication Work?
This section describes the mechanisms that the database server uses to
perform high-availability data replication. For instructions on how to set up,
start, and administer a high-availability data-replication system, refer to
Chapter 26, “Using High-Availability Data Replication.”

How Does Data Initially Replicate?
The database server uses dbspace backups and logical-log files (both those
backed up to tape and those on disk) to do an initial replication of the data on
one database server to a second database server. The procedure is basically as
follows:

1. To make the bulk of the data managed by the two database servers
the same, create a level-0 backup of all the dbspaces on one database
server, and restore all the dbspaces from that dbspace backup on the
other database server in the data-replication pair.

2. The database server that you restored from a dbspace backup in the
first step then reads all the logical-log records generated since that
dbspace backup from the database server on which the dbspace
backup was created. The database server reads the logical-log
records first from any backed-up logical-log files that are no longer
on disk and then from any logical-log files on disk.

For detailed instructions on performing the preceding steps, refer to
“Starting High-Availability Data Replication for the First Time” on
page 26-11.

You must perform the initial high-availability data replication with a dbspace
backup. You cannot use data-migration utilities such as onload and
onunload to replicate data because the physical page layout of tables on each
database server must be identical in order for high-availability data repli-
cation to work.

In the preceding steps, the database server from which you create the
dbspace backup can be the primary database server or the secondary
database server.
25-8 Administrator’s Guide for Informix Dynamic Server

Reproducing Updates to the Primary Database Server
When high-availability data replication is working, the primary database
server is in on-line mode and accepts updates and queries just as a standard
database server does. The secondary database server is in logical-recovery
mode and cannot accept SQL statements that result in writes to disk (except
for sorting and temporary tables).

Reproducing Updates to the Primary Database Server
High-availability data replication reproduces updates to the primary
database server on the secondary database server by having the primary
database server send all its logical-log records to the secondary database
server as they are generated. (For general information on transaction logging,
refer to “What Is Transaction Logging?” on page 16-8.) The secondary
database server receives the logical-log records generated on the primary
database server and applies them to its dbspaces.

Important: The database server cannot replicate updates to databases that do not use
transaction logging. The database server does not replicate data in blobspaces either.

How Are the Log Records Sent?

As shown in Figure 25-4 on page 25-10, when the primary database server
starts to flush the contents of the logical-log buffer in shared memory to the
logical log on disk, the database server also copies the contents of the logical-
log buffer to a data-replication buffer on the primary database server. The
primary database server then sends these logical-log records to the
secondary database server.

The secondary database server receives the logical-log records from the
primary database server into a shared-memory reception buffer (which the
database server automatically adjusts to an appropriate size for the amount
of data being sent). The secondary database server then applies the logical-
log records using logical recovery.
What Is High-Availability Data Replication? 25-9

Reproducing Updates to the Primary Database Server
What Are the High-Availability Data-Replication Buffers?

The high-availability data-replication buffers are part of the virtual shared
memory managed by the primary database server. The high-availability
data-replication buffers hold logical-log records before the primary database
server sends them to the secondary database server. The high-availability
data-replication buffers are the same size as the logical-log buffers.
Figure 25-4 shows this concept.

When Are Log Records Sent?

The primary database server sends the contents of the high-availability data-
replication buffer to the secondary database server either synchronously or
asynchronously. The value of the ONCONFIG configuration parameter
DRINTERVAL, described on page 33-23, determines whether the database
server uses synchronous or asynchronous updating.

Figure 25-4
How Logical-Log
Records Are Sent
from the Primary

Database Server to
the Secondary

Database Server

disdis

Logical-log
buffer

HIgh-availability
data-replication

buffer

Recovery
buffer

Reception
buffer

disdis

Shared memory

Disk

Shared memory

Disk

SecondaryPrimary
25-10 Administrator’s Guide for Informix Dynamic Server

Reproducing Updates to the Primary Database Server
Synchronous Updating

If you set DRINTERVAL to -1, high-availability data replication occurs
synchronously. As soon as the primary database server writes the logical-log
buffer contents to the high-availability data-replication buffer, it sends those
records from the high-availability data-replication buffer to the secondary
database server. The logical-log buffer flush on the primary database server
completes only after the primary database server receives acknowledgment
from the secondary database server that the records were received.

With synchronous updating, no transactions committed on the primary
database server are left uncommitted or partially committed on the
secondary database server if a failure occurs.

Asynchronous Updating

If you set DRINTERVAL to anything other than -1, data replication occurs
asynchronously. The primary database server flushes the logical-log buffer
after it copies the logical-log buffer contents to the high-availability data-
replication buffer. Independent of that action, the primary database server
sends the contents of the high-availability data-replication buffer across the
network when one of the following conditions occurs:

■ The high-availability data-replication buffer becomes full.

■ An application commits a transaction on an unbuffered database.

■ The time interval, specified by the ONCONFIG parameter
DRINTERVAL on the primary database server, has elapsed since the
last time records were sent to the secondary database server.

This method of updating might provide better performance than
synchronous updating. However, as explained in the following section,
transactions might be lost.

Lost-and-Found Transactions

With asynchronous updating, a transaction committed on the primary
database server might not be replicated on the secondary database server.
This situation can occur if a failure happens after the primary database server
copies a commit record to the high-availability data-replication buffer, but
before the primary database server sends that commit record to the
secondary database server.
What Is High-Availability Data Replication? 25-11

Reproducing Updates to the Primary Database Server
If the secondary database server is changed to a standard database server
after a failure of the primary database server, it rolls back any open transac-
tions. These transactions include any that were committed on the primary
database server but for which the secondary database server did not receive
a commit record. As a result, transactions are committed on the primary
database server but not on the secondary database server. When you restart
data replication after the failure, the database server places all the logical-log
records from the lost transactions in a file (specified by the ONCONFIG
parameter DRLOSTFOUND) during logical recovery of the primary database
server. Figure 25-5 illustrates the process.

Figure 25-5
Using a Lost-and-Found File

Records in
primary logical

log

Records for
transaction
committed on
primary but
rolled back on
secondary

Secondary
switched to
standard

Records in
lost-and-found

file after recovery

Records in
secondary
logical log

Records in
primary logical

log after recovery
25-12 Administrator’s Guide for Informix Dynamic Server

What Threads Handle High-Availability Data Replication?
 If the lost-and-found file appears on the computer that is running the
primary database server after it restarts data replication, a transaction has
been lost. The database server cannot reapply the transaction records in the
lost-and-found file because conflicting updates might have occurred while
the secondary database server was acting as a standard database server.

To reduce the risk of a lost transaction without running data replication in
synchronous mode, use unbuffered logging for all the databases. This
method reduces the amount of time between the primary database server
that is writing the transaction records to disk and the primary database
server that is sending these records to the secondary database server.

What Threads Handle High-Availability Data Replication?
The database server starts specialized threads to support data replication. As
shown in Figure 25-6, a thread called drprsend on the primary database
server sends the contents of the high-availability data-replication buffer
across the network to a thread called drsecrcv on the secondary database
server.

Figure 25-6
Threads That
Manage Data

Replication
Secondary

sqlexec

drprsend

drprping

drsecrcv

drsecapply

drsecping
logrecvr

Client
Primary
What Is High-Availability Data Replication? 25-13

Checkpoints Between Database Servers
A thread called drsecapply on the secondary database server copies the
contents of the reception buffer to the recovery buffer. The logrecvr thread (or
threads) performs logical recovery with the contents of the recovery buffer,
applying the logical-log records to the dbspaces managed by the secondary
database server. The ONCONFIG parameter ON_RECVRY_THREADS specifies
the number of logrecvr threads used.

The remaining threads that the database server starts for high-availability
data replication are the drprping and drsecping threads, which are respon-
sible for sending and receiving the signals that indicate if the two database
servers are connected.

Checkpoints Between Database Servers
Checkpoints between database servers in a high-availability data-replication
pair are synchronous, regardless of the value of DRINTERVAL. (See “Check-
points” on page 11-57.) A checkpoint on the primary database server
completes only after it completes on the secondary database server. If the
checkpoint does not complete within the time specified by the ONCONFIG
parameter DRTIMEOUT, the primary database server assumes that a failure
has occurred. See “What Are High-Availability Data-Replication Failures?”
on page 25-15.

How Is Data Synchronization Tracked?
To keep track of synchronization, each database server in the pair keeps track
of the following information in its archive reserve page (described in
“PAGE_ARCH” on page 38-14):

■ The ID of the logical-log file that contains the last completed check-
point

■ The position of the checkpoint record within the logical-log file

■ The ID of the last logical-log file sent (or received)

■ The page number of the last logical-log record sent (or received)

The database servers use this information internally to synchronize data
replication.
25-14 Administrator’s Guide for Informix Dynamic Server

HIgh-Availability Data-Replication Failures
HIgh-Availability Data-Replication Failures
This section discusses the causes and consequences of a high-availability
data-replication failure, as well as the administrator’s options for managing
failure and restarting data replication.

What Are High-Availability Data-Replication Failures?
A high-availability data-replication failure is a loss of connection between the
database servers in a high-availability data-replication pair. Any of the
following situations could cause a data-replication failure:

■ A catastrophic failure (such as a fire or large earthquake) at the site
of one of the database servers

■ A disruption of the networking cables that join the two database
servers

■ An excessive delay in processing on one of the database servers

■ An administrative action to turn data replication off on one of the
database servers (that is, changing the type of the database server to
standard)

■ A disk failure on the secondary database server that is not resolved
by a mirrored chunk

Tip: A high-availability data-replication failure does not necessarily mean that one
of the database servers has failed, only that the high-availability data-replication
connection between the two database servers is lost.
What Is High-Availability Data Replication? 25-15

How Are High-Availability Data-Replication Failures Detected?
How Are High-Availability Data-Replication Failures
Detected?
The database server interprets either of the following conditions as a high-
availability data-replication failure:

■ A specified time-out value was exceeded.

In the course of normal high-availability data-replication operation,
a database server expects confirmation of communication from the
other database server in the pair. Each database server in the pair has
an ONCONFIG parameter, DRTIMEOUT, that specifies a number of
seconds. If confirmation from the other database server in a pair does
not return within the number of seconds specified by DRTIMEOUT,
the database server assumes that a high-availability data-replication
failure has occurred.

■ The periodic signaling (pinging) of the other database server over the
network does not yield response.

Both database servers send a signal (or ping) to the other database
server in the pair when the number of seconds specified by the
DRTIMEOUT parameter on that database server has passed. The
database servers signal each other regardless of whether the primary
database server sends any records to the secondary database server.
If a database server does not respond to four signal attempts in a row,
the database server that was signaling assumes that a high-avail-
ability data-replication failure has occurred.

What Happens When a High-Availability Data-Replication
Failure Is Detected?
After a database server detects a high-availability data-replication failure, it
writes a message to its message log (for example, DR: receive error) and
turns data replication off. Thus, the high-availability data-replication
connection between the two database servers is dropped. Both database
servers experience the high-availability data-replication connection being
dropped.
25-16 Administrator’s Guide for Informix Dynamic Server

Considerations After High-Availability Data-Replication Failure
If the secondary database server remains on-line after a high-availability
data-replication failure, and the configuration parameter DRAUTO is set to 1
(RETAIN_TYPE) or 2 (REVERSE_TYPE), the type of that database server
changes automatically to standard. (For more information, see “What Is
Automatic Switchover?” on page 25-19). If DRAUTO is set to 0 (OFF), the
secondary database server attempts to reestablish communication with the
primary database server periodically.

Considerations After High-Availability Data-Replication
Failure
Consider the following two issues when a high-availability data-replication
failure occurs:

■ How the clients should react to the failure

If the failure is a real failure (and not due to transitory network
slowness or failure), you probably want clients that are using the
failed database server to redirect to the other database server in the
pair. How to redirect clients is explained in “Redirection and
Connectivity for Data-Replication Clients” on page 25-22.

■ How the database servers should react to the failure

Which administrative actions to take after a high-availability data-
replication failure depends on whether the primary database server
or the secondary database server failed. This topic is discussed in the
following sections: “Actions to Take If the Secondary Database
Server Fails” and “Actions to Take If the Primary Database Server
Fails.”

If you redirect clients, consider what sort of load the additional
clients place on the remaining database server. You might need to
increase the space devoted to the logical log or back up the logical-
log files more frequently.
What Is High-Availability Data Replication? 25-17

Considerations After High-Availability Data-Replication Failure
Actions to Take If the Secondary Database Server Fails

If the secondary database server fails, the primary database server remains in
on-line mode.

To redirect clients that use the secondary database server to the primary
database server, use any of the methods explained in “Redirection and
Connectivity for Data-Replication Clients” on page 25-22. If you redirect
these clients, the primary database server might require an additional
temporary dbspace for temporary tables and sorting.

You do not need to change the type of the primary database server to
standard.

Restarting After the Secondary Database Server Fails

The steps in restarting data replication after a failure of the secondary
database server are listed in “Restarting If the Secondary Database Server
Fails” on page 26-29.

Actions to Take If the Primary Database Server Fails

If the primary database server fails, the secondary database server can
behave in the following three ways:

■ The secondary database server can remain in logical-recovery mode.
In other words, no action is taken. This would be the case if you
expect the high-availability data-replication connection to be
restored very soon.

■ The secondary database server can automatically become a standard
database server. This action is called automatic switchover.

■ The secondary database server can remain in logical-recovery mode,
awaiting manual switchover.

Automatic switchover and manual switchover are described in the following
sections.
25-18 Administrator’s Guide for Informix Dynamic Server

Considerations After High-Availability Data-Replication Failure
What Is Automatic Switchover?

Automatic switchover means that the secondary database server automati-
cally becomes a standard database server after it detects a high-availability
data-replication failure. It first rolls back any open transactions and then
comes into on-line mode as a standard database server. Automatic
switchover occurs only if the parameter DRAUTO in the ONCONFIG file of the
secondary database server is set to 1 (RETAIN_TYPE) or 2 (REVERSE_TYPE).

Because the secondary database server becomes a standard database server,
you must be sure that it has enough logical-log disk space to allow processing
to continue without backing up logical-log files or that the logical-log files are
backed up.

The automatic switchover changes only the type of the database server. It
does not redirect client applications to the secondary database server. To
redirect clients, use any of the mechanisms described in “Redirection and
Connectivity for Data-Replication Clients” on page 25-22.

Automatic switchover has the following advantages over manual
switchover:

■ Clients that you redirect from the primary database server to the
secondary database server can continue to write and update data.

■ The switchover does not depend on an operator monitoring the
message log to see when high-availability data-replication failures
occur and manually switching the secondary database server to a
standard database server.

The main disadvantage of automatic switchover is that it requires a very
stable network to function appropriately. This issue is discussed in “Using
Automatic Switchover Without a Reliable Network” on page 25-21.
What Is High-Availability Data Replication? 25-19

Considerations After High-Availability Data-Replication Failure
Restarting Data Replication After Automatic Switchover

The steps required to restart data replication after an automatic switchover
are listed in “The Secondary Database Server Is Changed to a Standard
Database Server Automatically” on page 26-33.

When you succeed in bringing the original primary database server back on-
line, the high-availability data-replication connection is automatically estab-
lished. If DRAUTO is set to RETAIN_TYPE, the secondary-turned-standard
database server goes through a graceful shutdown (to ensure that all clients
that might potentially write to the database server are not connected) and
then switches back to a secondary database server. If DRAUTO is set to
REVERSE_TYPE, the secondary-turned-standard database server switches
directly to type primary. No shutdown occurs. Any applications connected to
this database server can stay connected. The original primary database server
is switched to a secondary database server. Both scenarios (DRAUTO set to
RETAIN_TYPE and DRAUTO set to REVERSE_TYPE) are shown in Figure 25-7
on page 25-20.

Figure 25-7
Automatic

Switchover After a
Failure on the

Primary Database
Server

Primary

DRAUTO = RETAIN_TYPE

DRAUTO = REVERSE_TYPE

Primary

Primary

Primary

Secondary Secondary

Secondary

Secondary Standard

Standard
25-20 Administrator’s Guide for Informix Dynamic Server

Considerations After High-Availability Data-Replication Failure
Using Automatic Switchover Without a Reliable Network

Although automatic switchover might appear to be the best solution, it is not
appropriate for all environments. Consider what would happen if the
primary database server did not actually fail but appeared to the secondary
database server to fail. For example, if the secondary database server did not
receive responses when it signalled (pinged) the primary database server
because of a slow or unstable network, it would assume that the primary
database server failed and switch automatically to type standard. If the
primary database server also did not receive responses when it signalled the
secondary database server, it would assume the secondary database server
had failed and would turn off data replication but remain in on-line mode.
Now the primary and the secondary (switched to type standard) database
servers are both in on-line mode.

If clients can update the data on both database servers independently, the
database servers in the pair reach a state where each database server has
logical-log records needed by the other. In this situation, you must start from
scratch and perform initial data replication with a level-0 dbspace backup of
one entire database server, as described in “Starting High-Availability Data
Replication for the First Time” on page 26-11. Therefore, if your network is
not entirely stable, you might not want to use automatic switchover.

What Is Manual Switchover?

Manual switchover means that the administrator of the secondary database
server changes the type of the secondary database server to standard. The
secondary database server rolls back any open transactions and then comes
into on-line mode as a standard database server, so it can accept updates from
client applications. How to perform the switchover is explained in
“Changing the Type of the Secondary Database Server” on page 26-22.
What Is High-Availability Data Replication? 25-21

Redirection and Connectivity for Data-Replication Clients
Restarting After a Manual Switchover

The steps involved in restarting data replication after a manual switchover
are listed in “The Secondary Database Server Is Changed to a Standard
Database Server Manually” on page 26-31.

Restarting If the Secondary Database Server Is Not Switched to Standard
Dynamic Server

If the secondary database server is not changed to type standard either
automatically or manually, follow the steps listed in “The Secondary
Database Server Was Not Changed to a Standard Database Server” on
page 26-31.

Redirection and Connectivity for Data-Replication
Clients
Clients connect to the database servers in a high-availability data-replication
pair using the same methods with which they connect to standard database
servers. These methods are explained in the descriptions of the CONNECT
and DATABASE statements in the Informix Guide to SQL: Syntax.

After a failure of one of the database servers in a pair, you might want to
redirect the clients that use the failed database server. (You might not want
clients to be redirected. For example, if you anticipate that the database
servers will be functioning again in a short amount of time, redirecting clients
might not be appropriate.)

The database server does not have a transparent mechanism for directing
client requests to different database servers in a high-availability data-repli-
cation pair, although you can automate this action from within the appli-
cation as described in “Handling Redirection Within an Application” on
page 25-30.
25-22 Administrator’s Guide for Informix Dynamic Server

Designing Clients for Redirection
Designing Clients for Redirection
When you design client applications, you must make some decisions on
redirection strategies. Specifically, you must decide whether to handle
redirection within the application and which redirection mechanism to use.
The three different redirection mechanisms are as follows:

■ Automatic redirection with DBPATH

■ Administrator-controlled redirection with the connectivity infor-
mation

■ User-controlled redirection with INFORMIXSERVER

The mechanism that you employ determines which CONNECT syntax you
can use in your application. The following three sections describe each of the
redirection mechanisms.

Automatic Redirection with DBPATH
This section explains the steps that you must follow to redirect clients with
the DBPATH mechanism and the connectivity strategy that supports this
method.

How Does the DBPATH Redirection Method Work?

The DBPATH redirection method relies on the fact that when an application
does not explicitly specify a database server in the CONNECT statement, and
the database server specified by the INFORMIXSERVER environment
variable is unavailable, the client uses the DBPATH environment variable to
locate the database (and database server).

So, if one of the database servers in a high-availability data-replication pair is
unusable, applications that use that database server need not reset their
INFORMIXSERVER environment variable, as long as they have their DBPATH
environment variable set to the other database server in the pair. Their
INFORMIXSERVER environment variable should always contain the name of
the database server that they use regularly, and their DBPATH environment
variable should always contain the name of the alternative database server in
the pair.
What Is High-Availability Data Replication? 25-23

Automatic Redirection with DBPATH
For example, if applications normally use a database server called cliff_ol,
and the database server paired with cliff_ol in a high-availability data-repli-
cation pair is called beach_ol, the environment variables for those applica-
tions would be as follows:

INFORMIXSERVER cliff_ol
DBPATH //beach_ol

Because the DBPATH environment variable is read only (if needed) when an
application issues a CONNECT statement, applications must restart in order
for redirection to occur.

An application can contain code that tests whether a connection has failed
and, if so, attempts to reconnect. If an application has this code, you do not
need to restart it.

You can use the CONNECT TO database statement with this method of
redirection. You cannot use any of the following statements for this method to
work:

■ CONNECT TO DEFAULT

■ CONNECT TO database@dbserver

■ CONNECT TO @dbserver

The reason for this restriction is that an application does not use DBPATH if a
CONNECT statement specifies a database server. For more information on
DBPATH, refer to the Informix Guide to SQL: Reference.

What Does the Administrator Need to Do?

Administrators take no action to redirect clients. Administrators might need
to attend to the type of the database server.

What Does the User Need to Do?

If your applications contain code that tests if a connection has failed and
issues a reconnect statement if necessary, redirection is handled
automatically. The user has no responsibilities.

If your applications do not include such code, users that are running clients
must quit and restart all applications.
25-24 Administrator’s Guide for Informix Dynamic Server

Administrator-Controlled Redirection with the Connectivity Information
Administrator-Controlled Redirection with the Connectivity
Information
This section explains the steps in redirecting clients with the connectivity
information and the connectivity strategy that supports this method. As the
following table shows, the location of the connectivity information depends
on the platform.

How Does the Connectivity Information-Redirection Method Work?

The connectivity information-redirection method relies on the fact that when
an application connects to a database server, it uses the connectivity infor-
mation to find that database server.

If one of the database servers in a high-availability data-replication pair is
unusable, an administrator can change the definition of the unavailable
database server in the connectivity information. As described in “What Does
the Administrator Need to Do?” the fields of the unavailable database server
(except for the dbservername field) are changed to point to a definition of the
remaining database server in the high-availability data-replication pair.

Because the connectivity information is read when a CONNECT statement is
issued, applications might need to restart for redirection to occur. Applica-
tions can contain code that tests if a connection has failed and issues a
reconnect statement, if necessary. If a connection has failed, redirection is
handled automatically, and you do not need to restart applications for
redirection to occur.

Platform Location of Connectivity Information

UNIX The INFORMIXSQLHOSTS environment variable specifies the full pathname and filename
of the connection information. The default location is $INFORMIXDIR
/etc/sqlhosts. For more information about INFORMIXSQLHOSTS, see the Informix Guide to
SQL: Reference.

Windows NT The connectivity information is in a key in the Windows registry called
HKEY_LOCAL_MACHINE\SOFTWARE\Informix\SQLHOSTS.
What Is High-Availability Data Replication? 25-25

Administrator-Controlled Redirection with the Connectivity Information
Applications can use the following connectivity statements to support this
method of redirection:

■ CONNECT TO database@dbserver

■ CONNECT TO @dbserver

Applications can also use the following connectivity statements, provided
that the INFORMIXSERVER environment variable always remains set to the
same database server name and the DBPATH environment variable is not set:

■ CONNECT TO DEFAULT

■ CONNECT TO database

What Does the Administrator Need to Do?

Administrators must perform the following two steps to redirect clients
using the connectivity information:

1. Change the connectivity information for the clients.

2. Change other connectivity files, if necessary.

These steps are described in the following sections. For information on the
connectivity information, refer to Chapter 4, “Client/Server
Communications.”
25-26 Administrator’s Guide for Informix Dynamic Server

Administrator-Controlled Redirection with the Connectivity Information
Changing the Connectivity Information

On the client computer, edit the connectivity information. Make the
following changes:

■ Comment out the entry for the failed database server.

■ Add an entry that specifies the dbservername of the failed database
server in the servername field and information for the database
server to which you are redirecting clients in the nettype, hostname,
and servicename fields.

Figure 25-8 on page 25-28 shows how connectivity values might be modified
to redirect clients.

You do not need to change entries in the connectivity information on either
of the computers that is running the database servers.

Changing Other Connectivity Files

You also must ensure that the following statements are true on the client
computer before that client can reconnect to the other database server:

■ The /etc/hosts file has an entry for the hostname of the computer that
is running the database server to which you are redirecting clients.

■ The /etc/services file has an entry for the servicename of the
database server to which you are redirecting clients.

UNIX
What Is High-Availability Data Replication? 25-27

Administrator-Controlled Redirection with the Connectivity Information
Figure 25-8
Connectivity Values Before and After a Failure of the cliff_ol Database Server

cliff beach

marsh delta

cliff

river

/etc/hosts
beach

/etc/services
ol_bc

Before failure of cliff_ol

After failure of cliff_ol

Client

Client
Client Client

cliff_ol
beach_ol

onsoctcp
onsoctcp

cliff
beach

ol_cl
ol_bc

beach

delta rivermarsh

Client

#cliff_ol
cliff_ol

onsoctcp
onsoctcp

cliff
beach

ol_cl
ol_bc

Client

Client

#cliff_ol
beach_ol
cliff_ol

onsoctcp
onsoctcp
onsoctcp

cliff
beach
beach

ol_cl
ol_bc
ol_bc

Client

beach_ol onsoctcp beach ol_bccliff_ol onsoctcp cliff ol_cl

cliff_ol beach_ol

beach_olcliff_ol
25-28 Administrator’s Guide for Informix Dynamic Server

User-Controlled Redirection with INFORMIXSERVER
What Does the User Need to Do?

After the administrator changes the connectivity information and other
connectivity files (if needed), clients connect to the database server to which
the administrator redirects them when they issue their next CONNECT
statement.

If your applications contain code that tests if a connection has failed and
issues a reconnect statement if necessary, redirection is handled automati-
cally. The user has no responsibilities. If your applications do not include
such code, users who are running clients must quit and restart all applica-
tions.

User-Controlled Redirection with INFORMIXSERVER
This section explains the steps in redirecting clients with the
INFORMIXSERVER environment variable and the connectivity strategy that
supports that method.

How Does the INFORMIXSERVER Redirection Method Work?

The INFORMIXSERVER redirection method relies on the fact that when an
application does not explicitly specify a database server in the CONNECT
statement, the database server connects to the client that the
INFORMIXSERVER environment variable specifies.

If one of the database servers in a high-availability data-replication pair is
unusable, applications that use that database server can reset their INFOR-
MIXSERVER environment variable to the other database server in the pair to
access the same data.

Applications read the value of the INFORMIXSERVER environment variable
only when they start. Therefore, applications must be restarted to recognize
a change in the environment variable.

You can use the following connectivity statements to support this method of
redirection:

■ CONNECT TO DEFAULT

■ CONNECT TO database
What Is High-Availability Data Replication? 25-29

Handling Redirection Within an Application
You cannot use the CONNECT TO database@dbserver or CONNECT TO
@dbserver statements for this method. When a database server is explicitly
named, the CONNECT statement does not use the INFORMIXSERVER
environment variable to find a database server.

What Does the Administrator Need to Do?

Administrators take no action to redirect the clients. However, adminis-
trators might need to attend to the type of the database server.

What Does the User Need to Do?

Users who are running client applications must perform the following three
steps when they decide to redirect clients with the INFORMIXSERVER
environment variable:

1. Quit their applications.

2. Change their INFORMIXSERVER environment variable to hold the
name of the other database server in the high-availability data-repli-
cation pair.

3. Restart their applications.

Handling Redirection Within an Application
If you use the DBPATH or connectivity information-redirection mechanism,
you can include in your clients a routine that handles errors when clients
encounter a high-availability data-replication failure. The routine can call
another function that contains a loop that tries repeatedly to connect with the
other database server in the pair. This routine redirects clients without
requiring the user to exit the application and restart it.
25-30 Administrator’s Guide for Informix Dynamic Server

Handling Redirection Within an Application
A Connection Loop and Database Server Type Check

Figure 25-9 shows an example of a function in a client application using the
DBPATH redirection mechanism that loops as it attempts to reconnect. Once
it establishes a connection, it also tests the type of the database server to make
sure it is not a secondary database server. If the database server is still a
secondary type, it calls another function to alert the user (or database server
administrator) that the database server cannot accept updates.

/* The routine assumes that the INFORMIXSERVER environment
/* variable is set to the database server the client normally
/* uses, and that the DBPATH environment variable is set to
/* the other database server in the pair.
/*

#define SLEEPTIME 15
#define MAXTRIES 10

main()
{

int connected = 0;
int tries;
for (tries = 0;tries < MAXTRIES && connected == 0;tries++)
{

EXEC SQL CONNECT TO “stores7”;
if (strcmp(SQLSTATE,”00000”))
{

if (sqlca.sqlwarn.sqlwarn6 != ’W’)
{

notify_admin();
if (tries < MAXTRIES - 1)

sleep(15);
}

else connected =1;
}

}
return ((tries == MAXTRIES)? -1:0);
}

Figure 25-9
Example of a

CONNECT Loop for
DBPATH Redirection

Mechanism
What Is High-Availability Data Replication? 25-31

Handling Redirection Within an Application
This example assumes the DBPATH redirection mechanism and uses a form
of the CONNECT statement that supports the DBPATH redirection method. If
you used the connectivity information-redirection method, you might have a
different connection statement, as follows:

EXEC SQL CONNECT TO "stores7@cliff_ol";

In this example, stores7@cliff_ol refers to a database on a database server
that is recognized by the client computer. For redirection to occur, the admin-
istrator must change the connectivity information to make that name refer to
a different database server. You might need to adjust the amount of time that
the client waits before it tries to connect or the number of tries the function
makes. Provide enough time for an administrative action on the database
server (to change the connectivity information or change the type of the
secondary database server to standard).
25-32 Administrator’s Guide for Informix Dynamic Server

Comparison of Different Redirection Mechanisms
Comparison of Different Redirection Mechanisms
Figure 25-10 summarizes the differences among the three redirection
mechanisms.

Figure 25-10
Comparison of Redirection Methods for Different Connectivity Strategies

DBPATH Connectivity Information INFORMIXSERVER

Automatic
Redirection

User
Redirection

Automatic
Redirection

User
Redirection User Redirection

When is a client
redirected?

When the client next tries to
connect with a specified
database.

After the administrator
changes the connectivity
information, when the client
next tries to establish a
connection with a database
server.

When the client
restarts and reads a
new value for the
INFORMIXSERVER
environment
variable.

Do clients
need to be
restarted to be
redirected?

No Yes No Yes Yes

What is the
scope of the
redirection?

Individual
clients are
redirected.

Individual
clients are
redirected.

All clients that
use a given
database
server are
redirected.

Individual
clients are
redirected.

Individual clients
are redirected.

Are changes to
environment
variables
required?

No No Yes
What Is High-Availability Data Replication? 25-33

Designing High-Availability Data-Replication Clients
Designing High-Availability Data-Replication
Clients
This section discusses various design considerations (in addition to the
redirection considerations discussed earlier) for clients that connect to
database servers that are running data replication.

Setting Lock Mode to Wait for Access to Primary Database
Server
When the database server performs a logical recovery, it normally defers
index builds until the end of the recovery. However, if Dynamic Server is
acting as a secondary database server, it is in logical recovery mode for as
long as data replication is running. Thus, secondary database servers must
use a different mechanism to perform index builds.

The mechanism used is as follows. When the secondary database server
receives a logical-log record that necessitates a corresponding index build, it
sends a message back to the primary database server to request a physical
copy of the index. The primary database server has a lock on the table that is
being updated. The owner of the lock is a dr_btsend thread. The application
thread that is executing is free to continue processing. The dr_btsend thread
cannot release the lock, however, until the secondary database server
acknowledges receipt of the index. If the application tries to access the table
while it is locked, this attempt fails unless the application has set the lock
mode to wait.

Applications might see some unexpected errors if they do not have lock
mode set to wait. For example, many SQL statements cause updates to the
catalog table indexes. The following sequence of SQL statements fails if the
lock mode of the application is not set to wait:

CREATE DATABASE db_name;
DATABASE db_name;
CREATE TABLE tab_name;
25-34 Administrator’s Guide for Informix Dynamic Server

Designing Clients to Use the Secondary Database Server
These SQL statements would fail because the CREATE DATABASE statement
creates indexes on the systables catalog table and, therefore, places a lock on
the table until the indexes are copied over to the secondary database server.
Meanwhile, the CREATE TABLE statement tries to insert a row into the
systables catalog table. The insert fails, however, because the table is locked.

This application would fail because both the CREATE DATABASE and CREATE
TABLE statements cause updates to the systables catalog table index.

Designing Clients to Use the Secondary Database Server
To achieve a degree of load balancing when you use data replication, have
some client applications use the secondary database server in a data-repli-
cation pair. Design all client applications that use the secondary database
server with the following points in mind:

■ Any statements that attempt to modify data fail.

■ Locking and isolation levels are not the same as on the standard
Dynamic Server.

■ Temporary dbspaces must be used for sorting and temporary tables.

These considerations are discussed in more detail in the following sections.

No Data Modification Statements

SQL statements that update dbspaces that are in logical recovery (which
includes all dbspaces on the secondary database server) are not allowed. For
example, the following statements produce errors:

■ ALTER FRAGMENT

■ ALTER INDEX

■ ALTER TABLE

■ CREATE DATABASE

■ CREATE INDEX

■ CREATE PROCEDURE

■ CREATE PROCEDURE FROM

■ CREATE ROLE

■ CREATE SCHEMA
What Is High-Availability Data Replication? 25-35

Designing Clients to Use the Secondary Database Server
■ CREATE SYNONYM

■ CREATE TABLE

■ CREATE VIEW

■ DELETE

■ DROP DATABASE

■ DROP INDEX

■ DROP PROCEDURE

■ DROP ROLE

■ DROP SYNONYM

■ DROP TABLE

■ DROP TRIGGER

■ DROP VIEW

■ GRANT

■ GRANT FRAGMENT

■ INSERT

■ LOAD

■ RENAME COLUMN

■ RENAME DATABASE

■ RENAME TABLE

■ REVOKE

■ REVOKE FRAGMENT

■ UNLOAD

■ UPDATE

■ UPDATE STATISTICS
25-36 Administrator’s Guide for Informix Dynamic Server

Designing Clients to Use the Secondary Database Server
To prevent clients that are using the secondary database server from issuing
updating statements, you can take either of the following actions:

■ Write client applications that do not issue updating statements.

■ Conditionalize all updating statements.

To conditionalize statements that perform an update, make sure that client
applications test slqwarn6 of the sqlwarn field in the ESQL/C sqlca structure
(and equivalent values for other SQL APIs). The database server sets
slqwarn6 to W when it runs as a secondary database server.

Locking and Isolation Level

Because all clients that use the secondary database server only read data,
locking to ensure isolation between those clients is not required. However, a
client that uses the secondary database server is not protected from the
activity of users on the primary database server because the logrecvr threads
that perform logical recovery do not use locking.

For example, if a client connected to the secondary database server reads a
row, nothing prevents a user on the primary database server from updating
that row, even if the client connected to the secondary database server has
issued a SET ISOLATION TO REPEATABLE READ statement. The update is
reflected on the secondary database server as the logical-log records for the
committed transaction are processed. Thus, all queries on the secondary
database server are essentially dirty with respect to changes that occur on the
primary database server, even though a client that uses the secondary
database server might explicitly set the isolation level to something other
than Dirty Read.
What Is High-Availability Data Replication? 25-37

Designing Clients to Use the Secondary Database Server
Using Temporary Dbspaces for Sorting and Temporary Tables

Even though the secondary database server is in read-only mode, it still does
writing when it needs to perform a sort or create a temporary table. “What Is
a Temporary Dbspace?” on page 13-20 explains where the database server
finds temporary space to use during a sort or for a temporary table. To
prevent the secondary database server from writing to a dbspace that is in
logical-recovery mode, you must take one (or all) of the following actions:

■ Ensure that a temporary dbspace exists. For instructions on creating
a temporary dbspace, see “Creating a Dbspace” on page 14-11.

■ Set the DBSPACETEMP parameter in the ONCONFIG file of the
secondary database server to the temporary dbspace or spaces.

■ Have clients that connect to the secondary database server and need
to take advantage of that temporary dbspace set their
DBSPACETEMP environment variable to the name of that dbspace or
spaces.
25-38 Administrator’s Guide for Informix Dynamic Server

26
Chapter
Using High-Availability Data
Replication
Planning for High-Availability Data Replication 26-4

Configuring High-Availability Data Replication 26-5
Meeting Hardware and Operating-System Requirements 26-5
Meeting Database and Data Requirements 26-6
Meeting Database Server Configuration Requirements 26-6

Version . 26-7
Dbspace and Chunk Configuration 26-7
Mirroring 26-7
Physical-Log Configuration 26-8
Dbspace and Logical-Log Tape Backup Devices 26-8
Logical-Log Configuration 26-8
Shared-Memory Configuration 26-9
High-Availability Data-Replication Parameters 26-9

Configuring High-Availability Data-Replication
Connectivity 26-9

Starting High-Availability Data Replication for the First Time 26-11

Performing Basic Administration Tasks 26-15
Changing Database Server Configuration Parameters 26-15
Dbspace and Logical-Log File Backups 26-16
Changing the Logging Status of Databases 26-16
Adding and Dropping Chunks, Dbspaces, and Blobspaces 26-17
Using and Changing Mirroring of Chunks 26-17
Managing the Physical Log. 26-18
Managing the Logical Log 26-19
Managing Virtual Processors 26-19
Managing Shared Memory 26-19

26-2 Ad
Changing the Database Server Mode 26-20

Changing the Database Server Type 26-21
Changing the Type of the Primary Database Server 26-22
Changing the Type of the Secondary Database Server. 26-22

Restoring Data If Media Failure Occurs 26-23
Restoring After Media Failure on the Primary

Database Server 26-23
Restoring After Media Failure on the Secondary

Database Server 26-24

Restarting High-Availability Data Replication After a Failure 26-26
Restarting After Critical Data Is Damaged 26-26

Critical Media Failure on the Primary Database Server 26-26
Critical Media Failure on the Secondary Database Server . . . 26-28
Critical Media Failure on Both Database Servers 26-28

Restarting If Critical Data Is Not Damaged 26-28
Restarting After a Network Failure 26-29
Restarting If the Secondary Database Server Fails. 26-29
Restarting If the Primary Database Server Fails 26-31
ministrator’s Guide for Informix Dynamic Server

This chapter describes how to use high-availability data replication. If
you plan to use high-availability data replication, read this entire chapter
first. If you plan to use Informix Enterprise Replication, see the Guide to
Informix Enterprise Replication. This chapter covers the following topics:

■ Planning for high-availability data replication

■ Configuring a system for high-availability data replication

■ Starting high-availability data replication

■ Operating database servers that use high-availability data
replication

■ Managing the mode of a database server in a high-availability data-
replication pair

■ Changing the type of a database server in a high-availability data-
replication pair

■ Restoring data after a media failure

■ Managing high-availability data replication after a failure

A companion chapter, Chapter 25, “What Is High-Availability Data Repli-
cation?” explains what high-availability data replication is, how it works,
and how to design client applications for a high-availability data-replication
environment.
Using High-Availability Data Replication 26-3

Planning for High-Availability Data Replication
Planning for High-Availability Data Replication
Before you start setting up computers and database servers to use high-avail-
ability data replication, you might want to do some initial planning. The
following list contains planning tasks to perform:

■ Choose and acquire appropriate hardware.

■ If you are using more than one database server to store data that you
wish to replicate, migrate and redistribute this data so that it can be
managed by a single database server.

■ Ensure that all databases that you want to replicate use transaction
logging. To turn on transaction logging, see Chapter 17, “Managing
Database-Logging Status.”

■ Develop client applications to make use of both database servers in
the high-availability data-replication pair. For a discussion of design
considerations, refer to “Redirection and Connectivity for
Data-Replication Clients” on page 25-22 and “Designing Clients to
Use the Secondary Database Server” on page 25-35.

■ Create a schedule for starting high-availability data replication for
the first time.

■ Design a dbspace and logical-log backup schedule for the primary
database server.

■ Produce a plan for how to handle failures of either database server
and how to restart high-availability data replication after a failure.
Read “Redirection and Connectivity for Data-Replication Clients”
on page 25-22.
26-4 Administrator’s Guide for Informix Dynamic Server

Configuring High-Availability Data Replication
Configuring High-Availability Data Replication
To configure your system for high-availability data replication, you must
take the following actions:

■ Meet hardware and operating-system requirements

■ Meet database and data requirements

■ Meet database server configuration requirements

■ Configure high-availability data-replication connectivity

Each of these topics is explained in this section.

Meeting Hardware and Operating-System Requirements
For a high-availability high-availability data-replication database server pair
to function, it must meet the following hardware requirements:

■ The computers that run the primary and secondary database servers
must be identical (same vendor and architecture).

■ The operating systems on the computers that run the primary and
secondary database servers must be identical.

■ The hardware that runs the primary and secondary database servers
must support network capabilities.

■ The amount of disk space allocated to nontemporary dbspaces for
the primary and secondary database servers must be equal. The type
of disk space is irrelevant; you can use any mixture of raw or cooked
spaces on the two database servers.
Using High-Availability Data Replication 26-5

Meeting Database and Data Requirements
Meeting Database and Data Requirements
For a high-availability data-replication database server pair to function, you
must meet the following database and data requirements:

■ All databases that you want to replicate must have transaction
logging turned on.

This requirement is important because the secondary database
server uses logical-log records from the primary database server to
update the data that it manages. If databases managed by the
primary database server do not use logging, updates to those
databases do not generate log records, so the secondary database
server has no means of updating the replicated data. Logging can be
buffered or unbuffered.

If you need to turn on transaction logging before you start high-
availability data replication, see either “Turning On Transaction
Logging with ON-Archive” on page 17-5 or “Turning On Transaction
Logging with ontape” on page 17-7.

■ If your primary database server has TEXT or BYTE objects stored in
blobspaces, modifications to the data within those blobspaces is not
replicated as part of normal high-availability data-replication
processing. TEXT or BYTE data within dbspaces is replicated,
however.

Meeting Database Server Configuration Requirements
For a high-availability data-replication database server pair to function, you
must meet the following database server configuration requirements.

To meet these requirements, you must fully configure each of the database
servers. For information on configuring a database server, refer to “Config-
uring the Database Server” on page 3-7. You can then use the relevant aspects
of that configuration to configure the other database server in the pair.
26-6 Administrator’s Guide for Informix Dynamic Server

Meeting Database Server Configuration Requirements
Version

The versions of the database server on the primary and secondary database
servers must be identical.

Dbspace and Chunk Configuration

The number of dbspaces, the number of chunks, their sizes, their pathnames,
and their offsets must be identical on the primary and secondary database
servers.

The configuration must contain at least one temporary dbspace. See “Using
Temporary Dbspaces for Sorting and Temporary Tables” on page 25-38.

You can use symbolic links for the chunk pathnames, as explained in
“Creating a Link to Each Raw Device on UNIX” on page 14-9.

The following ONCONFIG parameters must have the same value on each
database server:

■ ROOTNAME (see page 33-76)

■ ROOTOFFSET (see page 33-76)

■ ROOTPATH (see page 33-77)

■ ROOTSIZE (see page 33-78)

Mirroring

You do not have to set the MIRROR parameter to the same value on the two
database servers; you can enable mirroring on one database server and
disable mirroring on the other. If you specify a mirrored chunk for the root
chunk of the primary database server, however, you must also specify a
mirrored chunk for the root chunk on the secondary database server.
Therefore, the following ONCONFIG parameters must be set to the same
value on both database servers:

■ MIRROROFFSET (see page 33-54)

■ MIRRORPATH (see page 33-54)
Using High-Availability Data Replication 26-7

Meeting Database Server Configuration Requirements
Physical-Log Configuration

The physical log should be identical on both database servers. The following
ONCONFIG parameters must have the same value on each database server:

■ PHYSDBS (see page 33-70)

■ PHYSFILE (see page 33-71)

Dbspace and Logical-Log Tape Backup Devices

You can specify different tape devices for the primary and secondary
database servers.

The tape size and tape block size for the dbspace and logical-log tape backup
devices should be identical. The following ONCONFIG parameters must have
the same value on each database server:

■ LTAPEBLK (see page 33-47)

■ LTAPESIZE (see page 33-49)

■ TAPEBLK (see page 33-87)

■ TAPESIZE (see page 33-90)

Logical-Log Configuration

You must configure the same number of logical-log files and the same logical-
log size for both database servers. The following ONCONFIG parameters
must have the same value on each database server:

■ LOGFILES (see page 33-42)

■ LOGSIZE (see page 33-43)
26-8 Administrator’s Guide for Informix Dynamic Server

Configuring High-Availability Data-Replication Connectivity
Shared-Memory Configuration

Set all the shared-memory configuration parameters to the same values on
the two database servers.

High-Availability Data-Replication Parameters

The following parameters are specific to high-availability data replication
and must be set to the same value on both database servers in the high-avail-
ability data-replication pair:

■ DRAUTO (see page 33-22)

■ DRINTERVAL (see page 33-23)

■ DRLOSTFOUND (see page 33-24)

■ DRTIMEOUT (see page 33-25)

Configuring High-Availability Data-Replication
Connectivity
For a high-availability data-replication database server pair to function, the
database servers in the high-availability data-replication pair must be able to
establish a connection with one another. To satisfy this requirement, the
connectivity information on each of the computers that is running the
database server in a high-availability data-replication pair must have at least
the following entries:

■ An entry that identifies the database server that is running on that
computer

■ An entry that identifies the other database server in the
data-replication pair
Using High-Availability Data Replication 26-9

Configuring High-Availability Data-Replication Connectivity
Figure 26-1 shows a sample high-availability data-replication configuration
and example connectivity values necessary for high-availability data
replication.

In addition to connectivity information, the computers that are running
Dynamic Server in a high-availability data-replication pair must have entries
for the other computer and service in their /etc/hosts and /etc/services files. ♦

Figure 26-1
Example Connectivity Values for Database Servers in a High-Availability Data-Replication Pair

cliff beach

cliff_ol
beach_ol

onsoctcp
onsoctcp

cliff
beach

ol_cl
ol_bc

cliff_ol
beach_ol

onsoctcp
onsoctcp

cliff
beach

ol_cl
ol_bc

delta rivermarsh

Client
Client

Client
Client

cliff_ol
beach_ol

onsoctcp
onsoctcp

cliff
beach

ol_cl
ol_bccliff_ol onsoctcp cliff ol_cl beach_ol onsoctcp beach ol_bc

cliff_ol beach_ol

UNIX
26-10 Administrator’s Guide for Informix Dynamic Server

Starting High-Availability Data Replication for the First Time
Starting High-Availability Data Replication for the
First Time
After you complete the high-availability data-replication configuration, you
are ready to start high-availability data replication. This section describes the
necessary steps for starting high-availability data replication.

Suppose you wish to start high-availability data replication on two database
servers, ServerA and ServerB. The procedure for starting high-availability
data replication, using ServerA as the primary database server and ServerB
as the secondary database server, is described in the following steps.
Figure 26-2 on page 26-13 lists the commands required to perform each step.
You can perform some of the steps using either the ON-Archive or the ontape
utility. In such cases, the ON-Archive command and the equivalent ontape
command are both indicated. You must employ the same utility throughout
the procedure, however. Figure 26-2 also shows messages sent to the message
log.

To start high-availability data replication

1. Create a level-0 dbspace backup of ServerA.

2. Use the onmode -d command to set the type of ServerA to primary,
and to indicate the name of the associated secondary database server
(in this case ServerB).

When you issue an onmode -d command, the database server
attempts to establish a high-availability data-replication connection
with the other database server in the high-availability data-repli-
cation pair and to start high-availability data-replication operation.
The attempt to establish a connection succeeds only if the other
database server in the pair is already set to the correct type.

At this point ServerB is not on-line and is not set to type secondary,
so the high-availability data-replication connection is not
established.

3. Perform a physical restore of ServerB from the level-0 dbspace
backup that you created in step 1. Do not perform a logical restore. If
you are using the ontape utility for your archiving tasks, use the
ontape -p option. You cannot use the ontape -r option because it
performs both a physical and a logical restore.
Using High-Availability Data Replication 26-11

Starting High-Availability Data Replication for the First Time
4. Use the onmode -d command to set the type of ServerB to secondary
and indicate the associated primary database server. ServerB tries to
establish a high-availability data-replication connection with the
primary database server (ServerA) and start operation. The
connection should be successfully established.

Before high-availability data replication begins, the secondary
database server performs a logical recovery using the logical-log
records written to the primary database server since step 1. If all
these logical-log records still reside on the primary database server
disk, the primary database server sends these records directly to the
secondary database server over the network, and logical recovery
occurs automatically.

If you have backed up and freed logical-log files on the primary
database server, the records in these files are no longer on disk. The
secondary database server prompts you to recover these files from
tape. In this case, you must perform step 5.

5. If logical-log records that were written to the primary database
server are no longer on the primary disk, the secondary database
server prompts you to recover these files from tape backups.

If the secondary database server must read the backed-up logical-log
files over the network, set the tape device parameters on the
secondary database server to a device on the computer that is
running the primary database server or to a device at the same
location as the primary database server.

After you recover all the logical-log files on tape, the logical restore
completes using the logical-log files on the primary database server
disk.
26-12 Administrator’s Guide for Informix Dynamic Server

Starting High-Availability Data Replication for the First Time
Figure 26-2
Steps to Start High-Availability Data Replication for the First Time

Step On the Primary On the Secondary

1 ON-Archive command

Onarchive> ARCHIVE/DBSPACESET=*

ontape command

% ontape -s

Messages to message log

Level 0 archive started on
rootdbs.

Archive on rootdbs completed.

2 onmode command

%onmode -d primary sec_name

Messages to message log

DR: new type = primary, secondary
server name = sec_name
DR: trying to connect to
secondary server

DR: Cannot connect to secondary
server

3 ON-Archive command

ONDATARTR>
RETRIEVE/DBSPACESET=*/REQUEST=rid/TAPE=(pr
imary:/dev/remotedrive

ontape command

% ontape -p

Answer no when prompted to back up the logs.

Messages to message log

Informix Dynamic Server Initialized --
Shared Memory Initialized

Recovery Mode

Physical restore of rootdbs started.

Physical restore of rootdbs completed.

(1 of 3)
Using High-Availability Data Replication 26-13

Starting High-Availability Data Replication for the First Time
4 onmode command

% onmode -d secondary prim_name

Messages to message log

DR: new type = secondary, primary server
name = prim_name

If all the logical-log records written to the primary
database server since step 1 still reside on the
primary database server disk, the secondary
database server reads these records to perform
logical recovery (otherwise, step 5 must be
performed).

Messages to message log

DR: Primary server connected

DR: Primary server operational

Messages to message log

DR: Trying to connect to primary server

DR: Secondary server connected

DR: Failure recovery from disk in process.

Logical Recovery allocating n worker threads
('OFF_RECVRY_THREADS').

Logical Recovery Started

Start Logical Recovery - Start Log n, End
Log?

Starting Log Position - n 0xnnnnn

DR: Secondary server operational

Step On the Primary On the Secondary

(2 of 3)
26-14 Administrator’s Guide for Informix Dynamic Server

Performing Basic Administration Tasks
Performing Basic Administration Tasks
This section contains instructions on how to perform basic Dynamic Server
administration tasks once your system is running high-availability data
replication.

Changing Database Server Configuration Parameters
Some of the Dynamic Server configuration parameters must be set to the
same value on both database servers in the high-availability data-replication
pair (as listed under “Meeting Database Server Configuration Requirements”
on page 26-6). Other Dynamic Server configuration parameters can be set to
different values.

5 ON-Archive command

ONDATARTR> RETRIEVE/LOGFILE/TAPE=
(primary:/dev/remotedevice)

ontape command

% ontape -l

Messages to message log

DR: Primary server connected

DR: Primary server operational

Messages to message log

DR: Secondary server connected

DR: Failure recovery from disk in process.

Logical Recovery allocating n worker threads
('OFF_RECVRY_THREADS').

Logical Recovery Started

Start Logical Recovery - Start Log n, End
Log?

Starting Log Position - n 0xnnnnn

DR: Secondary server operational

Step On the Primary On the Secondary

(3 of 3)
Using High-Availability Data Replication 26-15

Dbspace and Logical-Log File Backups
If you need to change a configuration parameter that must have the same
value on both database servers, you must change the value of that parameter
in the ONCONFIG file of both database servers. To make changes to
ONCONFIG files, perform the following steps:

1. Bring each database server off-line with the onmode -k option. If
DRAUTO is set to RETAIN_TYPE or REVERSE_TYPE, you can more
easily bring the secondary database server off-line first.

2. Change the parameters on each database server.

3. Bring each database server back on-line. Start with the last database
server that you brought off-line. For example, if you brought the
secondary database server off-line last, bring the secondary database
server on-line first. Figure 26-1 on page 26-10 and Figure 26-2 on
page 26-13 list the procedures for bringing the primary and
secondary database servers back on-line.

If the configuration parameter does not need to have the same value on each
database server in the high-availability data-replication pair, you can change
the value on the primary or secondary database server individually.

Dbspace and Logical-Log File Backups
When you use high-availability data replication, you must back up logical-
log files and create dbspace backups of your data, just as you would with a
standard Dynamic Server database server. You need to perform dbspace and
logical-log file backups only on the primary database server. Be prepared,
however, to perform dbspace and logical-log backups on the secondary
database server in case the type of the database server is changed to standard.

You must use the same backup and restore tool on both database servers.

The block size and tape size used (for both dbspace backups and logical-log
backups) must be identical on the primary and secondary database servers.

Changing the Logging Status of Databases
You cannot add transaction logging to databases on the primary database
server while you are using high-availability data replication. You can turn
logging off for a database; however, subsequent changes to that database are
not duplicated on the secondary database server.
26-16 Administrator’s Guide for Informix Dynamic Server

Adding and Dropping Chunks, Dbspaces, and Blobspaces
If you must add logging to a database, you can turn high-availability data
replication off, add logging, and then perform a dbspace backup and restore
as described in “Starting High-Availability Data Replication for the First
Time” on page 26-11.

Adding and Dropping Chunks, Dbspaces, and Blobspaces
You can perform disk-layout operations, such as adding or dropping chunks,
dbspaces, and blobspaces, only from the primary database server. The
operation is replicated on the secondary database server. This arrangement
ensures that the disk layout on both database servers in the high-availability
data-replication pair remains consistent.

Because the directory pathname or the actual file for chunks must exist before
you create them, make sure the pathnames (and offsets, if applicable) exist on
the secondary database server before you create a chunk on the primary
database server.

Using and Changing Mirroring of Chunks
You do not have to set the MIRROR configuration parameter to the same value
on both database servers in the high-availability data-replication pair. In
other words, you can enable or disable mirroring on either the primary or the
secondary database server independently.

Before you can add a mirrored chunk, the disk space for that chunk must
already be allocated on both the primary and secondary database servers. For
general information on allocating disk space, see “Allocating Disk Space” on
page 14-4.

If you want to mirror a dbspace on one of the database servers in the high-
availability data-replication pair, you must create mirrored chunks for that
dbspace on both database servers. For general information on allocating disk
space, see “Allocating Disk Space” on page 14-4.
Using High-Availability Data Replication 26-17

Managing the Physical Log
You can perform disk-layout operations only from the primary database
server. Thus, you can add or drop a mirrored chunk only from the primary
database server. A mirrored chunk that you add to or drop from the primary
database server is added to or dropped from the secondary database server
as well. You must manually perform mirror recovery for the newly added
mirror chunk on the secondary database server to bring it to online mode. For
more information, see “Recovering a Mirrored Chunk” on page 24-11.

When you drop a chunk from the primary database server, Dynamic Server
automatically drops the corresponding chunk on the secondary database
server. This applies to both primary and mirror chunks.

When you turn mirroring off for a dbspace on the primary database server,
Dynamic Server does not turn mirroring off for the corresponding dbspace
on the secondary database server. You can turn mirroring off for a dbspace on
the secondary database server independent of the primary server using
onspaces -r. For more information on turning mirroring off, see “Ending
Mirroring” on page 24-12.

You can take down a mirrored chunk or recover a mirrored chunk on either
the primary or secondary database server. These processes are transparent to
high-availability data replication.

Managing the Physical Log
The size of the physical log must be the same on both database servers. If you
change the size and location of the physical log on the primary database
server, this change is replicated to the secondary database server; however,
the PHYSDBS and PHYSFILE parameters in the secondary ONCONFIG file are
not updated. You must change these parameters manually by editing the
ONCONFIG file. For the procedure to follow for making this change, see
“Changing Database Server Configuration Parameters” on page 26-15.

For information on changing the size and location of the physical log, refer to
Chapter 21, “Managing the Physical Log.”
26-18 Administrator’s Guide for Informix Dynamic Server

Managing the Logical Log
Managing the Logical Log
The size of the logical log must be the same on both database servers. You can
add or drop a logical-log file with the onparams utility, as described in
Chapter 19, “Managing Logical-Log Files.” Dynamic Server replicates this
change on the secondary database server; however, the LOGFILES parameter
on the secondary database server is not updated. After you issue the
onparams command from the primary database server, therefore, you must
manually change the LOGFILES parameter to the desired value on the
secondary database server. Finally, for the change to take effect, you must
perform a level-0 dbspace backup of the root dbspace on the primary
database server.

If you add a logical-log file to the primary database server, this file is
available for use and flagged F as soon as you perform the level-0 dbspace
backup. The new logical-log file on the secondary database server is still
flagged A; however, this condition does not prevent the secondary database
server from writing to the file.

Managing Virtual Processors
The number of virtual processors has no effect on data replication. You can
configure and tune each database server in the pair individually.

Managing Shared Memory
If you make changes to the shared-memory ONCONFIG parameters on one
database server, you must make the same changes at the same time to the
shared-memory ONCONFIG parameters on the other database server. For the
procedure to follow for making this change, see “Changing Database Server
Configuration Parameters” on page 26-15.
Using High-Availability Data Replication 26-19

Changing the Database Server Mode
Changing the Database Server Mode
The effects of changing the mode of a database server in a high-availability
data-replication pair differ depending on whether you are changing the
mode of the primary or the secondary database server.

Figure 26-3 summarizes the effects of changing the mode of the primary
database server.

Figure 26-3
Mode Changes on the Primary Database Server

On the Primary On the Secondary To Restart High-Availability Data Replication

Any mode → off-line

(onmode -k)

Secondary receives errors.

High-availability data repli-
cation is turned off.

If DRAUTO is set to 0 (OFF),
mode remains read-only.

If DRAUTO is set to 1
(RETAIN_TYPE) or 2
(REVERSE_TYPE), secondary
switches to standard type and
can accept updates.

Treat it like a failure of the primary. Three
different scenarios are possible, depending on
what you do with the secondary while the
primary is off-line:

■ “The Secondary Database Server Was Not
Changed to a Standard Database Server”
on page 26-31

■ “The Secondary Database Server Is
Changed to a Standard Database Server
Manually” on page 26-31

■ “The Secondary Database Server Is
Changed to a Standard Database Server
Automatically” on page 26-33

On-line → quiescent

(onmode-s/ onmode-u)

Secondary does not receive
errors.

High-availability data repli-
cation remains on.

Mode remains read-only.

Use onmode -m on the primary.
26-20 Administrator’s Guide for Informix Dynamic Server

Changing the Database Server Type
Figure 26-4 summarizes the effects of changing the mode of the secondary
database server.

Figure 26-4
Mode Changes on the Secondary Database Server

Changing the Database Server Type
You might want to stop the high-availability data-replication process
manually by changing the type of the database server to standard. The effects
of this change are different from changing the mode of a database server
(described in “Changing the Database Server Mode” on page 26-20). When
you take the now standard database server off-line and bring it back on-line,
it does not attempt to connect to the other database server in the high-avail-
ability data-replication pair.

The utility that you use to change the database server type is onmode.
Reference information for onmode is in “onmode: Mode and Shared-
Memory Changes” on page 35-28.

You can change the type of either the primary or the secondary database
server. When you change the database server type to standard, the type of the
other database server in the high-availability data-replication pair does not
change, but high-availability data replication is turned off.

On the Secondary On the Primary To Restart High-Availability Data Replication

Read-only → off-line

(onmode -k)

Primary receives errors.

High-availability data repli-
cation is turned off.

Treat it like a failure of the secondary. Follow
the procedures in “Restarting If the Secondary
Database Server Fails” on page 26-29.
Using High-Availability Data Replication 26-21

Changing the Type of the Primary Database Server
Changing the Type of the Primary Database Server
The primary database server can be in on-line mode when you change its
type to standard.

Execute the following command from the operating-system prompt of the
computer that is running the primary database server:

% onmode -d standard

This command stops high-availability data replication and leaves the
database server in on-line mode. If DRAUTO is set to 0, the secondary
database server remains in read-only mode and cannot accept updates from
clients (because its type is still secondary). If DRAUTO is set to 1
(RETAIN_TYPE) or 2 (REVERSE_TYPE), the secondary database server
switches to type standard. In either case, high-availability data replication is
turned off on the secondary database server.

To change the database server back to type primary and restart high-avail-
ability data replication, execute the following command:

% onmode -d primary secondary

Changing the Type of the Secondary Database Server
Execute the following command from the operating-system prompt of the
computer that is running the secondary database server:

% onmode -d standard

Once you change the secondary database server to a standard database
server, applications can update the data managed by that database server. If
you later decide to change the type of the database server back to type
secondary and restart high-availability data replication, you must follow the
entire procedure in “Starting High-Availability Data Replication for the First
Time” on page 26-11.
26-22 Administrator’s Guide for Informix Dynamic Server

Restoring Data If Media Failure Occurs
Restoring Data If Media Failure Occurs
The result of disk failure depends on whether the disk failure occurs on the
primary or the secondary database server, whether the chunks on the disk
contain critical media (the root dbspace, a logical-log file, or the physical log),
and whether the chunks are mirrored.

Restoring After Media Failure on the Primary Database
Server
Figure 26-5 summarizes the various scenarios for restoring data if the
primary database server suffers media failure. The following issues are
relevant:

1. If chunks are mirrored, you can perform recovery just as you would
for a standard database server that used mirroring.

2. In cases where the chunks are not mirrored, the procedure for
restoring the primary database server depends on whether the disk
that failed contains critical media. If the disk does contain critical
media, the primary database server fails. You have to do a full restore
using the primary dbspace backups (or the secondary dbspace
backups if the secondary database server was switched to standard
mode and activity redirected). See “Restarting After Critical Data Is
Damaged” on page 26-26.

If the disk does not contain critical media, you can restore the
affected dbspaces individually with a warm restore. A warm restore
consists of two parts: first a restore of the failed dbspace from a
dbspace backup and next a logical restore of all logical-log records
written since that dbspace backup. For more information on
performing a warm restore using ON-Bar, see your Backup and Restore
Guide. For more information on performing a warm restore using
ON-Archive, see your Archive and Backup Guide. You must back up all
logical-log files before you perform the warm restore.
Using High-Availability Data Replication 26-23

Restoring After Media Failure on the Secondary Database Server
Figure 26-5
Scenarios for Media Failure on the Primary Database Server

Restoring After Media Failure on the Secondary Database
Server
Figure 26-6 summarizes the various scenarios for restoring data if the
secondary database server suffers media failure. The following issues are
relevant:

1. If chunks are mirrored, you can perform recovery just as you would
for a standard database server that used mirroring.

2. In cases where the chunks are not mirrored, the secondary database
server fails if the disk contains critical media but remains on-line if
the disk does not contain critical media. In both cases, you have to do
a full restore using the dbspace backups on the primary database
server. (See “Restarting After Critical Data Is Damaged” on
page 26-26.) In the second case, you cannot restore selected dbspaces
from the secondary dbspace backup because they might now deviate
from the corresponding dbspaces on the primary database server.
You must do a full restore.

High-Availability
Data-Replication
Server

Critical
Media?

Chunks
Mirrored? Effect of Failure and Procedure for Restoring Media

Primary Yes No Primary database server fails. Follow the procedure in “Restarting
After Critical Data Is Damaged” on page 26-26.

Primary Yes Yes Primary database server remains on-line. Follow the procedures in
“Recovering a Mirrored Chunk” on page 24-11.

Primary No No Primary database server remains on-line. Follow the procedure in
your Dynamic Server backup and restore manual for performing a
warm restore of a dbspace from a dbspace backup. Back up all
logical-log files before you perform the warm restore.

Primary No Yes Primary database server remains on-line. Follow the procedures in
“Recovering a Mirrored Chunk” on page 24-11.
26-24 Administrator’s Guide for Informix Dynamic Server

Restoring After Media Failure on the Secondary Database Server
Figure 26-6
Scenarios for Media Failure on the Secondary Database Server

High-Availability
Data-Replication
Server

Critical
Media?

Chunks
Mirrored? Effect of Failure

Secondary Yes No Secondary database server fails. Primary database server
receives errors. High-availability data replication is turned off.
Follow the procedure in “Restarting After Critical Data Is
Damaged” on page 26-26

Secondary Yes Yes Secondary database server remains on-line in read-only mode.
Follow the procedures in “Recovering a Mirrored Chunk” on
page 24-11.

Secondary No No Secondary database server remains on-line in read-only mode.
Primary database server receives errors. High-availability data
replication is turned off. Follow the procedure in “Restarting
After Critical Data Is Damaged” on page 26-26.

Secondary No Yes Secondary database server remains on-line in read-only mode.
Follow the procedures in “Recovering a Mirrored Chunk” on
page 24-11.
Using High-Availability Data Replication 26-25

Restarting High-Availability Data Replication After a Failure
Restarting High-Availability Data Replication After
a Failure
“What Are High-Availability Data-Replication Failures?” on page 25-15
discusses the various types of high-availability data-replication failure. The
procedure that you must follow to restart high-availability data replication
depends on whether critical data was damaged on one of the database
servers. Both cases are discussed in this section.

Restarting After Critical Data Is Damaged
If one of the database servers experiences a failure that damages the root
dbspace, the dbspace that contains logical-log files, or the dbspace that
contains the physical log, you must treat the failed database server as if it has
no data on the disks, and you are starting high-availability data replication
for the first time. Use the functioning database server with the intact disks as
the database server with the data.

Critical Media Failure on the Primary Database Server

To restart high-availability data replication after the primary database server
suffers a critical media failure, perform the following steps. Figure 26-7 lists
the commands required to perform this procedure:

1. If the original secondary database server was changed to a standard
database server manually (DRAUTO = 0), bring this database server
to quiescent mode and then use the onmode -d command to change
the type back to secondary.

If DRAUTO = 1, this step does not apply. The database server
automatically performs a graceful shutdown and switches back to
type secondary when you bring the primary database server back
on-line.

If DRAUTO = 2, the secondary database server becomes a primary as
soon as the connection ends when the old primary database server
fails rather than when the old primary is restarted.

In the following steps, it is assumed that DRAUTO is set to 0 or to 1.

2. Restore the primary database server from the last dbspace backup.
26-26 Administrator’s Guide for Informix Dynamic Server

Restarting After Critical Data Is Damaged
3. Use the onmode -d command to set the type of the primary database
server and to start high-availability data replication. The onmode -d
command starts a logical recovery of the primary database server
from the logical-log files on the secondary database server disk. If
logical recovery cannot complete because you backed up and freed
logical-log files on the original secondary database server, high-
availability data replication does not start until you perform step 4.

4. Apply the logical-log files from the secondary database server, which
were backed up to tape, to the primary database server. If this step is
required, the primary database server sends a message prompting
you to recover the logical-log files from tape. This message appears
in the message log. When all the required logical-log files have been
recovered from tape, any remaining logical-log files on the
secondary disk are recovered.

Figure 26-7
Steps for Restarting High-Availability Data Replication After a Critical Media Failure on the

Primary Database Server

Step On the Primary Database Server On the Secondary Database Server

1 onmode command

% onmode -s
% onmode -d secondary prim_name

2 ontape command

% ontape -p

ON-Archive command

ONDATARTR>
RETRIEVE/DBSPACESET=*/REQUEST=rid/TA
PE=(primary:/dev/remotedrive)

3 onmode command

% onmode -d primary sec_name

4 ontape command

% ontape -l

ON-Archive command

ONDATARTR>
RETRIEVE/LOGFILE/TAPE=(secondary:/de
v/remotedevice)
Using High-Availability Data Replication 26-27

Restarting If Critical Data Is Not Damaged
Critical Media Failure on the Secondary Database Server

If the secondary database server suffers a critical media failure, you can
follow the same steps listed under “Starting High-Availability Data Repli-
cation for the First Time” on page 26-11.

Critical Media Failure on Both Database Servers

In the unfortunate event that both of the computers that are running database
servers in a high-availability data-replication pair experience a failure that
damages the root dbspace, the dbspace that contains logical-log files, or the
dbspace that contains the physical log, perform the following tasks to restart
high-availability data replication:

1. Restore one database server—it does not matter which one—from
dbspace and logical-log backup tapes.

2. After you restore one database server, treat the other failed database
server as if it has no data on the disks, and you are starting high-
availability data replication for the first time. (See “Starting High-
Availability Data Replication for the First Time” on page 26-11). Use
the functioning database server with the intact disk(s) as the
database server with the data.

Restarting If Critical Data Is Not Damaged
If no damage occurred to critical data on either database server, the following
five scenarios, each requiring different procedures for restarting high-avail-
ability data replication, are possible:

■ A network failure occurs.

■ The secondary database server fails.

■ The primary database server fails, and the secondary database server
is not changed to a standard database server.
26-28 Administrator’s Guide for Informix Dynamic Server

Restarting If Critical Data Is Not Damaged
■ The primary database server fails, and the secondary database server
is changed to a standard database server manually (DRAUTO = 0).

■ The primary database server fails, and the secondary database server
is changed to a standard database server automatically (DRAUTO = 1
or DRAUTO = 2).

Restarting After a Network Failure

After a network failure with DRAUTO set to 0 (OFF), the primary database
server is in on-line mode, and the secondary database server is in read-only
mode. High-availability data replication is turned off on both database
servers (state = off). When the connection is reestablished, you can restart
high-availability data replication by issuing onmode -d secondary
primary_name on the secondary database server. Restarting high-availability
data replication might not be necessary because the primary database server
attempts to reconnect every 10 seconds and displays a message regarding the
inability to connect every 2 minutes. You do not have to use onmode restart
the connection.

If DRAUTO is set to 1 (RETAIN_TYPE) or 2 (REVERSE_TYPE), the procedure
described in the preceding paragraph does not work because the type of the
secondary database server has changed to standard. If a network failure
occurs, and you are using automatic switchover, there is a risk that both
database servers will be updated independently. (See “Using Automatic
Switchover Without a Reliable Network” on page 25-21.) In this case, you
must follow the procedure discussed in “Starting High-Availability Data
Replication for the First Time” on page 26-11.

Restarting If the Secondary Database Server Fails

If you need to restart high-availability data replication after a failure of the
secondary database server, complete the steps in Figure 26-8. The steps
assume that you have been backing up logical-log files on the primary
database server as necessary since the failure of the secondary database
server.
Using High-Availability Data Replication 26-29

Restarting If Critical Data Is Not Damaged
Figure 26-8
Steps in Restarting After a Failure on the Secondary Database Server

Step On the Primary On the Secondary

1 The primary database server should be in
on-line mode.

% oninit

If you receive the following message in the message
log, continue with step 2:

DR: Start Failure recovery from tape

2 ON-Archive command

Onarchive>

CATALOG/VSET=remote_logs/VOLUME=volnum/SID
=sysid

Onarchive>RETRIEVE/LOGFILE/VSET=remote_log
s

ontape command

% ontape -l
26-30 Administrator’s Guide for Informix Dynamic Server

Restarting If Critical Data Is Not Damaged
Restarting If the Primary Database Server Fails

The following sections describe how to restart high-availability data repli-
cation if the primary database server fails under various circumstances.

The Secondary Database Server Was Not Changed to a Standard Database
Server

If you need to restart high-availability data replication after a failure of the
primary database server if the secondary database server is not changed to a
standard database server, simply bring the primary database server back on-
line using oninit.

The Secondary Database Server Is Changed to a Standard Database Server
Manually

If you need to restart high-availability data replication after a failure of the
primary database server, and you have manually changed the secondary
database server to be a standard database server, complete the steps in
Figure 26-9.

Figure 26-9
Steps to Restart If You Manually Changed the Secondary Database Server to a Standard

Database Server

Step On the Primary Database Server On the Secondary Database Server

1 % onmode -s

This step takes the secondary
database server (now a standard)
to quiescent mode. All clients that
are connected to this database
server will have to disconnect.
Applications that perform updates
must be redirected to the primary.
See “Redirection and Connectivity
for Data-Replication Clients” on
page 25-22.

2 % onmode -d secondary
prim_name

(1 of 2)
Using High-Availability Data Replication 26-31

Restarting If Critical Data Is Not Damaged
3 % oninit

If all the logical-log records that were written to the secondary
database server are still on the secondary database server disk,
the primary database server recovers these records from that
disk when you issue the oninit command.

If logical-log files that you have backed up and freed are on the
secondary, the records in these files are no longer on disk. In
this case, you are prompted to recover these logical-log files
from tape (step 4).

For ontape users:

If you want to read the logical-log records over the
network, set the logical-log tape device to a device on the
computer that is running the secondary database server.

For ON-Archive users:

In the next step, be sure to use a vset with the device type
defined to be a device on the secondary database server.

4 If you are prompted to recover logical-log records from tape,
perform this step.

ON-Archive command

Onarchive>

CATALOG/VSET=remote_logs/VOLUME=
volnum/SID=sysid

Onarchive>RETRIEVE/LOGFILE/VSET=
remote_logs

ontape command

% ontape -l

Step On the Primary Database Server On the Secondary Database Server

(2 of 2)
26-32 Administrator’s Guide for Informix Dynamic Server

Restarting If Critical Data Is Not Damaged
The Secondary Database Server Is Changed to a Standard Database Server
Automatically

If you need to restart high-availability data replication after a failure of the
primary database server, and the secondary database server was automati-
cally changed to a standard database server (as described in “What Is
Automatic Switchover?” on page 25-19), complete the steps in Figure 26-10.

Figure 26-10
Steps to Restart If You Automatically Changed the Secondary Database Server to a Standard

Database Server

Step On the Primary Database Server On the Secondary Database Server

1 % oninit

If DRAUTO = 1, the type of this database server will be
set to primary.

If DRAUTO = 2, the type of this database server will be
set to secondary when it is initialized.

If all the logical-log records that were written to the
secondary database server are still on the secondary
database server disk, the primary database server
recovers these records from that disk when you issue
the oninit command.

If logical-log files that you have backed up and freed are
on the secondary, the records in these files are no longer
on disk. In this case, you are prompted to recover these
logical-log files from tape (step 2).

For ontape users:

Set the logical-log tape device to a device on the
computer running the secondary database server.

For ON-Archive users:

In the next step, be sure to use a vset with the device
type defined to be a device on the secondary
database server.

If DRAUTO = 1, the secondary database
server automatically goes through
graceful shutdown when you bring the
primary back up. This ensures that all
clients are disconnected. The type is then
switched back to secondary. Any appli-
cations that perform updates must be
redirected back to the primary database
server. See “Redirection and Connec-
tivity for Data-Replication Clients” on
page 25-22.

If DRAUTO = 2, the secondary database
server switches to primary and then
standard automatically. The old primary
becomes a secondary after it restarts and
connects to the other server and
determines that it is now a primary.

(1 of 2)
Using High-Availability Data Replication 26-33

Restarting If Critical Data Is Not Damaged
2 If you are prompted to recover logical-log records from
tape, perform this step.

ON-Archive command

Onarchive>

CATALOG/VSET=remote_logs/VOLUME=volnum/SID=sy
sid

Onarchive>RETRIEVE/LOGFILE/VSET=remote_logs

ontape command

% ontape -l

Step On the Primary Database Server On the Secondary Database Server

(2 of 2)
26-34 Administrator’s Guide for Informix Dynamic Server

27
Chapter
What Is Consistency Checking?
Performing Periodic Consistency Checking 27-4
Verify Consistency. 27-4

oncheck -cr 27-5
oncheck -cc 27-5
oncheck -ce 27-6
oncheck -cI 27-6
oncheck -cD 27-6

Monitor for Data Inconsistency 27-7
Retain Consistent Level-0 Dbspace 27-8

Dealing with Corruption 27-9
Symptoms of Corruption 27-9
Run oncheck First 27-9
I/O Errors on a Chunk 27-10

Collecting Diagnostic Information 27-11

27-2 Ad
ministrator’s Guide for Informix Dynamic Server

Informix Dynamic Server is designed to detect database server
malfunctions or problems caused by hardware or operating-system errors. It
detects problems by performing assertions in many of its critical functions. An
assertion is a consistency check that verifies that the contents of a page,
structure, or other entity match what would otherwise be assumed.

When one of these checks finds that the contents are not what they should be,
the database server reports an assertion failure and writes text that describes
the check that failed into the database server message log. The database
server also collects further diagnostics information in a separate file that
might be useful to Informix Technical Support staff.

This chapter provides an overview of consistency-checking measures and
ways of handling inconsistencies. It covers the following topics:

■ Performing periodic consistency checking

■ Dealing with data corruption

■ Collecting advanced diagnostic information
What Is Consistency Checking? 27-3

Performing Periodic Consistency Checking
Performing Periodic Consistency Checking
To gain the maximum benefit from consistency checking and to ensure the
integrity of dbspace backups, Informix recommends that you periodically
take the following actions:

■ Verify that all data and the database server overhead information is
consistent.

■ Check the message log for assertion failures while you verify
consistency.

■ Create a level-0 dbspace backup after you verify consistency.

Each of these actions is described in the following sections.

Verify Consistency
Because of the time needed for this check and the possible contention that the
checks can cause, schedule this check for times when activity is at its lowest.
Informix recommends that you perform this check just prior to creating a
level-0 dbspace backup.

Run the following commands as part of the consistency check:

■ oncheck -cr

■ oncheck -cc

■ oncheck -ce

■ oncheck -cI dbname

■ oncheck -cD dbname

The following sections describe these commands.
27-4 Administrator’s Guide for Informix Dynamic Server

Verify Consistency
You can run each of these commands while the database server is in on-line
mode. For information on how oncheck locks objects as it checks them and
which users can run oncheck, see “Locking and oncheck” on page 35-7.

In most cases, if one or more of these checks detects an error, the solution is
to restore the database from a dbspace backup. However, the source of the
error might also be your hardware or operating system.

If you use ON-Bar for your backup and restore tool, see your Backup and
Restore Guide for information on how to restore your data from a dbspace
backup. If you use ON-Archive or ontape for your backup and restore tool,
see your Archive and Backup Guide.

oncheck -cr

Execute oncheck -cr to validate the database server reserved pages that
reside at the beginning of the initial chunk of the root dbspace. These pages
contain the primary the database server overhead information. If this
command detects errors, perform a data restore from dbspace backup.

This command might report warnings. In most cases, these warnings call
your attention to situations of which you are already aware.

oncheck -cc

Execute oncheck -cc to validate the system catalog tables for each of the
databases that the database server manages. Each database contains its own
system catalog, which contains information on the database tables, columns,
indexes, views, constraints, stored procedures, and privileges.
What Is Consistency Checking? 27-5

Verify Consistency
If a warning appears after you execute oncheck -cc, its only purpose is to alert
you that no records of a specific type were found. These warnings do not
indicate any problem with your data, your system catalog, or even with your
database design. For example, the following warning might appear if you
execute oncheck -cc on a database that has no synonyms defined for any
table:

WARNING: No syssyntable records found.

This message indicates only that no synonym exists for any table; that is, the
system catalog contains no records in the table syssyntable.

However, if oncheck -cc returns an error message, the situation is quite
different. Contact Informix Technical Support immediately.

oncheck -ce

Execute oncheck -ce to validate the extents in every database. Extents must
not overlap. If this command detects errors, perform a data restore from a
dbspace backup. If this command detects errors, perform a data restore from
a dbspace backup.

oncheck -cI

Execute oncheck -cI for each database to validate indexes on each of the
tables in the database. If this command detects errors, drop and re-create the
affected index.

oncheck -cD

Execute oncheck -cD to validate the pages for each of the tables in the
database. If this command detects errors, try to unload the data from the
specified table, drop the table, re-create the table, and reload the data. For
information about loading and unloading data, see the Informix Migration
Guide. If this procedure does not succeed, perform a data restore from
dbspace backup.
27-6 Administrator’s Guide for Informix Dynamic Server

Monitor for Data Inconsistency
Monitor for Data Inconsistency
If the consistency-checking code detects an inconsistency during database
server operation, an assertion failure is reported to the database server
message log. (See “What Is the Message Log?” on page 29-7.)

Figure 27-1 shows the form that assertion failures take in the message log.

The See Also: line contains one or more of the following filenames:

■ af.xxx

■ shmem.xxx

■ gcore.xxx

■ /pathname/core ♦

In all cases, xxx will be a hexadecimal number common to all files associated
with the assertion failures of a single thread. The files af.xxx, shmem.xxx, and
gcore.xxx are in the directory specified by the ONCONFIG parameter
DUMPDIR.

The file af.xxx contains a copy of the assertion-failure message that was sent
to the message log, as well as the contents of the current, relevant structures
and data buffers.

The file shmem.xxx contains a complete copy of the database server shared
memory at the time of the assertion failure, but only if the ONCONFIG
parameter DUMPSHMEM is set to 1.

On UNIX, gcore.xxx contains a core dump of the database server virtual
process on which the thread was running at the time, but only if the
ONCONFIG parameter DUMPGCORE is set to 1 and your operating system
supports the gcore utility. The core file contains a core dump of the database
server virtual process on which the thread was running at the time, but only
if the ONCONFIG parameter DUMPCORE is set to 1. The pathname for the core
file is the directory from which the database server was last invoked. ♦

Assert Failed: Short description of what failed
Who: Description of user/session/thread running at the time
Result: State of the affected database server entity
Action: What action the database server administrator should take
See Also: file(s) containing additional diagnostics

Figure 27-1
Form of Assertion

Failures in the
Message Log

UNIX

UNIX
What Is Consistency Checking? 27-7

Retain Consistent Level-0 Dbspace
Most of the general assertion-failure messages are followed by additional
information that usually includes the tblspace where the error was detected.
If this information is available, run oncheck -cD on the database or table. If
this check verifies the inconsistency, unload the data from the table, drop the
table, re-create the table, and reload the data. Otherwise, no other action is
needed.

In many cases, the database server stops immediately when an assertion fails.
However, when failures appear to be specific to a table or smaller entity, the
database server continues to run.

When an assertion fails because of inconsistencies on a data page that the
database server accesses on behalf of a user, an error is also sent to the appli-
cation process. The SQL error depends on the operation in progress.
However, the ISAM error will almost always be either -105 or -172, as follows:

-105 ISAM error: bad isam file format
-172 ISAM error: Unexpected internal error

Chapter 36, “Message-Log Messages,” provides additional details about the
objectives and contents of messages.

Retain Consistent Level-0 Dbspace
After you perform the checks described in “Verify Consistency” on page 27-4
without errors, create a level-0 dbspace backup. Retain this dbspace backup
and all subsequent logical-log backup tapes until you complete the next
consistency check. Informix recommends that you perform the consistency
checks before every level-0 dbspace backup. However, if you do not, then at
minimum, keep all the tapes necessary to recover from the dbspace backup
that was created immediately after the database server was verified to be
consistent.
27-8 Administrator’s Guide for Informix Dynamic Server

Dealing with Corruption
Dealing with Corruption
This section describes some of the symptoms of database server system
corruption and actions that the database server or you, as administrator, can
take to resolve the problems. Corruption in a database can occur as a conse-
quence of hardware or operating-system problems, or from some unknown
database server problems. Corruption can affect either data or database
server overhead information.

Symptoms of Corruption
The database server alerts the user and administrator to possible corruption
through the following means:

■ Error messages reported to the application state that pages, tables, or
databases cannot be found. One of the following errors is always
returned to the application if an operation has failed because of an
inconsistency in the underlying data or overhead information:

-105 ISAM error: bad isam file format
-172 ISAM error: Unexpected internal error

■ Assertion-failure reports are written to the database server message
log. They always indicate files that contain additional diagnostic
information that can help you determine the source of the problem.
See “Monitor for Data Inconsistency” on page 27-7.

■ The oncheck utility returns errors.

Run oncheck First
At the first indication of corruption, run oncheck -cI to determine if
corruption exists in the index. If you run oncheck -cI while the database
server is in on-line mode, oncheck detects the corruption but does not
prompt you for repairs. If corruption exists, you can drop and re-create the
indexes using SQL statements while you are in on-line mode (the database
server locks the table and index). If you run oncheck -cI in quiescent mode,
and corruption is detected, oncheck prompts you to confirm whether the
utility should attempt to repair the corruption.
What Is Consistency Checking? 27-9

I/O Errors on a Chunk
If oncheck reports bad key information in an index, drop the index and
re-create it. If oncheck cannot find or access the table or database, perform
the checks described in “Verify Consistency” on page 27-4.

I/O Errors on a Chunk
If an I/O error occurs during the database server operation, the status of the
chunk on which the error occurred changes to down. If a chunk is down, the
onstat -d display shows the chunk status as PD- for a primary chunk and MD-
for a mirrored chunk. A message written to the database server message log
contains the name of the I/O performed and an operating-system error
number that identifies the cause of the I/O error.

If the down chunk is mirrored, the database server continues to operate using
the mirrored chunk. Use operating-system utilities to determine what is
wrong with the down chunk and correct the problem. You must then direct
the database server to restore mirrored chunk data. For information on how
to recover a mirrored chunk, see “Recovering a Mirrored Chunk” on
page 24-11.

If the down chunk is not mirrored and contains logical-log files, the physical
log, or the root dbspace, the database server immediately initiates an abort.
Otherwise, the database server can continue to operate but cannot write to or
read from the down chunk or any other chunks in the dbspace of that chunk.
You must take steps to determine why the I/O error occurred, correct the
problem, and restore the dbspace from a dbspace backup.

If you take the database server to off-line mode when a chunk is marked as
down (D), you can reinitialize the database server, provided that the chunk
marked as down does not contain critical data (logical-log files, the physical
log, or the root dbspace).
27-10 Administrator’s Guide for Informix Dynamic Server

Collecting Diagnostic Information
Collecting Diagnostic Information
Several ONCONFIG parameters affect the way in which the database server
collects diagnostic information. Because an assertion failure is generally an
indication of an unforeseen problem, notify Informix Technical Support
whenever one occurs. The diagnostic information collected is intended for
the use of Informix technical staff. The contents and use of af.xxx files and
shared core are not further documented.

To determine the cause of the problem that triggered the assertion failure, it
is critically important that you not destroy diagnostic information until
Informix Technical Support indicates that you can do so. Send a fax or email
with the af.xxx file to Informix Technical Support. This file often contains
information that they need to resolve the problem.

Several ONCONFIG parameters direct the database server to preserve
diagnostic information whenever an assertion failure is detected or
whenever the database server enters into an abort sequence. The following
ONCONFIG parameters are on UNIX and Windows NT:

■ DUMPDIR page 33-34

■ DUMPSHMEM page 33-35

The following ONCONFIG parameters are on UNIX only:

■ DUMPCNT page 33-32

■ DUMPCORE page 33-33

■ DUMPGCORE page 33-34

♦

You decide whether to set these parameters. Diagnostic output can consume
a large amount of disk space. (The exact content depends on the environment
variables set and your operating system.) The elements of the output could
include a copy of shared memory and a core dump.

Tip: A core dump is an image of a process in memory at the time that the assertion
failed. On some systems, core dumps include a copy of shared memory. Core dumps
are useful only if this is the case.

UNIX
What Is Consistency Checking? 27-11

Collecting Diagnostic Information
Database server administrators with disk-space constraints might prefer to
write a script that detects the presence of diagnostic output in a specified
directory and sends the output to tape. This approach preserves the
diagnostic information and minimizes the amount of disk space used.
27-12 Administrator’s Guide for Informix Dynamic Server

28
Chapter
Situations to Avoid
Situations to Avoid in Administering the Database Server 28-3

28-2 Ad
ministrator’s Guide for Informix Dynamic Server

Occasionally, database server administrators think of a shortcut
that seems like a good idea. Because of the complexity of the database server,
an idea that appears to be an efficient time saver can create problems
elsewhere during operation. This chapter tries to protect you from bad ideas
that sound good.

Your Backup and Restore Guide provides advice on situations to avoid when
using ON-Bar to back up or restore database server data. Your Archive and
Backup Guide provides advice on situations to avoid when you use
ON-Archive or ontape to backup or restore data.

Situations to Avoid in Administering the Database
Server
The following ideas might sound good in theory, but they have unexpected
consequences that could adversely affect your database server performance:

■ Never make changes to the tables in the sysmaster database.

■ Never kill a database server process or thread (virtual processor).
When you kill a database server process, the database server termi-
nates.

■ Limit the number of CPU virtual processors to the number of CPUs
that are in your hardware configuration.

■ Never bring on-line two different types of network services with the
same service name. For information on service names, see “The
sqlhosts File or Registry” on page 4-27.

■ Avoid transactions that span a significant percentage of available
logical-log space. See the descriptions of the LTXHWM and
LTXEHWM parameters in Chapter 33, “Configuration Parameters.”
Situations to Avoid 28-3

Situations to Avoid in Administering the Database Server
■ Do not rely on dbexport (a utility that creates a copy of your database
for migrating) as an alternative to creating routine dbspace
backups. ♦

■ Do not run utilities that send output to tape in background mode.

■ Before you move a chunk from one dbspace or blobspace to another,
perform a level-0 dbspace backup of both spaces (that is, the before
space and the after space). If you do not perform a level-0 dbspace
backup, a potential problem exists if the two spaces involved are
restored in parallel.

■ Do not locate mirrored chunks on the same device as the primary
chunks. Ideally, place the mirrored chunks on devices that are
managed by a different controller than the one that manages the
primary chunks.

UNIX
28-4 Administrator’s Guide for Informix Dynamic Server

 V
II
Monitoring
Se
ct

io
n

29
Chapter
Monitoring the Database Server
Information That You Can Monitor 29-5

Sources of Information for Monitoring the Database Server 29-6
What Is the Message Log? 29-7

Why Read the Message Log? 29-7
Changing the Destination for Message-Log Messages 29-7
Monitoring the Message Log 29-7

Event Alarm . 29-8
What Is the Console? 29-12
Monitoring with ON-Monitor 29-12
Monitoring with SMI Tables 29-12
Monitoring with onstat and oncheck Utilities 29-12
Monitoring with onperf 29-13
Monitoring with the onstat Banner Line 29-13

Monitoring Configuration Information 29-14
Using Command-Line Utilities 29-14
Using ON-Monitor 29-15

Monitoring Checkpoint Information 29-16
Using Command-Line Utilities 29-16
Using ON-Monitor 29-17
Using SMI Tables 29-17

Monitoring Shared Memory. 29-18
Monitoring Shared-Memory Segments. 29-18
Monitoring Shared-Memory Profile 29-19

Using Command-Line Utilities 29-19
Using ON-Monitor 29-19
Using SMI Tables 29-20

29-2 Ad
Monitoring Buffers 29-20
Using Command-Line Utilities 29-20
Using ON-Monitor 29-23
Using SMI Tables 29-23

Monitoring Buffer-Pool Activity 29-23
Using Command-Line Utilities 29-24
Using SMI Tables 29-26

Monitoring Latches 29-27
Using Command-Line Utilities 29-27
Using ON-Monitor 29-28
Using SMI Tables 29-28

Monitoring Locks 29-29
Using Command-Line Utilities 29-29
Using ON-Monitor 29-30
Using SMI Tables 29-31

Monitoring Active Tblspaces 29-32
Using Command-Line Utilities 29-32

Monitoring Virtual Processors 29-33
Using Command-Line Utilities 29-33
Using SMI Tables 29-35

Monitoring Sessions and Threads 29-35
Using Command-Line Utilities 29-35
Using ON-Monitor 29-39
Using SMI Tables 29-39

Monitoring PDQ Resources and Queries 29-40

Monitoring Transactions 29-41
Using Command-Line Utilities 29-41

Monitoring Databases 29-43
Using ON-Monitor 29-43
Using SMI Tables 29-44

Monitoring Logging Activity 29-44
Monitoring Logical-Log Files 29-44

Monitoring the Logical Log for Fullness 29-44
Using Command-Line Utilities 29-45
Using ON-Monitor 29-46
Using SMI Tables 29-47
ministrator’s Guide for Informix Dynamic Server

Monitoring the Physical-Log File 29-47
Using Command-Line Utilities. 29-48
Using ON-Monitor 29-49

Monitoring the Physical-Log and Logical-Log Buffers 29-49
Using Command-Line Utilities. 29-49
Using ON-Monitor 29-51
Using SMI Tables 29-51

Monitoring the Database Server for Disabling I/O Errors 29-52
Using the Message Log to Monitor Disabling I/O Errors 29-52
Using Event Alarms to Monitor Disabling I/O Errors 29-53

Monitoring Disk Usage 29-53
Monitoring Chunks 29-53

Using Command-Line Utilities. 29-54
Using ON-Monitor 29-58
Using SMI Tables 29-59

Monitoring Tblspaces and Extents 29-60
Using Command-Line Utilities. 29-60
Using SMI Tables 29-62
Using System Catalog Tables 29-63

Monitoring TEXT and BYTE Data in a Blobspace 29-63
Using Command-Line Utilities. 29-63
Using ON-Monitor 29-68

Monitoring TEXT and BYTE Data in a Dbspace 29-69
Using Command-Line Utilities. 29-69

Monitoring High-Availability Data-Replication Status 29-71
Using Command-Line Utilities. 29-71
Using ON-Monitor 29-73
Using SMI Tables 29-73
Monitoring the Database Server 29-3

29-4 Ad
ministrator’s Guide for Informix Dynamic Server

The first part of this chapter describes the types of information that
you can monitor and the sources for that information within the database
server. It also describes how to monitor the database server. For additional
information about monitoring database server performance, see your
Performance Guide.

Information That You Can Monitor
You can monitor the following types of information:

■ Database server configuration information

■ Checkpoint information

■ Shared-memory information

❑ Shared-memory segments

❑ Shared-memory profile

❑ Buffers

❑ Latches

❑ Locks

■ Active tblspaces

■ Virtual processors

■ Sessions and threads

■ Transactions

■ Parallel database query (PDQ) resources and queries

■ Databases
Monitoring the Database Server 29-5

Sources of Information for Monitoring the Database Server
■ Logging activity

❑ Logical-log files

❑ Physical-log file

❑ Physical-log and logical-log buffers

❑ Log backup status

■ Disk usage

❑ Chunks

❑ Tblspaces and extents

❑ TEXT or BYTE data in a blobspace

❑ TEXT or BYTE data in a dbspace

■ High-availability data-replication information

Sources of Information for Monitoring the Database
Server
You can use the following sources to gather information about database
server activity:

■ The message log

■ The event alarm

■ The system console

■ ON-Monitor ♦
■ SMI tables

■ The onstat and oncheck utilities

■ The onperf utility

Each of these topics is explained in the sections that follow.

UNIX
29-6 Administrator’s Guide for Informix Dynamic Server

What Is the Message Log?
What Is the Message Log?
The database server message log is an operating-system file. The messages
contained in the database server message log do not usually require
immediate action. To report situations that require your immediate attention,
the database server uses the event-alarm feature. See “Event Alarm” on
page 29-8. To specify the message-log pathname, set the MSGPATH configu-
ration parameter. For more information, see “MSGPATH” on page 33-55.

Why Read the Message Log?

Informix recommends that you monitor the message log once or twice a day
to ensure that processing is proceeding normally. Informix has documented
the messages to provide you with as much information as possible about
database server processing. The messages are listed in Chapter 36, “Message-
Log Messages.”

If the database server experiences a failure, the message log serves as an audit
trail for retracing the events that develop later into an unanticipated problem.
Often the database server provides the exact nature of the problem and the
suggested corrective action in the message log.

You can read the database server message log for a minute-by-minute
account of database server processing in order to catch events before a
problem develops. However, Informix does not expect you to do this kind of
monitoring.

Changing the Destination for Message-Log Messages

You can change the value of MSGPATH while the database server is in on-line
mode, but the changes do not take effect until you reinitialize shared
memory.

Monitoring the Message Log

Monitor the message log periodically to verify that the database server
operations are proceeding normally and that events are being logged as
expected. Use the onstat -m command to obtain the name of the message log
and the 20 most-recent entries. Use a text editor to read the complete message
log.
Monitoring the Database Server 29-7

Event Alarm
Monitor the message-log size as well because the database server appends
new entries to this file. Edit the log as needed, or back it up to tape and delete
it.

Event Alarm
The database server provides a mechanism for automatically triggering
administrative actions based on an event that occurs in the database server
environment. This mechanism is the event-alarm feature.

To use the event-alarm feature, set the ALARMPROGRAM configuration
parameter to the full pathname of an executable file that performs the
necessary administrative actions. You must provide this executable file. It can
be a shell script or binary program. When any of the events in a predefined
set occur, the database server invokes this executable and passes it the
following parameters (the executable file must be written to accept these
parameters).

Some of the events that the database server reports to the message log cause
it to invoke the alarm program. The class messages listed in Figure 29-2 on
page 29-10 indicate the events that the database server reports.

For example, if a thread attempts to acquire a lock, but the maximum number
of locks specified by LOCKS has already been reached, the database server
writes the following message to the message log:

10:37:22 Checkpoint Completed: duration was 0 seconds.
10:51:08 Lock table overflow - user id 30032, rstcb 10132264
10:51:10 Lock table overflow - user id 30032, rstcb 10132264
10:51:12 Checkpoint Completed: duration was 1 seconds.

Parameter Data Type

Event severity (see Figure 29-1 for values) integer

Event class ID (see Figure 29-2 for values) integer

Event class msg (see Figure 29-2 for values) string

Event specific msg string

Event see also file string
29-8 Administrator’s Guide for Informix Dynamic Server

Event Alarm
If you set ALARMPROGRAM to the pathname of an alarm program, the
database server passes the following arguments to your alarm program:

3
21
Dynamic Server resource overflow: 'Locks'.
Lock table overflow - user id 30032, rstcb 10132264

In this example, the database server does not pass a see also file value.

Event Severity

The first parameter passed to the alarm program is the event-severity code.
All events reported to the message log have one of the severity codes listed
in Figure 29-1. Message log events that have severity 1 do not cause the
database server to invoke the alarm program.

Figure 29-1
Event-Severity Codes

Severity Description

1 Not noteworthy. The event is not reported to the alarm program (for
example, date change in the message log).

2 Information. No error has occurred, but some routine event completed
successfully (for example, checkpoint or log backup completes).

3 Attention. This event does not compromise data or prevent the use of the
system; however, it warrants attention (for example, one chunk of a
mirrored pair goes down).

4 Emergency. Something unexpected occurred that might compromise
data or access to data (assertion failure, or oncheck reports data corrupt).
Take action immediately.

5 Fatal. Something unexpected occurred and caused the database server to
fail.
Monitoring the Database Server 29-9

Event Alarm
Event Class ID

An event class ID is an integer that the database server substitutes as the
second parameter in your alarm program. Each event class ID is associated
with one of the events that causes the database server to run your alarm
program. These class IDs are listed in the first column of the table in
Figure 29-2.

Class Message

A class message is the text of the message that the database server substitutes
for the third parameter of your alarm program when an event causes the
database server to run your alarm program. The class messages are listed in
Figure 29-2.

Figure 29-2
Class-ID and Class-Message Values

Class ID Class Message

1 Table failure: ‘%s’ (dbsname:”owner”.tabname)

2 Index failure: ‘%s’ (dbsname:”owner”.tabname-idxname)

3 Blob failure: ‘%s’ (dbsname:”owner”.tabname)

4 Chunk is off-line, mirror is active: %ld (chunk number)

5 DBSpace is off-line: ‘%s’ (dbspace name)

6 Internal Subsystem failure: ‘%s’

7 Database server initialization failure

8 Physical Restore failed

9 Physical Recovery failed

10 Logical Recovery failed

11 Cannot open Chunk: ‘%s’ (pathname)

12 Cannot open Dbspace: ‘%s’ (dbspace name)

13 Performance Improvement possible

(1 of 2)
29-10 Administrator’s Guide for Informix Dynamic Server

Event Alarm
Specific Messages

The database server substitutes additional information for the fourth
parameter of your alarm program. In general, the text of this message is that
of the message written to the message log for the event.

See Also Paths

For some events, the database server writes additional information to a file
when the event occurs. The pathname in this context refers to the pathname
of the file where the database server writes the additional information.

14 Database failure. ‘%s’ (database name)

15 High-availability data-replication failure

16 Archive completed: ‘%s’ (dbspace list)

17 Archive aborted: ‘%s’ (dbspace list)

18 Log Backup completed: %ld (log number)

19 Log Backup aborted: %ld (log number)

20 Logical Logs are full -- Backup is needed

21 Database server resource overflow: ‘%s’ (resource name)

22 Long Transaction detected

23 Logical Log ‘%ld’ (number) Complete

24 Unable to Allocate Memory

Class ID Class Message

(2 of 2)
Monitoring the Database Server 29-11

What Is the Console?
What Is the Console?
The database server sends messages that are useful to the database server
administrator by way of the system console. To specify the destination
pathname of console messages, set the CONSOLE configuration parameter.
For more information, see “CONSOLE” on page 33-15.

You can change the value of CONSOLE while the database server is in on-line
mode, but the changes do not take effect until you reinitialize shared
memory.

Monitoring with ON-Monitor
ON-Monitor provides a simple way to monitor many aspects of the database
server. Most of the monitoring functions are available under the Status menu.
See Chapter 32, “ON-Monitor for UNIX.”

Monitoring with SMI Tables
The system-monitoring interface (SMI) tables are special tables managed by the
database server that contain dynamic information about the state of the
database server. You can use SELECT statements against them to determine
almost anything you might want to know about your database server. For a
description of the tables, see “Using the System-Monitoring Interface” on
page 34-5.

Monitoring with onstat and oncheck Utilities
The onstat and oncheck utilities provide a way to monitor database server
information from the command line.

You can compare the display options of oncheck to onstat. The onstat utility
reads data from shared memory and reports statistics that are accurate for the
instant during which the command executes. That is, onstat describes infor-
mation that changes dynamically during processing, such as buffers, locks,
and users. The oncheck utility tends to display mostly configuration and
disk-usage information that resides on disk and changes less frequently.

UNIX
29-12 Administrator’s Guide for Informix Dynamic Server

Monitoring with onperf
Monitoring with onperf
The database server includes a graphical monitoring tool called onperf. This
tool can monitor most of the metrics that onstat provides. It has the following
advantages over onstat:

■ It displays the values of the metrics graphically in real time.

■ It lets you choose which metrics to monitor.

■ It saves recent-history metrics data to a buffer in memory. This data
is available if you want to analyze a recent trend.

■ It can save performance data to a file.

For more information on the onperf tool, see your Performance Guide.

Monitoring with the onstat Banner Line
Whenever the database server is blocked, onstat displays the following line
after the banner line:

Blocked: reason

The metavariable reason can take one of the following values.

Reason Description

CKPT Checkpoint

LONGTX Long transaction

ARCHIVE Ongoing archive

MEDIA_FAILURE Media failure

HANG_SYSTEM Database server failure

DBS_DROP Dropping a dbspace

DDR Discrete high-availability data replication

LBU Logs full high-water mark
Monitoring the Database Server 29-13

Monitoring Configuration Information
For an example of what onstat displays when the database server is blocked
to preserve logical-log space for administrative tasks, see “Monitoring the
Logical Log for Fullness” on page 29-44.

Monitoring Configuration Information
One of the tasks of the database server administrator is to keep records of the
configuration. Methods of obtaining the configuration are described here.

Using Command-Line Utilities

Use the following utilities to monitor configuration information.

onstat -c

Execute onstat -c to display a copy of the ONCONFIG file. For information
about this file, see Chapter 33, “Configuration Parameters.”

Changes to the ONCONFIG file do not take effect until you reinitialize shared
memory. If you change a configuration parameter but do not reinitialize
shared memory, the effective configuration differs from what the onstat -c
option displays.

If you do not set the ONCONFIG environment variable, the database server
displays the contents of the INFORMIXDIR file.
29-14 Administrator’s Guide for Informix Dynamic Server

Monitoring Configuration Information
oncheck -pr

Execute oncheck -pr to obtain the configuration information that the
database server stores in the PAGE_CONFIG reserved page. The reserved page
contains a description of the current, effective configuration. An example is
shown in Figure 29-3. If you change the configuration parameters from the
command line and run oncheck -pr before you reinitialize shared memory,
oncheck discovers that values in the configuration file do not match the
current values in the reserved pages and returns a warning message.

Using ON-Monitor

Select Status➞Configuration. This option creates a copy of the current,
effective configuration and stores it in the directory and file that you specify.
If you specify only a filename, the database server stores the file in the current
working directory.

If you modify the configuration parameters but have not yet reinitialized
shared memory, the effective parameters might be different than the param-
eters that are in the ONCONFIG file.

...

Validating Informix Dynamic Server reserved pages - PAGE_CONFIG
ROOTNAME rootdbs
ROOTPATH /home/dyn_srv/root_chunk
ROOTOFFSET 0
ROOTSIZE 8000
MIRROR 0
MIRRORPATH
MIRROROFFSET 0
PHYSDBS rootdbs
PHYSFILE 1000
LOGFILES 5
LOGSIZE 500
MSGPATH /home/dyn_srv/online.log
CONSOLE /dev/ttyp5
.

Figure 29-3
oncheck -pr

PAGE_CONFIG
Output

UNIX
Monitoring the Database Server 29-15

Monitoring Checkpoint Information
Monitoring Checkpoint Information
Monitor checkpoint activity to determine basic checkpoint information. This
information includes the number of times that threads had to wait for the
checkpoint to complete. This information is useful for determining if the
checkpoint interval is appropriate. For information on tuning the checkpoint
interval, see your Performance Guide.

Using Command-Line Utilities

You can use the following command-line utilities to obtain checkpoint
information.

onstat -m

Execute onstat -m to view the last 20 entries in the message log. If a check-
point record does not appear in the last 20 entries, read the message log
directly with a text editor. The database server writes individual checkpoint
records to the log when the checkpoint ends. If a checkpoint check occurs, but
the database server has no pages to write to disk, the database server does not
write any records to the message log.

onstat -p

Execute onstat -p to obtain these checkpoint statistics:

■ Number of checkpoints that occurred since the database server was
brought on-line (numckpts)

■ Number of times that a user thread waits for a checkpoint to finish
(ckpwaits)

The database server prevents a user thread from entering a critical
section during a checkpoint.
29-16 Administrator’s Guide for Informix Dynamic Server

Monitoring Checkpoint Information
Using ON-Monitor

You can use the following ON-Monitor options to monitor checkpoint
information.

Profile Option

Select Status➞Profile. This option displays the Checkpoints and Check
Waits fields described earlier under onstat -p.

Force-Ckpt Option

Select the Force-Ckpt menu. The screen shown in Figure 29-4 is displayed.

A checkpoint check occurs if the time specified by the CKPTINTVL configu-
ration parameter has elapsed since the last checkpoint. If no modifications
have been made since the time of the last checkpoint, the database server
does not perform a checkpoint; that is, the database server does not flush the
physical-log buffers to disk. The time in the Last Checkpoint Done field does
not change until a checkpoint occurs.

Using SMI Tables

The sysprofile table provides the same checkpoint statistics that are available
from the following sources:

■ onstat -p command

■ Profile option in ON-Monitor ♦

UNIX

Do you want to force a checkpoint? (y/n)

Last checkpoint done : Fri Jul 29 09:34:33 1995
Last checkpoint check : Fri Jul 29 13:16:50 1995

Figure 29-4
ON-Monitor

Force-Ckpt Screen

UNIX
Monitoring the Database Server 29-17

Monitoring Shared Memory
The sysprofile table contains two columns, name and value. The name
column contains the statistic name, and the value column contains the
statistic value. These rows contain the following checkpoint information:

Monitoring Shared Memory
This section describes how to monitor shared-memory segments, the shared-
memory profile, and the use of specific shared-memory resources (buffers,
latches, and locks).

You can using the onstat -o utility to capture a static snapshot of database
server shared memory for later analysis and comparison.

Monitoring Shared-Memory Segments
Monitor the shared-memory segments to determine the number and size of
the segments that the database server creates. The database server allocates
shared-memory segments dynamically, so these numbers can change. If the
database server is allocating too many shared-memory segments, you can
increase the SHMVIRTSIZE configuration parameter. For more information,
see “SHMVIRTSIZE” on page 33-83.

The onstat -g seg command lists information for each shared-memory
segment, including the address and size of the segment. Example output is
shown in Figure 29-5.

numckpts is the number of checkpoints that have occurred since the
database server was brought on-line.

ckptwts is the number of times that threads waited for a checkpoint to
finish to enter a critical section during a checkpoint.

RSAM Version 7.30.UC1 -- On-Line -- Up 01:45:34 -- 4600 Kbytes

Segment Summary:
 (resident segments are not locked)
id key addr size ovhd class blkused blkfree
300 1381386241 400000 614400 800 R 71 4
301 1381386242 496000 4096000 644 V 322 178

Figure 29-5
onstat -g seg Output
29-18 Administrator’s Guide for Informix Dynamic Server

Monitoring Shared-Memory Profile
Monitoring Shared-Memory Profile
Monitor the database server profile to analyze performance and the use of
shared-memory resources. The Profile screen maintains cumulative statistics
on shared-memory use. To reset these statistics to zero, use the onstat -z
option.

Using Command-Line Utilities

Execute onstat -p to display statistics on database server activity. These
statistics are shown in Figure 29-6.

The onstat -p output contains several fields that are not included in the infor-
mation that the ON-Monitor Profile option displays. For a description of all
the fields displayed by this option, see “-p Option” on page 35-84.

Using ON-Monitor

Select Status➞Profile. The screen displays shared-memory statistics, as well
as the current operating mode, the boot time, and the current time.

The field labels on the ON-Monitor Profile screen are easier to understand
and are arranged in a slightly different order than the fields that appear if you
execute onstat -p. However, all these statistics are included in the onstat -p
output.

RSAM Version 7.30.UC1 -- On-Line -- Up 00:41:04 -- 8920 Kbytes

Profile
dskreads pagreads bufreads %cached dskwrits pagwrits bufwrits %cached
382 400 14438 97.35 381 568 3509 89.14

isamtot open start read write rewrite delete commit rollbk
9463 1078 1584 2316 909 162 27 183 1

ovlock ovuserthread ovbuff usercpu syscpu numckpts flushes
0 0 0 13.55 13.02 5 18

bufwaits lokwaits lockreqs deadlks dltouts ckpwaits compress seqscans
14 0 16143 0 0 0 101 68

ixda-RA idx-RA da-RA RA-pgsused lchwaits
5 0 204 148 12

Figure 29-6
onstat -p Output

UNIX
Monitoring the Database Server 29-19

Monitoring Buffers
Using SMI Tables

Query the sysprofile table to obtain shared-memory statistics. This table
contains all of the statistics available in onstat -p except the ovbuff, usercpu,
and syscpu statistics.

Monitoring Buffers
You can obtain both statistics on buffer use and information on specific
buffers.

The statistical information includes the percentage of data writes that are
cached to buffers and the number of times that threads had to wait to obtain
a buffer. The percentage of writes cached is an important measure of perfor-
mance. (For information on how to use this statistic to tune the database
server, see your Performance Guide.) The number of waits for buffers gives a
measure of system concurrency.

Information on specific buffers includes a listing of all the buffers in shared
memory that are held by a thread. This information allows you to track the
status of a particular buffer. For example, you can determine if another thread
is waiting for the buffer.

Using Command-Line Utilities

You can use the following command-line utilities to monitor buffers:

■ onstat -p

■ onstat -B

■ onstat -b

■ onstat -X

onstat -p

Execute onstat -p to obtain statistics about cached reads and writes. The
following caching statistics appear in four fields on the top row of the output
display:

■ The number of reads from shared-memory buffers (bufreads)

■ The percentage of reads cached (%cached)
29-20 Administrator’s Guide for Informix Dynamic Server

Monitoring Buffers
■ The number of writes to shared memory (bufwrits)

■ The percentage of writes cached (%cached)

Figure 29-7 shows these fields.

The number of reads or writes can appear as a negative number if the number
of occurrences exceeds 232.

The onstat -p option also displays a statistic (bufwaits) that indicates the
number of times that sessions had to wait for a buffer.

onstat -B

Execute onstat -B to obtain the following buffer information:

■ Address of every regular shared-memory buffer

■ Page numbers for all pages that remain in shared memory

■ Address of the thread that currently holds the buffer

■ Address of the first thread that is waiting for each buffer

An example of onstat -B output is shown in Figure 29-8.

RSAM Version 7.30.UC1 -- On-Line -- Up 00:41:04 -- 8920 Kbytes

Profile
dskreads pagreads bufreads %cached dskwrits pagwrits bufwrits %cached
382 400 14438 97.35 381 568 3509 89.14
...

Figure 29-7
Cached Read and
Write Statistics in

the onstat -p Output

RSAM Version 7.30.UC1 -- On-Line -- Up 01:21:46 -- 8920 Kbytes

Buffers
address userthread flgs pagenum memaddr nslots pgflgs xflgs owner waitlist
849ae8 0 86 100955 84e000 1 b0 0 0 0
849b40 0 6 10095b 84e800 0 4 0 0 0
849b98 0 6 1009eb 84f000 0 4 0 0 0
849bf0 0 6 1008f5 84f800 2 70 0 0 0
...

84dea0 0 86 10093e 8b0800 8 1 0 0 0
84def8 0 6 10094b 8b1000 0 4 0 0 0
84df50 0 86 1009cd 8b1800 9 b0 0 0 0
0 modified, 200 total, 256 hash buckets, 2048 buffer size

Figure 29-8
onstat -B Output
Monitoring the Database Server 29-21

Monitoring Buffers
onstat -b

Execute onstat -b to obtain the following information about each buffer:

■ Address of each buffer currently held by a thread

■ Page numbers for the page held in the buffer

■ Type of page held in the buffer (for example, data page, tblspace
page, and so on)

■ Type of lock placed on the buffer (exclusive or shared)

■ Address of the thread that is currently holding the buffer

■ Address of the first thread that is waiting for each buffer

You can compare the addresses of the user threads to the addresses that
appear in the onstat -u display to obtain the session ID number. Example
output is shown in Figure 29-9. For more information on the fields displayed
by this option, see “-b Option” on page 35-70.

onstat -X

Execute onstat -X to obtain the same information as onstat -b, along with the
complete list of all threads that are waiting for buffers, not just the first waiting
thread.

RSAM Version 7.30.UC1 -- On-Line -- Up 01:12:23 -- 8920 Kbytes

Buffers
address userthread flgs pagenum memaddr nslots pgflgs xflgs owner waitlist
84a748 0 27 1012b0 860000 19 2001 80 8067c4 0
84add0 0 0 101752 869800 19 2001 80 807890 0
84b2a0 0 27 100c31 870800 19 2001 80 8067c4 0
84c798 0 27 10108e 88f000 19 2001 80 8067c4 0
84d818 0 27 101272 8a7000 19 2001 80 8067c4 0
154 modified, 200 total, 256 hash buckets, 2048 buffer size

Figure 29-9
onstat -b Output
29-22 Administrator’s Guide for Informix Dynamic Server

Monitoring Buffer-Pool Activity
Using ON-Monitor

To access the fields mentioned on page 29-20 for onstat -p (bufreads,
%cached, bufwrits, %cached), select Status➞Profile. The output is shown in
Figure 29-10.

Using SMI Tables

Query the sysprofile table to obtain statistics on cached reads and writes and
total buffer waits. The following rows are relevant.

Monitoring Buffer-Pool Activity
You can obtain statistics that relate to buffer availability as well as
information on the buffers in each LRU queue.

The statistical information includes the number of times that the database
server attempted to exceed the maximum number of buffers and the number
of writes to disk (categorized by the event that caused the buffers to flush).
These statistics help you determine if the number of buffers is appropriate.
For information on tuning database server buffers, see your Performance
Guide.

UNIX

RSAM Version 7.30.UC1 -- On-Line -- Up 00:33:33 -- 8456 Kbytes
...

Disk Reads Buff. Reads %Cached Disk Writes Buff. Writes %Cached
 177 330 46.36 4 0 0.00
...

Figure 29-10
Cached Read and
Write Statistics in

the Profile Option of
the ON-Monitor

Status Menu

Row Description

dskreads Number of reads from disk

bufreads Number of reads from buffers

dskwrites Number of writes to disk

bufwrites Number of writes to buffers

buffwts Number of times that any thread had to wait for a buffer
Monitoring the Database Server 29-23

Monitoring Buffer-Pool Activity
Information on the buffers in each LRU queue consists of the length of the
queue and the percentage of the buffers in the queue that have been
modified.

Using Command-Line Utilities

You can use the following command-line utilities to obtain information on
buffer-pool activity.

onstat -p

The onstat -p output contains a statistic (ovbuff) that indicates the number of
times the database server attempted to exceed the maximum number of
shared buffers specified by the BUFFERS parameter in the ONCONFIG file.
Figure 29-11 shows onstat -p output, including the ovbuff field.

onstat -F

Execute onstat -F to obtain a count of the writes performed by write type.
(For an explanation of the different write types, see “How Write Types
Describe Flushing Activity” on page 11-51.) An example of the output is
shown in Figure 29-12 on page 29-25. This information tells you when and
how the buffers are flushed.

The onstat -F command displays totals for the following write types:

■ Foreground write

■ LRU write

■ Chunk write

RSAM Version 7.30.UC1 -- On-Line -- Up 00:41:04 -- 8920 Kbytes
...

ovtbls ovlock ovuserthread ovbuff usercpu syscpu numckpts flushes
0 0 0 0 13.55 13.02 5 18
...

Figure 29-11
onstat -p Output
Showing ovbuff

Field
29-24 Administrator’s Guide for Informix Dynamic Server

Monitoring Buffer-Pool Activity
The onstat -F command also lists the following information about the page
cleaners:

■ Page-cleaner number

■ Page-cleaner shared-memory address

■ Current state of the page cleaner

■ LRU queue to which the page cleaner was assigned

An example of the onstat -F output is shown in Figure 29-12. For more
information on the onstat -F fields, see “-F Option” on page 35-75.

onstat -R

Execute onstat -R to obtain information about the number of buffers in each
LRU queue and the number and percentage of the buffers that are modified
or free. (For more information on this option, see “-R Option” on page 35-87.)
Figure 29-13 shows an example of onstat -R output.

RSAM Version 7.30.UC1 -- On-Line -- Up 01:43:35 -- 8920 Kbytes

Fg Writes LRU Writes Chunk Writes
0 146 140

address flusher state data
8067c4 0 I 0 = 0X0

states: Exit Idle Chunk Lru

Figure 29-12
onstat -F Output
Monitoring the Database Server 29-25

Monitoring Buffer-Pool Activity
Using SMI Tables

Query the sysprofile table to obtain the statistics on write types that are held
in the following rows.

RSAM Version 7.30.UC1 -- On-Line -- Up 00:29:42 -- 4584 Kbytes

8 buffer LRU queue pairs
f/m length % of pair total
 0 f 3 37.5% 8
 1 m 5 55.6%
 2 f 5 45.5% 11
 3 m 6 54.5%
 4 f 2 18.2% 11
 5 m 9 81.8%
 6 f 5 50.0% 10
 7 m 5 55.6%
 8 F 5 50.0% 10
 9 m 5 45.5%
10 f 0 0.0% 10
11 m 10 100.0%
12 f 1 11.1% 9
13 m 8 88.9%
14 f 2 28.6% 7
15 m 5 71.4%
53 dirty, 76 queued, 80 total, 128 hash buckets, 2048 buffer size
start clean at 60% (of pair total) dirty, or 6 buffs dirty, stop at 50%

Figure 29-13
onstat -R Output

Row Description

fgwrites Number of foreground writes

lruwrites Number of LRU writes

chunkwrites Number of chunk writes
29-26 Administrator’s Guide for Informix Dynamic Server

Monitoring Latches
Monitoring Latches
You can obtain statistics on latch use and information on specific latches.

The statistics include the number of requests for latches and the number of
times that threads had to wait to obtain a latch. These statistics give you a
measure of the system activity.

Information on specific latches includes a listing of all the latches that are
held by a thread and any threads that are waiting for latches. This
information allows you to locate any specific resource contentions that exist.

Using Command-Line Utilities

You can use the following command-line utilities to obtain information about
latches.

onstat -p

Execute onstat -p to obtain the values in the fields lchreqs and lchwaits.
These fields store the number of requests for a latch and the number of times
that a thread was required to wait for a shared-memory latch. A large number
of latch waits typically results from a high volume of processing activity in
which the database server is logging most of the transactions. (The adminis-
trator cannot configure or tune the number of latches; the database server sets
this function internally.) Figure 29-14 shows onstat -p output, including the
lchreqs and lchwaits fields.

RSAM Version 7.30.UC1 -- On-Line -- Up 00:41:04 -- 8920 Kbytes
...

ixda-RA idx-RA da-RA RA-pgsused lchreqs lchwaits
5 0 204 148 151762 12

Figure 29-14
onstat -p Output

Showing lchwaits
Field
Monitoring the Database Server 29-27

Monitoring Latches
onstat -s

Execute onstat -s to obtain general latch information. The output includes the
userthread column, which lists the address of any user thread that is waiting
for a latch. (See Figure 29-15.) You can compare this address with the user
addresses in the onstat -u output to obtain the user-process identification
number.

Warning: Never kill a database server process that is holding a latch. If you do, the
database server immediately initiates an abort.

Using ON-Monitor

To access the latch Waits field, mentioned on page 29-27 for onstat -p, select
Status➞Profile.

Using SMI Tables

Query the sysprofile table to obtain the number of requests for a latch and the
number of times a thread had to wait for a latch. The following rows are
relevant.

RSAM Version 7.30.UC1 -- On-Line -- Up 00:13:47 -- 4664 Kbytes

Latches with lock or userthread set
name address lock wait userthread
LRU1 402e90 0 0 6b29d8
bf[34] 4467c0 0 0 6b29d8

Figure 29-15
onstat -s Output

Row Description

latchreqs Number of requests for a latch

latchwts Number of times that a thread had to wait for a latch

UNIX
29-28 Administrator’s Guide for Informix Dynamic Server

Monitoring Locks
Monitoring Locks
You can obtain profile statistics on lock use and information on specific locks.

The statistics include the number of times that threads attempted to exceed
the maximum number of locks, the number of times that threads had to wait
for a lock, and the number of times that threads requested a lock. This infor-
mation indicates whether the number of locks is appropriate and provides a
measure of the database server concurrency.

Information on specific locks includes a listing of the locks that are held by a
thread. This information allows you to locate a source of contention.

Using Command-Line Utilities

onstat -p

The onstat -p option displays the following three lock statistics:

■ The number of times that sessions attempted to exceed the
maximum number of locks specified by the LOCKS parameter
(ovlock)

■ The number of times that sessions had to wait for a lock (lokwaits)

■ The number of times that sessions requested a lock (lockreqs)

Figure 29-16 shows lock statistics.

RSAM Version 7.30.UC1 -- On-Line -- Up 00:27:06 -- 9430 Kbytes
...

ovtbls ovlock ovuserthread ovbuff usercpu syscpu numckpts flushes
0 0 0 0 13.55 13.02 5 18

bufwaits lokwaits lockreqs deadlks dltouts ckpwaits compress seqscans
14 0 16143 0 0 0 101 68
...

Figure 29-16
onstat -p Output

Showing Lock
Statistics
Monitoring the Database Server 29-29

Monitoring Locks
onstat -k

The onstat -k option displays information about active locks. The following
information is displayed:

■ The user session that owns the lock (owner)

■ The type of the lock (type)

■ The scope of the lock (rowid)

You can determine the type of the lock from the flags in the type column. For
example, a shared lock has an S flag displayed. You can determine the scope
of the lock from the value in the rowid column. For example, a zero in this
column always indicates a table lock. (For more information on the fields
displayed, see page 35-79.) An example of the output displayed by this
option is shown in Figure 29-17.

Using ON-Monitor

To monitor the same three lock statistics that are mentioned on page 29-29 for
the onstat -p option, select Status➞Profile.

RSAM Version 7.30.UC1 -- On-Line -- Up 00:27:37 -- 8920 Kbytes

Locks
address wtlist owner lklist type tblsnum rowid key#/bsiz
8109e0 0 809d84 0 HDR+S 100002 203 0
810a08 0 809a28 0 S 100002 203 0
810a30 0 8096cc 0 S 100002 203 0
...

810c10 0 8096cc 810a30 IX 10006a 0 0
810c38 0 808cb8 810aa8 HDR+IX 10006a 0 0
810c88 0 809014 810bc0 HDR+U 10006a 33e04 0
15 active, 2000 total, 128 hash buckets

Figure 29-17
onstat -k Output

UNIX
29-30 Administrator’s Guide for Informix Dynamic Server

Monitoring Locks
Using SMI Tables

Query the sysprofile table to obtain statistics on lock use. The following rows
contain the relevant statistics.

Query the syslocks table to obtain information on each active lock. The
syslocks table contains the following columns.

Row Description

ovlock Number of times that sessions attempted to exceed the maximum
number of locks

lockreqs Number of times that sessions requested a lock

lockwts Number of times that sessions had to wait for a lock

Column Description

dbsname Database on which the lock is held

tabname Name of the table on which the lock is held

rowidlk ID of the row on which the lock is held (0 means table lock)

keynum The keynum for the row

type Type of lock

owner Session ID of the lock owner

waiter Session ID of the first waiter on the lock
Monitoring the Database Server 29-31

Monitoring Active Tblspaces
Monitoring Active Tblspaces
Monitor tblspaces to determine which tables are active. Active tables are
those that are currently open to a thread.

Using Command-Line Utilities

The onstat -t output includes the tblspace number and the following four
fields.

If a specific operation needs more pages than are available (npages minus
nused), a new extent is required. If enough space is available in this chunk,
the database server allocates the extent here; if not, the database server looks
for space in other available chunks. If none of the chunks contains adequate
contiguous space, the database server uses the largest block of contiguous
space that it can find in the dbspace. An example of the output from this
option is shown in Figure 29-18.

Field Description

npages Pages allocated to the tblspace

nused Pages used from this allocated pool

nextns Number of extents used

npdata Number of data pages used

RSAM Version 7.30.UC1 -- On-Line -- Up 00:20:00 -- 4584 Kbytes

Tblspaces
 n address flgs ucnt tblnum physaddr npages nused npdata nrows nextns
 0 422528 1 1 100001 10000e 150 124 0 0 3
 1 422640 1 1 200001 200004 50 36 0 0 1
54 426038 1 6 100035 1008ac 3650 3631 3158 60000 3
62 4268f8 1 6 100034 1008ab 8 6 4 60 1
63 426a10 3 6 100036 1008ad 368 365 19 612 3
64 426b28 1 6 100033 1008aa 8 3 1 6 1
193 42f840 1 6 10001b 100028 8 5 2 30 1
 7 active, 200 total, 64 hash buckets

Figure 29-18
onstat -t Output
29-32 Administrator’s Guide for Informix Dynamic Server

Monitoring Virtual Processors
Monitoring Virtual Processors
Monitor the virtual processors to determine if the number of virtual
processors configured for the database server is optimal for the current level
of activity.

Using Command-Line Utilities

You can use the following command-line utilities to monitor virtual
processors.

onstat -g glo

This command displays information about each virtual processor that is
currently running, as well as cumulative statistics for each virtual processor
class. An example of the output from this option is shown in Figure 29-19.

RSAM Version 7.30.UC1 -- On-Line -- Up 02:27:42 -- 4664 Kbytes

MT global info:
sessions threads vps lngspins
1 15 8 0

Virtual processor summary:
class vps usercpu syscpu total
cpu 3 479.77 190.42 670.18
aio 1 0.83 0.23 1.07
pio 1 0.42 0.10 0.52
lio 1 0.27 0.22 0.48
soc 0 0.00 0.00 0.00
tli 0 0.00 0.00 0.00
shm 0 0.00 0.00 0.00
adm 1 0.10 0.45 0.55
opt 0 0.00 0.00 0.00
msc 1 0.28 0.52 0.80
adt 0 0.00 0.00 0.00
total 8 481.67 191.93 673.60

Individual virtual processors:
vp pid class usercpu syscpu total
1 1776 cpu 165.18 40.50 205.68
2 1777 adm 0.10 0.45 0.55
3 1778 cpu 157.83 98.68 256.52
4 1779 cpu 156.75 51.23 207.98
5 1780 lio 0.27 0.22 0.48
6 1781 pio 0.42 0.10 0.52
7 1782 aio 0.83 0.23 1.07
8 1783 msc 0.28 0.52 0.80

tot 481.67 191.93 673.60

Figure 29-19
onstat -g glo Output
Monitoring the Database Server 29-33

Monitoring Virtual Processors
onstat -g ioq

Use the onstat -g ioq option to determine whether you need to allocate
additional AIO virtual processors. The command onstat -g ioq displays the
length of the I/O queues under the column len, as shown in Figure 29-20.

If the length of the I/O queue is growing, I/O requests are accumulating
faster than the AIO virtual processors can process them. If the length of the
I/O queue continues to show that I/O requests are accumulating, consider
adding AIO virtual processors.

onstat -g rea

Use the onstat -g rea option to monitor the number of threads in the ready
queue. If the number of threads in the ready queue is growing for a class of
virtual processors (for example, the CPU class), you might have to add more
of those virtual processors to your configuration. Figure 29-21 displays
onstat -g rea output.

RSAM Version 7.30.UC1 -- On-Line -- Up 01:57:59 -- 4584 Kbytes

AIO I/O queues:
class/hvp-id len maxlen totalops dskread dskwrite dskcopy
 kio 0 0 68 18940 14081 4859 0
 kio 1 0 62 18906 13167 5739 0
 kio 2 0 50 18632 13659 4973 0
 msc 0 0 1 55 0 0 0
 aio 0 0 1 45 45 0 0
 pio 0 0 0 0 0 0 0
 lio 0 0 0 0 0 0 0

Figure 29-20
onstat -g ioq Output

RSAM Version 7.30.UC1 -- On-Line -- Up 00:07:39 -- 4584 Kbytes

Ready threads:
tid tcb rstcb prty status vp-class name

6 536a38 406464 4 ready 3cpu main_loop()
28 60cfe8 40a124 4 ready 1cpu onmode_mon
33 672a20 409dc4 2 ready 3cpu sqlexec

Figure 29-21
onstat -g rea Output
29-34 Administrator’s Guide for Informix Dynamic Server

Monitoring Sessions and Threads
Using SMI Tables

Query the sysvpprof table to obtain information on the virtual processors
that are currently running. This table contains the following columns.

Monitoring Sessions and Threads
Monitor sessions and threads to determine how many threads are active and
the shared-memory resources that those threads are using. This information
allows you to determine if an application is using a disproportionate amount
of the resources.

For information on how to monitor queries and PDQ resources, see your
Performance Guide.

Using Command-Line Utilities

You can use the following command-line utilities to monitor sessions and
threads.

onstat -u

The onstat -u utility displays information on all active threads that require an
RSAM task control block (rstcb) structure. Active threads include threads that
belong to user sessions, as well as some that correspond to server daemons
(for example, page cleaners). An example of output from this utility is shown
in Figure 29-22 on page 29-36.

Column Description

vpid Virtual processor ID number

class Virtual processor class

usercpu Minutes of user CPU consumed

syscpu Minutes of system CPU consumed
Monitoring the Database Server 29-35

Monitoring Sessions and Threads
The utility displays a table that contains the following information:

■ The address of each thread

■ Flags that indicate the present state of the thread (for example,
waiting on a buffer, waiting for a checkpoint), whether the thread is
the primary thread for a session, and what type of thread it is (for
example, user thread, daemon thread and so on). For information on
these flags, see “-u Option” on page 35-90.

■ The sessid and user login ID for the session to which the thread
belongs. A sessid of 0 indicates a daemon thread.

■ Whether the thread is waiting for a specific resource and the address
of that resource

■ The number of locks that the thread is holding

■ The number of read calls and the number of write calls that the
thread has executed

■ The maximum number of concurrent user threads that were
allocated since you last initialized the database server

If you execute onstat -u while the database server is performing fast recovery,
several server threads might appear in the display.

RSAM Version 7.30.UC1 -- On-Line -- Up 00:50:22 -- 8896 Kbytes

Userthreads
address flags sessid user tty wait tout locks nreads nwrites
80eb8c ---P--D 0 informix - 0 0 0 33 19
80ef18 ---P--F 0 informix - 0 0 0 0 0
80f2a4 ---P--B 3 informix - 0 0 0 0 0
80f630 ---P--D 0 informix - 0 0 0 0 0
80fd48 ---P--- 45 chrisw ttyp3 0 0 1 573 237
810460 ------- 10 chrisw ttyp2 0 0 1 1 0
810b78 ---PR-- 42 chrisw ttyp3 0 0 1 595 243
810f04 Y------ 10 chrisw ttyp2 beacf8 0 1 1 0
811290 ---P--- 47 chrisw ttyp3 0 0 2 585 235
81161c ---PR-- 46 chrisw ttyp3 0 0 1 571 239
8119a8 Y------ 10 chrisw ttyp2 a8a944 0 1 1 0
81244c ---P--- 43 chrisw ttyp3 0 0 2 588 230
8127d8 ----R-- 10 chrisw ttyp2 0 0 1 1 0
812b64 ---P--- 10 chrisw ttyp2 0 0 1 20 0
812ef0 ---PR-- 44 chrisw ttyp3 0 0 1 587 227
 15 active, 20 total, 17 maximum concurrent

Figure 29-22
onstat -u Output
29-36 Administrator’s Guide for Informix Dynamic Server

Monitoring Sessions and Threads
onstat -g ath

Use the onstat -g ath option to obtain a listing of all threads. Unlike the onstat
-u option, this listing includes internal daemon threads that do not have an
RSAM control block. On the other hand, the onstat -g ath display does not
include the sessid (because not all threads belong to sessions).

Threads that have been started by a primary decision-support thread have a
name that indicates their role in the decision-support query. For example, in
Figure 29-23, four scan threads that belong to a decision-support thread are
displayed.

onstat -g act

Use the onstat -g act option to obtain a list of active threads.

RSAM Version 7.30.UC1 -- On-Line -- Up 00:50:15 -- 8896 Kbytes

Threads:
tid tcb rstcb prty status vp-class name
...

11 994060 0 4 sleeping(Forever) 1cpu kaio
12 994394 80f2a4 2 sleeping(secs: 51) 1cpu btclean
26 99b11c 80f630 4 ready 1cpu onmode_mon
32 a9a294 812b64 2 ready 1cpu sqlexec
113 b72a7c 810b78 2 ready 1cpu sqlexec
114 b86c8c 81244c 2 cond wait(netnorm) 1cpu sqlexec
115 b98a7c 812ef0 2 cond wait(netnorm) 1cpu sqlexec
116 bb4a24 80fd48 2 cond wait(netnorm) 1cpu sqlexec
117 bc6a24 81161c 2 cond wait(netnorm) 1cpu sqlexec
118 bd8a24 811290 2 ready 1cpu sqlexec
119 beae88 810f04 2 cond wait(await_MC1) 1cpu scan_1.0
120 a8ab48 8127d8 2 ready 1cpu scan_2.0
121 a96850 810460 2 ready 1cpu scan_2.1
122 ab6f30 8119a8 2 running 1cpu scan_2.2

Figure 29-23
onstat -g ath Output
Monitoring the Database Server 29-37

Monitoring Sessions and Threads
onstat -g ses

Use the onstat -g ses option to monitor the resources allocated for, and used
by, a session—in particular, a session that is running a decision-support
query. For example, in Figure 29-24, session number 49 is running five
threads for a decision-support query.

onstat -g sts

Use the onstat -g sts option to obtain information on stack-size use for each
thread. The output includes the following fields:

■ The thread ID

■ The maximum stack size configured for each thread

■ The maximum stack size used by the thread

You can use the output of the threads that belong to user sessions to
determine if you need to alter the maximum stack size configured for a user
session. To alter the maximum stack size for all user sessions, change the
value of the STACKSIZE configuration parameter. To alter the maximum stack
size for a single user session, change the value of the INFORMIXSTACKSIZE
environment variable. For more information, see “STAGEBLOB” on
page 33-86 and the description of INFORMIXSTACKSIZE in the Informix
Guide to SQL: Reference.

RSAM Version 7.30.UC1 -- On-Line -- Up 01:04:36 -- 8896 Kbytes

session #RSAM total used
id user tty pid hostname threads memory memory
57 informix - 0 - 0 8192 5908
56 user_3 ttyp3 2318 host_10 1 65536 62404
55 user_3 ttyp3 2316 host_10 1 65536 62416
54 user_3 ttyp3 2320 host_10 1 65536 62416
53 user_3 ttyp3 2317 host_10 1 65536 62416
52 user_3 ttyp3 2319 host_10 1 65536 62416
51 user_3 ttyp3 2321 host_10 1 65536 62416
49 user_1 ttyp2 2308 host_10 5 188416 178936
2 informix - 0 - 0 8192 6780
1 informix - 0 - 0 8192 4796

Figure 29-24
onstat -g ses Output
29-38 Administrator’s Guide for Informix Dynamic Server

Monitoring Sessions and Threads
Using ON-Monitor

Select Status➞User. The display (shown in Figure 29-25) provides a subset of
the information displayed by the onstat -u utility. The following information
is displayed:

■ The session ID

■ The user ID

■ The number of locks that the thread is holding

■ The number of read calls and write calls that the thread has executed

■ Flags that indicate the present state of the thread (for example,
waiting on a buffer, waiting for a checkpoint), whether the thread is
the primary thread for a session, and what type of thread it is (for
example, user thread, daemon thread, and so on)

Using SMI Tables

Query the syssessions table to obtain the information in the following
columns.

UNIX

USER THREAD INFORMATION

Locks Disk Disk User thread
Session User Held Reads Writes Status

0 informix 0 96 2 ------D
0 informix 0 0 0 ------F
0 informix 0 0 0 -------
15 informix 0 0 0 Y-----M
0 informix 0 0 0 ------D
17 chrisw 1 3 34 Y------

Figure 29-25
Output from the

User Option of the
ON-Monitor Status

Menu

Column Description

sid Session ID

username User name (login ID) of the user

uid User ID

(1 of 2)
Monitoring the Database Server 29-39

Monitoring PDQ Resources and Queries
In addition, some columns contain flags that indicate if the primary thread of
the session is waiting for a latch, lock, log buffer, or transaction; if it is an
ON-Monitor thread; and if it is in a critical section. (ON-Monitor is available
only on UNIX.) For a full list of the syssessions columns, see “syssessions” on
page 34-26.

Important: The information in the syssessions table is organized by session, while
the information displayed by onstat -u is organized by thread. Also, unlike the
onstat -u option, the syssessions table does not include information on daemon
threads, only user threads.

Query the syssesprof table to obtain a profile of the activity of a session. This
table contains a row for each session with columns that store statistics on
session activity (for example, number of locks held, number of row writes,
number of commits, number of deletes, and so on). For the full description of
these columns, see “syssesprof” on page 34-24.

Monitoring PDQ Resources and Queries
For parallel database queries (PDQ), you can monitor:

■ resources that the resource grant manager (RGM) allocates for PDQ
query and the resources that those queries currently use.

■ threads used to execute a PDQ query.

For more information on the RGM, PDQ, and how to monitor a PDQ query, see
your Performance Guide.

pid Process ID

connected Time that the session started

feprogram Application that is running as the client (front-end program)

Column Description

(2 of 2)
29-40 Administrator’s Guide for Informix Dynamic Server

Monitoring Transactions
Monitoring Transactions
Monitor transactions to track open transactions and the locks held by those
transactions.

Using Command-Line Utilities

You can use the following command-line options to monitor transactions.

onstat -x

The onstat -x output contains the following information for each open
transaction:

■ The address of the transaction in shared memory

■ Flags that indicate the following information:

❑ The present state of the transaction (thread attached, suspended,
waiting for a rollback)

❑ What stage the transaction is in (BEGIN WORK, prepared to
commit, committing/committed, rolling back)

❑ The nature of the transaction (global transaction, coordinator,
subordinate, both coordinator and subordinate)

■ The thread that owns the transaction

■ The number of locks held by the transaction

■ The logical-log file in which the BEGIN WORK record was logged

■ The isolation level

■ The number of attempts to start a recovery thread

■ The coordinator for the transaction (if the transaction is being
executed by a subordinate)

■ The maximum number of concurrent transactions since you last
initialized the database server
Monitoring the Database Server 29-41

Monitoring Transactions
This utility is especially useful for monitoring global transactions. For
example, you can determine whether a transaction has been heuristically
rolled back. Example output is shown in Figure 29-26.

onstat -g sql session-id

To obtain summary information about the last SQL statement executed by
each session, issue the onstat -g sql command with the appropriate session-
id. An example of the output for this option is shown in Figure 29-27. For
more information on this option, see “-g Monitoring Options” on page 35-76.

Transactions
address flags userthread locks log begin isolation retrys coordinator
40a7e4 A---- 406464 0 0 COMMIT 0
40a938 A---- 4067c4 0 0 COMMIT 0
40aa8c A---- 406b24 0 0 COMMIT 0
40abe0 A---- 40a124 0 0 COMMIT 0
40ad34 A---- 4093a4 1 0 NOTRANS 0
40ae88 A---- 40a484 2 0 NOTRANS 0
40afdc A---- 409a64 2 0 NOTRANS 0
40b130 A---- 409704 2 0 NOTRANS 0
40b284 A---- 409dc4 1 0 NOTRANS 0
40b3d8 A---- 409044 3 0 NOTRANS 0
40b52c A---- 408ce4 2 0 NOTRANS 0
 11 active, 20 total, 6 maximum concurrent

Figure 29-26
onstat -x Output

RSAM Version 7.30.UC1 -- On-Line -- Up 07:00:24 -- 8920 Kbytes

Sess SQL Current Iso Lock SQL ISAM F.E.
Id Stmt type Database Lvl Mode ERR ERR Vers
17 ALTER TABLE mydemo CR Not Wait 0 0 7.30.UC10

Figure 29-27
onstat -g sql Output
29-42 Administrator’s Guide for Informix Dynamic Server

Monitoring Databases
Monitoring Databases
Monitor the databases managed by the database server to determine the
logging status of those databases.

Using ON-Monitor

To find out the logging status of a database from within ON-Monitor, select
the Status menu, Databases option. Figure 29-28 shows the output of this
option.

When the databases screen appears, ON-Monitor displays the current
logging status of each database. ON-Monitor can only display up to 100
databases. If you have more than 100 databases on your database server, use
the SMI tables to display the full list, as described in the next section. The
database server uses the following characters to represent database-logging
status.

UNIX

When Log
Database Name Owner In Dbspace Created Status

sysmaster informix rootdbs 07/28/95 U
mydemo chrisw rootdbs 09:08:10 U

Figure 29-28
Output from the

Databases Option of
the ON-Monitor

Status Menu

Character Description

N No logging

B Buffered logging

U Unbuffered logging

A ANSI compliant
Monitoring the Database Server 29-43

Monitoring Logging Activity
Using SMI Tables

Query the sysdatabases table to determine the logging status. This table
contains a row for each database managed by the database server. Columns
contain flags that indicate the logging status of the database. For a
description of the columns in this table, see “sysdatabases” on page 34-14.

Monitoring Logging Activity
This section discusses how to monitor the logical-log files, the physical-log
file, logical-log buffers, and physical-log buffers.

Monitoring Logical-Log Files
Monitor the logical-log files to determine the total available space (in all the
files), the space available in the current file, and the status of a file (for
example, whether the log has been backed up yet). This information is
important for logical-log management.

Monitoring the Logical Log for Fullness

When you set LBU_PRESERVE to 1, and the database server is blocking to
preserve log space for administrative tasks, the onstat utility displays the
following message just after its banner line:

Blocked: LBU

For example, suppose that the database server is running under the
following conditions:

■ You set LBU_PRESERVE to 1.

■ Every log except the last one is full.

In these circumstances, the first two lines of any of the onstat options appear
as shown in the following example:

RSAM Version 7.30.UC1 -- Informix Dynamic Server -- Up 00:12:53
-- 5152 Kbytes
Blocked: LBU
29-44 Administrator’s Guide for Informix Dynamic Server

Monitoring Logical-Log Files
Using Command-Line Utilities

You can use the following command-line utilities to monitor logical-log files.

onstat -l

The onstat -l utility display consists of the following three sections: physical-
log information, logical-log information (general), and information on the
individual logical-log files.

The third section contains the following information for each logical-log file:

■ The address of the logical-log file descriptor

■ The logical-log file logid number

■ Status flags that indicate the status of each log

Flags indicate whether the log is free, backed up, current, and so on.

■ The unique ID of the log file

■ The beginning page of the file

■ The size of the file in pages, the number of pages used, and the
percentage of pages used

For more information, see “-l Option” on page 35-80. Figure 29-29 shows
example output.

...

address number flags uniqid begin size used %used
846640 1 F------ 0 100233 250 0 0.00
84665c 2 F------ 0 10032d 250 0 0.00
846678 3 U---C-L 3 100427 250 175 70.00
846694 4 F------ 0 100521 250 0 0.00
8466b0 5 F------ 0 10061b 250 0 0.00

Figure 29-29
onstat -l Output

Showing Logical-
Log File Status
Monitoring the Database Server 29-45

Monitoring Logical-Log Files
oncheck -pr

Execute oncheck -pr to obtain logical-log file information stored in the
reserved pages dedicated to checkpoint information (PAGE_1CKPT and
PAGE_2CKPT). Because the database server updates this information only
during a checkpoint, it is not as recent as the information that the onstat -l
option displays. An example of the output is shown in Figure 29-30. For more
information, see “Using -pr Option to Display Reserved-Page Information”
on page 35-15.

Using ON-Monitor

The Logs option of the Status menu displays much of the same information
for logical-log files as the onstat -l option displays. In addition, a column
contains the dbspace in which each logical-log file is located. An example of
the output is shown in Figure 29-31.

.

.

.

Log file number 1
Log file flags 0
Time stamp 6964
Date/Time file filled 07/28/95 14:48:32
Unique identifier 0
Physical location 100233
Log size 250
Number pages used 0
.
.
.

Figure 29-30
oncheck -pr Output
Containing Logical-

Log File Information

UNIX

...

INDIVIDUAL LOG FILES:
Number Flags Uniqid Dbspace Pages Used % Used

1 F------ 0 rootdbs 250 0 0.00
2 F------ 0 rootdbs 250 0 0.00
3 U---C-L 3 rootdbs 250 175 70.00
4 F------ 0 rootdbs 250 0 0.00

Figure 29-31
Output from the

Logs Option of the
ON-Monitor Status

Menu
29-46 Administrator’s Guide for Informix Dynamic Server

Monitoring the Physical-Log File
Using SMI Tables

Query the syslogs table to obtain information on logical-log files. This table
contains a row for each logical-log file. The columns are as follows.

Monitoring the Physical-Log File
Monitor the physical log to determine the percentage of the physical-log file
that gets used before a checkpoint occurs. This information allows you to find
the optimal size of the physical-log file. It should be large enough that the
database server does not have to force checkpoints too frequently and small
enough to conserve disk space and guarantee fast recovery.

Column Description

number Identification number of the logical-log file

uniqid Unique ID of the log file

size Size of the file in pages

used Number of pages used

is_used Flag that indicates whether the log file is being used

is_current Flag that indicates whether the log file is current

is_backed_up Flag that indicates whether the log file has been backed up

is_new Flag that indicates whether the log file has been added since the
last dbspace backup

is_archived Flag that indicates whether the log file has been written to the
archive tape

is_temp Flag that indicates whether the log file is flagged as a temporary
log file
Monitoring the Database Server 29-47

Monitoring the Physical-Log File
Using Command-Line Utilities

You can use the following command-line utilities to obtain information about
the physical-log file.

onstat -l

The first part of the onstat -l display contains the following information:

■ The page number of the first page in the physical-log file

■ The size of the physical-log file

■ The current position in the log where the next write occurs

■ The number of pages in the log that have been used

■ The percentage of the total physical-log pages that have been used

An example of the onstat -l output that contains the physical-log information
is shown in Figure 29-32.

RSAM Version 7.30.UC1-- On-Line -- Up 08:16:00 -- 8920 Kbytes

Physical Logging
Buffer bufused bufsize numpages numwrits pages/io
P-2 0 16 110 10 11.00

phybegin physize phypos phyused %used
10003f 500 233 0 0.00

...

Figure 29-32
onstat -l Output

Showing Physical-
Log Information
29-48 Administrator’s Guide for Informix Dynamic Server

Monitoring the Physical-Log and Logical-Log Buffers
oncheck -pr

Execute oncheck -pr to obtain the physical-log file information that the
database server stores in those reserved pages dedicated to checkpoint infor-
mation (PAGE_1CKPT and PAGE_2CKPT). This information gives you the state
of the physical log at the last checkpoint. An example of the relevant output
is shown in Figure 29-33.

Using ON-Monitor

All the information on the physical-log file that the onstat -l utility provides
is also available when you select Status➞Logs.

Monitoring the Physical-Log and Logical-Log Buffers
Monitor physical-log and logical-log buffers to determine if they are the
optimal size for the current level of processing. The important statistic to
monitor is the pages-per-disk-write statistic. For more information on tuning
the physical-log and logical-log buffers, see your Performance Guide.

Using Command-Line Utilities

The onstat -l option displays the following information for each physical-log
buffer:

■ The number of buffer pages used

■ The size of each physical log buffer in pages

■ The number of pages written to the buffer

Validating Informix Dynamic Server reserved pages - PAGE_1CKPT & PAGE_2CKPT
Using check point page PAGE_2CKPT.

Time stamp of checkpoint 16024
Time of checkpoint 07/30/95 09:34:33
Physical log begin address 10003f
Physical log size 500
Physical log position at Ckpt e9

...

Figure 29-33
oncheck -pr Output

That Includes
Physical-Log
Information

UNIX
Monitoring the Database Server 29-49

Monitoring the Physical-Log and Logical-Log Buffers
■ The number of writes from the buffer to disk

■ The ratio of pages written to the buffer to the number of writes to
disk (pages/IO)

The following information is available for each logical-log buffer:

■ The number of buffer pages used

■ The size of each logical-log buffer in pages

■ The number of records written to the buffer

■ The number of pages written to the buffer

■ The number of writes from the buffer to disk

■ The ratio of records to pages in the buffer (this is a function of the
type of operation)

■ The ratio of pages written to the buffer to the number of writes to
disk (pages/IO)

Example output from the onstat -l option that contains the relevant fields is
shown in Figure 29-34.

RSAM Version 7.30.UC1 -- On-Line -- Up 08:16:00 -- 8920 Kbytes

Physical Logging
Buffer bufused bufsize numpages numwrits pages/io
P-2 0 16 110 10 11.00

phybegin physize phypos phyused %used
10003f 500 233 0 0.00

Logical Logging
Buffer bufused bufsize numrecs numpages numwrits recs/pages pages/io
L-1 0 16 3075 162 75 19.0 2.2

...

Figure 29-34
onstat -l Output

Showing Log-
Buffer Information
29-50 Administrator’s Guide for Informix Dynamic Server

Monitoring the Physical-Log and Logical-Log Buffers
Using ON-Monitor

All the information that the onstat -l utility provides on the physical-log and
logical-log buffers is also available if you select Status➞Logs. An example of
the output is shown in Figure 29-35.

Using SMI Tables

Query the sysprofile table to obtain statistics on the physical-log and logical-
log buffers. The following rows contain the relevant statistics.

UNIX

PHYSICAL LOG:
Buffer Bufsize Bufused Numpages Numwrites pages/IO
P-1 16 0 0 0 0.00

Phybegin Physize Phypos Phyused % Used
10003f 500 236 0 0.00

LOGICAL LOG:
Buffer Bufsize Bufused Numrecs Numpages Numwrites Recs/Page Pages/IO
L-2 16 0 1 1 1 1.00 1.00

Figure 29-35
Output from the

Logs Option of the
ON-Monitor Status

Menu

Row Description

plgpagewrites Number of pages written to the physical-log buffer

plgwrites Number of writes from the physical-log buffer to the physical
log file

llgrecs Number of records written to the logical-log buffer

llgpagewrites Number of pages written to the logical-log buffer

llgwrites Number of writes from the logical-log buffer to the logical-log
files
Monitoring the Database Server 29-51

Monitoring the Database Server for Disabling I/O Errors
Monitoring the Database Server for Disabling I/O
Errors
The database server notifies you about disabling I/O errors in two ways: the
message log and event alarms.

Using the Message Log to Monitor Disabling I/O Errors
The database server sends the following message to the message log when a
disabling I/O error occurs:

Assert Failed: Chunk {chunk-number} is being taken OFFLINE.
Who: Description of user/session/thread running at the time
Result: State of the affected Dynamic Server entity
Action: What action the database server administrator should
take
See Also: DUMPDIR/af.uniqid containing more diagnostics

The result and action depend on the current setting of ONDBSPDOWN, as
described in the following table.

For more information on how to interpret messages that the database server
sends to the message log, see Chapter 36, “Message-Log Messages.”

ONDBSPDOWN
Setting Result Action

CONTINUE Dbspace/blobspace
{space-name} is disabled.

Restore dbspace/blobspace
{space-name}.

ABORT The database server must
abort.

Reinitialize shared memory.

WAIT The database server blocks at
next checkpoint.

Use onmode -k to shut down, or
use onmode -O to override.
29-52 Administrator’s Guide for Informix Dynamic Server

Using Event Alarms to Monitor Disabling I/O Errors
Using Event Alarms to Monitor Disabling I/O Errors
When a dbspace incurs a disabling I/O error, the database server passes the
following values as parameters to your event-alarm executable file.

If you want the database server to use event alarms to notify you about
disabling I/O errors, write a script that the database server executes when it
detects a disabling I/O error. For information about how to set up this
executable file and make the database server aware of the location of the
executable file that you write, see “Sources of Information for Monitoring the
Database Server” on page 29-6.

Monitoring Disk Usage
This section describes methods of tracking the disk space used by various
database server storage units.

For background information about internal database server storage units
mentioned in this section, see Chapter 38, “Disk Structures and Storage.”

Monitoring Chunks
You can monitor chunks for the following information:

■ Chunk size

■ Number of free pages

■ Tables within the chunk

Parameter Value

Severity: 4 (Emergency)

Class: 5

Class message: Dbspace is disabled: 'dbspace-name'

Specific message: Chunk {chunk-number} is being taken OFFLINE.
Monitoring the Database Server 29-53

Monitoring Chunks
This information allows you to track the disk space used by chunks, monitor
chunk I/O activity, and check for fragmentation.

Using Command-Line Utilities

You can use the following command-line utilities to obtain information about
chunks.

Using onstat -d

The onstat -d utility lists all dbspaces and blobspaces and the following infor-
mation for the chunks within those spaces.

■ The address of the chunk

■ The chunk number and associated dbspace number

■ The offset into the device (in pages)

■ The size of the chunk (in pages)

■ The number of free pages in the chunk

■ The approximate number of free blobpages

■ The pathname of the physical device

The dbspace flags indicate whether a dbspace (or blobspace) is mirrored. The
chunk flags provide the following information:

■ Whether the chunk is the primary chunk or the mirrored chunk

■ Whether the chunk is on-line, is down, is being recovered, or is a new
chunk that requires a level-0 dbspace backup before mirroring can
become active

Example output for onstat -D, which displays the same information plus two
additional fields, is shown in Figure 29-36 on page 29-55. For descriptions of
the onstat -d flags, see “-d Option” on page 35-72.
29-54 Administrator’s Guide for Informix Dynamic Server

Monitoring Chunks
onstat -D

The onstat -D option displays the same information as onstat -d, plus the
following two fields:

■ The number of pages read from the chunk (page Rd)

■ The number of pages written to the chunk (page Wr)

Example output is shown in Figure 29-36.

onstat -g iof

The onstat -g iof option displays the number of reads from each chunk and
the number of writes to each chunk. If one chunk has a disproportionate
amount of I/O activity against it, this chunk might be a system bottleneck.
This option is useful for monitoring the distribution of I/O requests against
the different fragments of a fragmented table. Example output is shown in
Figure 29-37 on page 29-56.

RSAM Version 7.30.UC1 -- On-Line -- Up 00:01:03 -- 4584 Kbytes

Dbspaces
address number flags fchunk nchunks flags owner name
40d100 1 1 1 1 N informix rootdbs
40d144 2 2 2 1 M informix cookedspace
40d188 3 10 3 1 N B informix cookedblob
 3 active, 10 total

Chunks
address chk/dbs offset page Rd page Wr pathname
40c274 1 1 0 146 4 /home/server/root_chunk
40c30c 2 2 0 1 0 /home/server/test_chunk
40c8fc 2 2 0 36 0 /home/server/test_mirr
40c3a4 3 3 0 4 0 /home/server/blob_chunk
 3 active, 10 total

Figure 29-36
onstat -D Output
Monitoring the Database Server 29-55

Monitoring Chunks
oncheck -pr

Execute oncheck -pr to obtain the chunk information that the database server
stores in the reserved pages PAGE_1PCHUNK and PAGE_2PCHUNK. This
output is essentially the same as the onstat -d output; however, if the chunk
information has changed since the last checkpoint, these changes do not
appear in the oncheck -pr output. Example output is shown in Figure 29-38.

RSAM Version 7.30.UC1 -- On-Line -- Up 01:36:56 -- 8856 Kbytes

AIO global files:
gfd pathname totalops dskread dskwrite io/s
 3 raw_chunk 38808 27241 11567 6.7
 4 cooked_chk1 7925 5660 2265 1.4
 5 cooked_chk2 3729 2622 1107 0.6

Figure 29-37
onstat -g iof Output

Validating Informix Dynamic Server reserved pages - PAGE_1DBSP & PAGE_2DBSP
Using dbspace page PAGE_2DBSP.

DBSpace number 1
Flags 1 No mirror chunks
First chunk 1
Number of chunks 2
Date/Time created 07/28/95 14:46:55
DBSpace name rootdbs
DBSpace owner informix

Validating Informix Dynamic Server reserved pages - PAGE_1PCHUNK & PAGE_2PCHUNK
Using primary chunk page PAGE_2PCHUNK.

Chunk number 1
Next chunk in DBSpace 2
Chunk offset 0
Chunk size 4000
Number of free pages 1421
DBSpace number 1
Overhead 0
Flags 40 Chunk is online
Chunk name length 23
Chunk path /home/server/root_chunk

...

Figure 29-38
oncheck -pr Output

Showing Dbspace
and Chunk

Information
29-56 Administrator’s Guide for Informix Dynamic Server

Monitoring Chunks
oncheck -pe

Execute oncheck -pe to obtain the physical layout of information in the
chunk. The following information is displayed:

■ The name, owner, and creation date of the dbspace

■ The size in pages of the chunk, the number of pages used, and the
number of pages free

■ A listing of all the tables in the chunk, with the initial page number
and the length of the table in pages

The tables within a chunk are listed sequentially. This output is useful for
determining the extent of chunk fragmentation. If the database server is
unable to allocate an extent in a chunk despite an adequate number of free
pages, the chunk might be badly fragmented. Example output is shown in
Figure 29-39 on page 29-58.
Monitoring the Database Server 29-57

Monitoring Chunks
Using ON-Monitor

Select Status➞Spaces. The first screen indicates whether the space is
mirrored. An example of this output is shown in Figure 29-40.

DBSpace Usage Report: rootdbs Owner: informix Created: 07/28/95

Chunk: 1 /home/server/root_chunk Size Used Free
4000 2579 1421

Disk usage for Chunk 1 Start Length
--- --------- ---------
ROOT DBSpace RESERVED Pages 0 12
CHUNK FREE LIST PAGE 12 1
TBLSPACE TBLSPACE 13 50
PHYSICAL LOG Pages 63 500
LOGICAL LOG Pages - Log 1 563 250
LOGICAL LOG Pages - Log 2 813 250
LOGICAL LOG Pages - Log 3 1063 250
LOGICAL LOG Pages - Log 4 1313 250
LOGICAL LOG Pages - Log 5 1563 250
DATABASE TBLSPACE 1813 4
sysmaster:informix.systables 1817 8
sysmaster:informix.syscolumns 1825 8
sysmaster:informix.sysindexes 1833 8
sysmaster:informix.systabauth 1841 8
sysmaster:informix.syscolauth 1849 8
sysmaster:informix.sysviews 1857 8
sysmaster:informix.sysusers 1865 8
sysmaster:informix.sysdepend 1873 8
sysmaster:informix.syssynonyms 1881 8

Chunk: 2 /home/server/raw_chunk Size Used Free
500 3 497

Disk usage for Chunk 2 Start Length
--- --------- ---------
OTHER RESERVED Pages 0 2
CHUNK FREE LIST PAGE 2 1
FREE 3 497

Figure 29-39
oncheck -pe Output

UNIX

Press ESC to return to the Status Menu.
Use arrow keys to move the cursor.
Press F3 or CTRL-B for chunk information on the highlighted dbspace/BLOBSpace.

 DBSPACES/BLOBSPACES

 Number of When
 Id Name Chunks Created Status

 1 rootdbs 1 08/05/95 N
 2 fstspace 1 08/09/95 Y

3 fstblob 1 08/09/95 N

Figure 29-40
First Screen of

ON-Monitor Spaces
Option
29-58 Administrator’s Guide for Informix Dynamic Server

Monitoring Chunks
The second screen indicates the mirror status of each chunk. An example is
shown in Figure 29-41. These flags correspond to the flags displayed by
onstat -d. For an explanation of the flag values, see “-d Option” on
page 35-72.

Using SMI Tables

Query the syschunks table to obtain the status of a chunk. The following
columns are relevant.

Press ESC to return to the Status Menu.
Use arrow keys to move the cursor.

 CHUNKS FOR cooked space

Chunk Chunk Pages Pages Full Pathname of Chunk Status
 Id Offset In Chunk Used

 2 0 2000 357 /home/server/test_chunk PO-
 2 0 2000 2000 /home/server/test_mirr MO-

 Dbspace has total of 2000 pages, 1643 of which are free

Figure 29-41
Second Screen of

ON-Monitor Spaces
Option

Column Description

chknum Number of the chunk within the dbspace

dbsnum Number of the dbspace

chksize Total size of the chunk in pages

nfree Number of pages that are free

is_offline Whether the chunk is down

is_recovering Whether the chunk is recovering

mis_offline Whether the mirrored chunk is down

mis_recovering Whether the mirrored chunk is being recovered
Monitoring the Database Server 29-59

Monitoring Tblspaces and Extents
The syschkio table contains the following columns.

Monitoring Tblspaces and Extents
Monitor tblspaces and extents to determine disk usage by database, table, or
table fragment. Monitoring disk usage by table is particularly important
when you are using table fragmentation, and you want to ensure that table
data and table index data are distributed appropriately over the fragments.

Using Command-Line Utilities

You can use the following command-line utilities to monitor tblspaces and
extents.

oncheck -pt

Execute oncheck -pt with a database-name or table-name parameter to
obtain the following information for each tblspace in the database or table:

■ Number of extents

■ Size of the first extent

■ Size of the next extent

■ Number of pages allocated

■ Number of pages used

An example of the oncheck -pt output is shown in Figure 29-42. The table in
the example is fragmented over multiple dbspaces. Because each fragment of
a fragmented table resides in a separate tblspace, the oncheck -pt option
always displays separate information for each fragment. The number of
pages of table data in each fragment is displayed.

Column Description

pagesread Number of pages read from the chunk

pageswritten Number of pages written to the chunk
29-60 Administrator’s Guide for Informix Dynamic Server

Monitoring Tblspaces and Extents
TBLspace Report for tpc:informix.account

 Table fragment in DBspace rootdbs

 Physical Address 100033
 Creation date 03/31/97 13:25:21
 TBLspace Flags 2 Row Locking
 Maximum row size 100
 Number of special columns 0
 Number of keys 0
 Number of extents 2
 Current serial value 1
 First extent size 50
 Next extent size 25
 Number of pages allocated 2375
 Number of pages used 2370
 Number of data pages 2369
 Number of rows 45001

Partition partnum 2097154
 Partition lockid 2097154

 Extents
 Logical Page Physical Page Size
 0 100ad5 50
 50 100b2f 2325

 Table fragment in DBspace dbspace2

 Physical Address 200005
 Creation date 03/31/97 13:25:21
 TBLspace Flags 2 Row Locking
 Maximum row size 100
 Number of special columns 0
 Number of keys 0
 Number of extents 1
 Current serial value 1
 First extent size 50
 Next extent size 25
 Number of pages allocated 550
 Number of pages used 528
 Number of data pages 527
 Number of rows 10000
 Partition partnum 3145730
 Partition lockid 2097154

 Extents
 Logical Page Physical Page Size
 0 200035 550
...

Figure 29-42
oncheck -pt Output
Monitoring the Database Server 29-61

Monitoring Tblspaces and Extents
oncheck -pT

The oncheck -pT option returns all the information from the oncheck -pt
option as well as the additional information shown in Figure 29-43. Each
tblspace in the database or table that you supply is listed.

Using SMI Tables

Query the systabnames table to obtain information about each tblspace. The
systabnames table has columns that indicate the corresponding table,
database, and table owner for each tblspace.

Query the sysextents table to obtain information about each extent. The
sysextents table has columns that indicate the database and the table that the
extent belongs to, as well as the physical address and size of the extent.

TBLSpace Usage Report for tpc:chrisw.account

Type Pages Empty Semi-Full Full Very-Full
---------------- ---------- ---------- ---------- ---------- ----------
Free 20
Bit-Map 1
Index 471
Data (Home) 3158

Total Pages 3650

Unused Space Summary

Unused data slots 2
Unused bytes per data page 44
Total unused bytes in data pages 138952

Index Usage Report for index iaccount on tpc:chrisw.account

Average Average
Level Total No. Keys Free Bytes
----- -------- -------- ----------

1 1 4 1973
2 4 116 506
3 466 128 217

----- -------- -------- ----------
Total 471 128 223

Figure 29-43
oncheck -pT Output

That Is Not
Displayed by the

oncheck -pt Option
29-62 Administrator’s Guide for Informix Dynamic Server

Monitoring TEXT and BYTE Data in a Blobspace
Using System Catalog Tables

Query the sysfragments table to obtain information about all tblspaces that
hold a fragment. This table has a row for each tblspace that holds a table
fragment or an index fragment. The sysfragments table includes the
following columns.

Not all columns of sysfragments are documented in the preceding list. For a
complete listing of columns, see the Informix Guide to SQL: Reference.

Monitoring TEXT and BYTE Data in a Blobspace
Monitor blobspaces to determine the available space and whether the
blobpage size is optimal.

Using Command-Line Utilities

You can use the following command-line utilities to monitor TEXT and BYTE
data in a blobspace.

Column Description

fragtype Table or index fragment

tabid Table identifier

indexname Index identifier

partn Physical location (tblspace ID)

strategy Distribution scheme (round-robin, expression, table-based index)

dbspace Dbspacename for fragment

npused Number of data pages or leaf pages

nrows Number of rows or unique keys
Monitoring the Database Server 29-63

Monitoring TEXT and BYTE Data in a Blobspace
onstat -d

The onstat -d option displays information on each blobspace and the chunks
within each blobspace. Figure 29-44 shows an example of the output from
this option. In this example, a blobspace called fstblob contains a single
chunk called blob_chunk.

The onstat -d option lists the number of free blobpages in each blobspace
chunk, as well as the number of total blobpages. The tilde (~) that precedes
the free value indicates that this number is approximate. The number is
approximate because the utility derives it from information stored in the disk
version of the chunk free-map page, and not from the version stored in
shared memory.

Another complication is that onstat -d does not register a blobpage as
available until the logical log in which a deletion occurred is backed up, and
the blobpage is freed. Therefore, if you delete 25 TEXT and BYTE objects and
immediately execute onstat -d, the newly freed space does not appear in the
onstat output.

RSAM Version 7.30.UC1 -- On-Line -- Up 07:48:28 -- 4664 Kbytes

Dbspaces
address number flags fchunk nchunks flags owner name
40c980 1 1 1 1 N informix rootdbs
40c9c4 2 1 2 1 N informix fstdbs
40ca08 3 11 3 1 N B informix fstblob
3 active, 10 total

Chunks
address chk/dbs offset size free bpages flags pathname
40c224 1 1 0 20000 14001 PO- /home/server/root_chunk
40c2bc 2 2 0 2000 1659 PO- /home/server/fst_chunk
40c354 3 3 0 4000 ~924 1000 POB /home/server/blob_chunk
3 active, 10 total

Figure 29-44
onstat -d Output
with Information

About Blobspaces
29-64 Administrator’s Guide for Informix Dynamic Server

Monitoring TEXT and BYTE Data in a Blobspace
onstat -O

The onstat -O option displays information about the staging-area blobspace
and the Optical Subsystem memory cache. Figure 29-45 shows an example of
the output from this option. The totals shown in the display accumulate from
session to session. The database server resets the totals to 0 only when you
execute onstat -z.

The first section of the display describes the following system-cache totals
information:

Informix Dynamic Server 7.30.UC1 -- On-Line -- Up 00:56:39 -- 10864 Kbytes

Subsystem not available

Optical StageBlob Cache
System Cache Totals: System Blob Totals:
Size Alloc. Avail. Number Kbytes Number Kbytes
0 0 0 0 0 0 0

User Cache Totals: User Blob Totals:
SID User Size Number Kbytes Number Kbytes
No sessions currently using the cache

Figure 29-45
onstat -O Output

size is the size specified in the OPCACHEMAX configuration
parameter.

alloc is the number of 1-kilobyte pieces that the database server
allocated to the cache.

avail describes how much of alloc (in kilobytes) is not used.

number is the number of TEXT and BYTE objects that the database server
successfully put into the cache without overflowing.

kbytes is the number of kilobytes of the TEXT and BYTE objects that the
database server put into the cache without overflowing.

number is the number of TEXT and BYTE objects that the database server
wrote to the staging-area blobspace.

kbytes is the number of kilobytes of TEXT and BYTE objects that the
database server wrote to the staging-area blobspace.
Monitoring the Database Server 29-65

Monitoring TEXT and BYTE Data in a Blobspace
Although the size output indicates the amount of memory that is specified in
the configuration parameter OPCACHEMAX, the database server does not
allocate memory to OPCACHEMAX until necessary. Therefore, the alloc
output reflects only the number of 1-kilobyte pieces of the largest TEXT or
BYTE object that has been processed. When the values in the alloc and avail
output are equal, the cache is empty.

The second section of the display describes the following user-cache totals
information:

SID is the session ID for the user.

user is the user ID of the client.

size is the size specified in the INFORMIXOPCACHE environment
variable, if set. If you do not set the INFORMIXOPCACHE
environment variable, the database server uses the size that you
specify in the configuration parameter OPCACHEMAX.

number is the number of TEXT and BYTE objects that the database server
put into cache without overflowing.

kbytes is the number of kilobytes of TEXT and BYTE objects that the
database server put into the cache without overflowing.

number is the number of TEXT and BYTE objects that the database server
wrote to the staging-area blobspace.

kbytes is the size of the TEXT and BYTE objects (in kilobytes) that the
database server wrote to the staging-area blobspace.
29-66 Administrator’s Guide for Informix Dynamic Server

Monitoring TEXT and BYTE Data in a Blobspace
oncheck -pB

This option gathers its data from the actual blobspace storage statistics.

Execute oncheck -pB with either a database name or a table name as a
parameter. The display reports the following statistics:

■ Number of blobpages used by this table or database in all blobspaces

■ Blobpage fullness, by blobspace, for each blobspace in this table or
database

The oncheck utility derives the number of free blobpages from the infor-
mation stored in the shared-memory version of the chunk free-map page, not
from the disk version. These statistics are the most current possible and
might differ from the output of onstat -d, which is derived from the disk
version of the free-map page. Example output is shown in Figure 29-46.

BLOBSpace Report for stores7:chrisw.catalog

Total pages used by table 74

BLOBSpace usage:

Space Page Percent Full
Name Number Pages 0-25% 26-50% 51-75% 76-100%

fstblob 0x300000 1 x
fstblob 0x300001 1 x
fstblob 0x300002 1 x
fstblob 0x300003 1 x
...

fstblob 0x300046 1 x
fstblob 0x300047 1 x
fstblob 0x300048 1 x
fstblob 0x300049 1 x

Page Size is 8192 74

Figure 29-46
oncheck -pB Output
Monitoring the Database Server 29-67

Monitoring TEXT and BYTE Data in a Blobspace
oncheck -pe

Execute oncheck with the -pe options for a detailed listing of chunk use; first
the dbspaces are listed, then the blobspaces. The display provides the
following blobspace-use information:

■ Names of the tables that store TEXT and BYTE data, by chunk

■ Number of disk pages (not blobpages) used, by table

■ Number of free disk pages remaining, by chunk

■ Number of overhead pages used, by chunk

Tip: The oncheck -pe option gives information on blobspace use in terms of database
server pages, not blobpages.

Example output is shown in Figure 29-47.

Using ON-Monitor

When you select the Spaces option of the Status menu, the database server
displays a series of two screens. The first screen lists any blobspaces.

The second screen lists the following chunk information for each blobspace:

■ Chunk ID

■ Chunk pathname and offset

■ Mirror status flags

■ Pages in the chunk

■ Number of used disk pages in the chunk

An example of this second screen is shown in Figure 29-41 on page 29-59.

BLOBSpace Usage Report: fstblob Owner: informix Created: 03/01/97

Chunk: 3 /home/server/blob_chunk Size Used Free
4000 304 3696

Disk usage for Chunk 3 Total Pages
--
OVERHEAD 8
stores7:chrisw.catalog 296
FREE 3696

Figure 29-47
oncheck -pe Output
Showing Blobspace

Use

UNIX
29-68 Administrator’s Guide for Informix Dynamic Server

Monitoring TEXT and BYTE Data in a Dbspace
Monitoring TEXT and BYTE Data in a Dbspace
You can monitor dbspaces to determine the number of dbspace pages that are
used by TEXT and BYTE data.

Using Command-Line Utilities

Execute oncheck with the -pT options and either a database name or a table
name as a parameter. For each table in the database, or for the specified table,
the database server displays a general tblspace report.

Following the general report is a detailed breakdown of page use in the
extent, by page type. Look for the blobpage type for information on TEXT and
BYTE data. Example output is shown in Figure 29-48 on page 29-70.

The database server can store more than one TEXT or BYTE object on the same
dbspace blobpage. Therefore, you can count the number of pages that store
TEXT or BYTE data in the tblspace, but you cannot estimate the number of
TEXT or BYTE objects in the table.
Monitoring the Database Server 29-69

Monitoring TEXT and BYTE Data in a Dbspace
TBLSpace Usage Report for mydemo:chrisw.catalog

Type Pages Empty Semi-Full Full Very-Full
---------------- ---------- ---------- ---------- ---------- ----------
Free 7
Bit-Map 1
Index 2
Data (Home) 9
Data (Remainder) 0 0 0 0 0
Tblspace BLOBs 5 0 0 1 4

Total Pages 24

Unused Space Summary

Unused data bytes in Home pages 3564
Unused data bytes in Remainder pages 0
Unused bytes in Tblspace Blob pages 1430

Index Usage Report for index 111_16 on mydemo:chrisw.catalog

Average Average
Level Total No. Keys Free Bytes
----- -------- -------- ----------

1 1 74 1058
----- -------- -------- ----------
Total 1 74 1058

Index Usage Report for index 111_18 on mydemo:chrisw.catalog

Average Average
Level Total No. Keys Free Bytes
----- -------- -------- ----------

1 1 74 984
----- -------- -------- ----------
Total 1 74 984

Figure 29-48
oncheck -pT Output

with a Tblspace
Report That

Contains TEXT or
BYTE data
29-70 Administrator’s Guide for Informix Dynamic Server

Monitoring High-Availability Data-Replication Status
Monitoring High-Availability Data-Replication
Status
Monitor the high-availability data-replication status of a database server to
determine the following information:

■ The database server type (primary, secondary, or standard)

■ The name of the other database server in the pair

■ Whether high -availability data replication is on

■ The values of the high-availability data-replication parameters

Using Command-Line Utilities

The header information displayed every time you execute onstat has a field
to indicate if a database server is operating as a primary or secondary
database server.

The following example shows a header for a database server that is the
primary database server in a high-availability data-replication pair, and in
on-line mode:

RSAM Version 7.30.UC1 -- Dynamic Server (Prim) -- Up 45:08:57 -- 21604 Kbytes

This example shows a database server that is the secondary database server
in a high-availability data-replication pair, and in read-only mode.

RSAM Version 7.30.UC1 -- Read-Only (Sec) -- Up 45:08:57 -- 21604 Kbytes

The following example shows a header for a database server that is not
involved in high-availability data replication. The type for this database
server is standard.

RSAM Version 7.30.UC1 -- Dynamic Server -- Up 20:10:57 -- 21604 Kbytes

onstat -g dri

To obtain full high-availability data-replication monitoring information,
execute the onstat -g dri option. The following fields are displayed:

■ The database server type (primary, secondary, or standard)

■ The high-availability data-replication state (on or off)
Monitoring the Database Server 29-71

Monitoring High-Availability Data-Replication Status
■ The paired database server

■ The last high-availability data-replication checkpoint

■ The values of the high-availability data-replication configuration
parameters

Example output is shown in Figure 29-49. This example shows a primary
database server, paired with a secondary database server that has the
DBSERVERNAME of beach_ol. High-availability data replication has been
started.

oncheck -pr

If your database server is running high-availability data replication, the
reserved pages PAGE_1ARCH and PAGE_2ARCH store the checkpoint infor-
mation that high-availability data replication uses to synchronize the
primary and secondary database servers. An example of the relevant
oncheck -pr output is given in Figure 29-50.

RSAM Version 7.30.UC1 -- On-Line (Prim) -- Up 00:01:23 -- 4584 Kbytes

Data Replication:
 Type State Paired server Last DR CKPT (id/pg)
 standard on beach_ol 25/8

 DRINTERVAL 30
 DRTIMEOUT 30
 DRAUTO 0
 DRLOSTFOUND /usr/informix/etc/lost+found

Figure 29-49
onstat -g dri Output

Validating Informix Dynamic Server reserved pages - PAGE_1ARCH & PAGE_2ARCH
 Using archive page PAGE_1ARCH.

 Archive Level 0
 Real Time Archive Began 01/11/95 16:54:07
 Time Stamp Archive Began 11913
 Logical Log Unique Id 3
 Logical Log Position b018

 DR Ckpt Logical Log Id 3
 DR Ckpt Logical Log Pos 80018
 DR Last Logical Log Id 3
 DR Last Logical Log Page 128

Figure 29-50
oncheck -pr

PAGE_1ARCH
Output for Database

Server Running
High-Availability
Data Replication
29-72 Administrator’s Guide for Informix Dynamic Server

Monitoring High-Availability Data-Replication Status
Using ON-Monitor

Use the Status menu, data-Replication option to see information about high-
availability data replication. This option displays the same information as the
onstat -g dri command-line option.

Using SMI Tables

The sysdri table, described in “sysdri” on page 34-17, contains the following
columns.

Column Description

type High-availability data-replication server type

state High-availability data-replication server state

name Database server name

intvl High-availability data-replication buffer flush interval

timeout Network timeout

lostfound High-availability data-replication lost+found pathname

UNIX
Monitoring the Database Server 29-73

VI
II
Distributed Data
Se
ct

io
n

30
Chapter
Multiphase Commit Protocols
Two-Phase Commit Protocol 30-3
When Is the Two-Phase Commit Protocol Used? 30-3
What Goals Does the Two-Phase Commit Protocol Achieve? . . . 30-4
Two-Phase Commit Concepts 30-5
Phases of the Two-Phase Commit Protocol 30-6

Precommit Phase 30-7
Postdecision Phase 30-7

Examples of Two-Phase Commit Transactions 30-8
How the Two-Phase Commit Protocol Handles Failures. 30-10

What Types of Failures Does Automatic
Recovery Handle? 30-10

What Is the Administrator’s Role in Automatic Recovery? . . 30-10
Automatic-Recovery Mechanisms for

Coordinator Failure 30-10
Automatic-Recovery Mechanisms for Participant Failure . . . 30-14

Presumed-Abort Optimization 30-17
How Does Presumed-Abort Optimization Affect

Automatic Recovery?. 30-18
Why Is an Optimization Realized? 30-18

Independent Actions 30-18
What Initiates Independent Action?. 30-19
Possible Results of Independent Action 30-19

Independent Actions That Allow Successful
Completion of Transaction 30-20

Independent Actions That Result in an Error Condition . . . 30-20
Independent Actions That Result in Heuristic Decisions . . . 30-21

The Heuristic Rollback Scenario 30-22
Conditions That Result in a Heuristic Rollback 30-22
What Happens When a Heuristic Rollback Occurs? 30-23

30-2 Ad
The Heuristic End-Transaction Scenario 30-26
When to Perform a Heuristic End Transaction 30-26
How to Use onmode -Z 30-27
What Happens When the Transaction Is

Ended Heuristically? 30-28
Tracking a Global Transaction 30-28

Two-Phase Commit Protocol Errors 30-29

Two-Phase Commit and Logical-Log Records 30-30
Logical-Log Records When the Transaction Commits 30-31
Logical-Log Records Written During a Heuristic Rollback 30-33
Logical-Log Records Written After a Heuristic

End Transaction 30-35

Configuration Parameters Used in Two-Phase Commits 30-37
Function of the DEADLOCK_TIMEOUT Parameter 30-37
Function of the TXTIMEOUT Parameter 30-37

Heterogeneous Commit Protocol 30-38
Which Gateways Can Participate in a Heterogeneous

Commit Transaction? 30-39
Enabling and Disabling Heterogeneous Commit 30-40
How Does Heterogeneous Commit Work 30-41

Precommit Phase 30-41
Gateway Commit Phase 30-41
Heterogeneous Commit Optimization. 30-42

Implications of a Failed Heterogeneous Commit 30-43
Database Server Coordinator Failure 30-43
Participant Failure 30-44
Interpreting Heterogeneous Commit Error Messages 30-45
ministrator’s Guide for Informix Dynamic Server

A multiphase commit protocol is a mechanism that the database
server uses to process transactions that span multiple database servers.
Understanding how multiphase commit protocols work becomes important
only when a deviation from one of these protocols occurs. The database
server supports two multiphase commit protocols: two-phase commit
protocol and heterogeneous commit protocol.

For information on recovering manually from a failed two-phase commit, see
Chapter 31, “Recovering Manually from Failed Two-Phase Commit.”

Two-Phase Commit Protocol
The two-phase commit protocol governs the order in which a two-phase
commit transaction is performed and provides an automatic recovery
mechanism in case a system or media failure occurs during execution of the
transaction.

When Is the Two-Phase Commit Protocol Used?
A database server automatically uses the two-phase commit protocol for any
transaction that performs modifications to data on more than one database
server.
Multiphase Commit Protocols 30-3

What Goals Does the Two-Phase Commit Protocol Achieve?
For example, consider the configuration shown in Figure 30-1, which
includes three database servers.

If you execute the commands shown in Figure 30-2, the result is one update
and two inserts at three different database servers.

The database server automatically uses the two-phase commit protocol for
this transaction.

What Goals Does the Two-Phase Commit Protocol Achieve?
Distributed transactions that include multiserver modifications use the
two-phase commit protocol to achieve the following two goals:

■ Ensure that all participating database servers receive the same
instruction, either to commit or to roll back a transaction

■ Ensure that all participating database servers implement the same
action (either a commit or a rollback), regardless of local or network
failures during the protocol

Figure 30-1
Connected

Database Servers

australia

italy

france

CONNECT TO stores7@italy
BEGIN WORK

UPDATE stores7:manufact SET manu_code = 'SHM' WHERE manu_name = 'Shimara'
INSERT INTO stores7@france:manufact VALUES ('SHM', 'Shimara', '30')
INSERT INTO stores7@australia:manufact VALUES ('SHM', 'Shimara', '30')

COMMIT WORK

Figure 30-2
Example of a

Distributed
Transaction
30-4 Administrator’s Guide for Informix Dynamic Server

Two-Phase Commit Concepts
If any database server is unable to commit its portion of the transaction, all
database servers participating in the transaction must be prevented from
committing their work. The database server uses the two-phase commit
protocol to coordinate the work performed at multiple database servers on
behalf of a single transaction.

Two-Phase Commit Concepts
Every transaction that uses the two-phase commit protocol has a coordinator
and one or more participants:

■ Coordinator

The two-phase commit protocol always assigns the role of coordi-
nator to the current database server. In other words, the database
server that is managing the current database when the transaction is
processed is the coordinator. In the example transaction given in
Figure 30-2 on page 30-4, the coordinator is italy. If you change the
first line in this example to the following statement, the two-phase
commit protocol assigns the role of coordinator to france:

CONNECT TO stores7@france

The role of coordinator cannot change during a single transaction.
The coordinator for a distributed transaction is displayed by the
onstat -x option. For an example of onstat -x output, see “Monitoring
Transactions” on page 29-41.

In the two-phase commit protocol, the transaction that is under the
direction of the coordinator is called the global transaction.

■ Participants

The database servers that perform operations under the direction of
the coordinator are the participants. In Figure 30-1 on page 30-4, the
participants are france and australia. The work that each participant
database server performs is a piece of work associated with the global
transaction. In this example, the coordinator database server, italy,
also functions as a participant because it is also doing a piece of
work, which is the update.
Multiphase Commit Protocols 30-5

Phases of the Two-Phase Commit Protocol
The two-phase commit protocol relies on two kinds of communication,
messages and logical-log records:

■ Messages

Messages pass between the coordinator and each participant.
Messages from the coordinator include a transaction identification
number and instructions (such as prepare to commit, commit, or
roll back). Messages from each participant include the transaction
status and reports of action taken (such as can commit or cannot
commit, committed, or rolled back).

■ Logical-log records

Logical-log records of the transaction are kept on stable storage (disk
or tape) to ensure data integrity and consistency, even if a failure
occurs at a participating database server (participant or coordinator).

For more details about the logical-log records that are written during
two-phase commit protocol, refer to “Two-Phase Commit and
Logical-Log Records” on page 30-30.

Phases of the Two-Phase Commit Protocol
In a two-phase commit transaction, all the instructions are first sent to all the
participants to perform data modifications (for example, inserts). After the
coordinator sends these instructions, it starts the two-phase commit protocol.
The two-phase commit protocol has two parts, the precommit phase and the
postdecision phase.
30-6 Administrator’s Guide for Informix Dynamic Server

Phases of the Two-Phase Commit Protocol
Precommit Phase

During the precommit phase, the coordinator and participants perform the
following dialog:

1. Coordinator: The coordinator directs each participant database
server to prepare to commit the transaction.

2. Participants: If the data modifications satisfy all deferred
constraints, the participants return messages to the coordinator
indicating that their piece of work can be committed. If a modifi-
cation does not satisfy a constraint, the participant returns a negative
response to the coordinator.

3. Coordinator: The coordinator determines whether to commit or roll
back the transaction. If at least one participant is unable to perform
the modifications, the coordinator makes the decision to roll back the
transaction.

Postdecision Phase

During the postdecision phase, the coordinator and participants perform the
following dialog:

1. Coordinator: The coordinator writes the commit record or rollback
record to the coordinator’s logical log and then directs each partic-
ipant database server to either commit or roll back the transaction.

2. Participants: If the coordinator issued a commit message, the partic-
ipants commit the transaction by writing the commit record to the
logical log and then send a message to the coordinator acknowl-
edging that the transaction was committed. If the coordinator issued
a rollback message, the participants roll back the transaction but do
not send an acknowledgment to the coordinator.

3. Coordinator: If the coordinator issued a message to commit the
transaction, it waits to receive acknowledgment from each
participant before it ends the global transaction. If the coordinator
issued a message to roll back the transaction, it does not wait for
acknowledgments from the participants.
Multiphase Commit Protocols 30-7

Examples of Two-Phase Commit Transactions
Examples of Two-Phase Commit Transactions
Figure 30-3 represents a two-phase commit protocol that results in a
committed transaction.

The postdecision phase begins at the instant when the coordinator records its
decision to commit or roll back. In this case, phase two begins when the
coordinator writes the commit work logical-log record to disk.

Figure 30-3
Two-Phase Commit

Protocol That
Results in a
Committed
Transaction

Start protocol

End protocol

Coordinator:
Records decision to begin precommit phase. Sends a prepare message to
the participants.

All participants:
Determine that the commit can occur. Record the fact that a commit can
occur. Return message: can commit.

Coordinator:
Records decision to commit transaction.
POSTDECISION PHASE BEGINS
Coordinator:
Sends a commit message to participants.

All participants:
Commit the piece of work. Record the commit. Remove transaction entry
from shared memory. Release shared-memory resources. Return
confirmation message: committed.

Coordinator:
Records that the transaction is committed. Removes transaction entry
from shared memory. Releases shared-memory resources.

P2 P3P1

C

C

P2 P3P1

C

30-8 Administrator’s Guide for Informix Dynamic Server

Examples of Two-Phase Commit Transactions
Figure 30-4 represents a two-phase commit that results in a rolled-back
transaction. For some reason, probably a deferred constraint violation, the P1
participant determines that the commit cannot occur and returns a cannot
commit message to the coordinator.

The participants do not send a confirmation to the coordinator when the
piece of work is rolled back. The coordinator does not record a completed
transaction. In this example, the postdecision phase begins when the
coordinator writes the rollback work logical-log record to disk.

Figure 30-4
A Successful Two-

Phase Commit
Where Transaction

Rolls Back
Coordinator:
Records decision to begin precommit phase. Sends a prepare message to
the participants.

Participant 1:
Determines that the commit cannot occur. Returns message: cannot
commit. Rolls back piece of work.
Participants 2 and 3:
Determine that the commit can occur. Record the fact that a commit can
occur. Return message: can commit.

Coordinator:
Receives cannot commit response. Records decision to roll back
transaction.
PHASE 2 BEGINS
Coordinator:
Rolls back work on behalf of transaction. Records rollback. Removes
transaction entry from shared memory. Releases shared-memory
resources. Sends a roll back message to participants.
Participants 2 and 3:
Roll back piece of work. Remove transaction entry from shared-memory
transaction table. Release shared-memory resources.

Start protocol

End protocol

P2 P3P1

C

P2 P3P1

C

Multiphase Commit Protocols 30-9

How the Two-Phase Commit Protocol Handles Failures
How the Two-Phase Commit Protocol Handles Failures
The two-phase commit protocol is designed to handle system and media
failures in such a way that data integrity is preserved across all the partici-
pating database servers. The two-phase commit protocol performs an
automatic recovery if a failure occurs.

What Types of Failures Does Automatic Recovery Handle?

The following events can cause the coordinating thread or the participant
thread to terminate or hang, thereby requiring automatic recovery:

■ System failure of the coordinator

■ System failure of a participant

■ Network failure

■ Termination of the coordinating thread by the administrator

■ Termination of the participant thread by the administrator

What Is the Administrator’s Role in Automatic Recovery?

The only role of the administrator in automatic recovery is to bring the
coordinator or participant (or both) back on-line after a system or network
failure.

Automatic-Recovery Mechanisms for Coordinator Failure

If the coordinating thread fails, each participant database server must decide
whether to initiate automatic recovery before it commits or rolls back the
transaction or after it rolls back a transaction. This responsibility is part of the
presumed-abort optimization. (See “Presumed-Abort Optimization” on
page 30-17.)

The coordinator must initiate recovery if the coordinating thread fails after a
decision to commit the transaction but before the two-phase commit protocol
is complete.

Important: A slow network cannot, and should not, trigger automatic recovery.
None of the recovery mechanisms described here go into effect unless a coordinator
system fails, a network fails, or the administrator terminates the coordinating thread.
30-10 Administrator’s Guide for Informix Dynamic Server

How the Two-Phase Commit Protocol Handles Failures
Coordinator Fails Before Decision to Commit Transaction

If the coordinator fails before it decides whether to commit the transaction,
the recovery mechanism is as follows. First, the system administrator must
bring the coordinator back on-line. Next, the fast-recovery mechanism rolls
back the global transaction on the coordinator. Meanwhile, the participant
waits for the time period specified by the configuration parameter
TXTIMEOUT for a message from the coordinator to either commit or roll back
its piece of work. After waiting the specified time, the participant attempts to
fork a new thread on the coordinator to determine the transaction status. (The
participant will not be able to fork this new thread until the coordinator is
back on-line). Because the coordinator rolled back the global transaction, no
transaction is in shared memory. The presumed-abort optimization is in
effect, and the participant rolls back its piece of work.

Coordinator Fails After Decision to Roll Back Transaction

If the coordinator fails after deciding to roll back the transaction, but before
completing the two-phase commit protocol, the recovery mechanism is as
follows. First, the system administrator must bring the coordinator back
on-line. The global transaction at the coordinator has already been removed
from memory, so the coordinator takes no further action. Meanwhile, the
participant waits for the time period specified by the configuration
parameter TXTIMEOUT for a message from the coordinator to either commit
or roll back its piece of work. After waiting the specified time, the participant
attempts to fork a new thread on the coordinator to determine the transaction
status. (The participant will not be able to fork this new thread until the
coordinator is back on-line). Because the coordinator rolled back the global
transaction, no transaction is in shared memory. The presumed-abort optimi-
zation is in effect, and the participant rolls back its piece of work.

Coordinator Fails After Decision to Commit Transaction

If the coordinating thread completes the precommit phase, makes a decision
to commit the transaction, but is terminated before the two-phase commit
protocol can be completed, the coordinator-recovery mechanism goes into
effect.

First, if a system failure occurs, the administrator must reinitialize shared
memory and restart the database server; otherwise, coordinator recovery
begins as part of the database server processing.
Multiphase Commit Protocols 30-11

How the Two-Phase Commit Protocol Handles Failures
As part of its regular activity, the main_loop thread at the coordinator
database server detects the following situations:

1. A two-phase commit protocol was under way.

2. The coordinating thread had reached a decision to commit. (Whether
the coordinator sent messages to the participants to commit the
transaction is ambiguous.)

3. The coordinating thread was terminated prematurely.

To complete the transaction, the main_loop thread forks a new coordinating
thread. This new coordinating thread establishes a new connection at each
participant database server.

The new coordinating thread sends a message to each participant thread to
determine the status of the piece of work that was assigned to that participant
database server. If the participant received a commit message from the
coordinator before it failed, the participant would have committed the piece
of work and removed the entry from its transaction table but would have no
knowledge of the transaction. Thus, if the new coordinating thread receives
a message that the transaction status is unknown, it assumes that the piece of
work was already committed.

If the new coordinating thread receives a message that the transaction status
is can commit, it sends a message to the participant to commit the trans-
action. After all participants send acknowledgments indicating that their
piece of work is committed, the coordinating thread ends the transaction.

If the coordinating thread cannot contact one or more of the participants, or
if execution errors are detected, messages are recorded in the database server
message log.

The coordinating thread then continues its attempts to contact all
participants and to complete the protocol. Figure 30-5 illustrates the
coordinator-recovery process.
30-12 Administrator’s Guide for Informix Dynamic Server

How the Two-Phase Commit Protocol Handles Failures
Figure 30-5
Example of Automatic Coordinator Recovery

Start protocol

End coordinator recovery

Coordinator:
Records decision to begin precommit phase. Sends a prepare message to
the participants.

All Participants:
Determine that the commit can occur. Record the fact that a commit can
occur. Return message: can commit.

Coordinator:
Records decision to commit transaction.
Coordinator Fails

After the coordinator returns on-line, the main_loop thread forks a new coordinating thread.

Coordinator:
Queries each participant for transaction status.

Participant 1:
Reports unknown status.
Participants 2 and 3:
Determine that the commit can occur. Record the fact that the commit can occur. Return message
can commit.
Coordinator:
Sends a commit message to participants 2 and 3. Participant 1 is assumed
to have committed.

Participants 2 and 3:
Commit the piece of work. Record the commit. Remove transaction entry from shared-memory
transaction table. Release shared-memory resources. Return confirmation message: committed.

Coordinator:
Records that the transaction is committed. Removes transaction entry from
shared memory. Releases shared-memory resources.

P2 P3P1

C

P2 P3P1

C

C

C

P2 P3P1

C

Start coordinator
recovery
Multiphase Commit Protocols 30-13

How the Two-Phase Commit Protocol Handles Failures
Automatic-Recovery Mechanisms for Participant Failure

Participant recovery occurs whenever a participant thread precommits a
piece of work but is terminated before the two-phase commit protocol can be
completed. The goal of participant recovery is to complete the two-phase
commit protocol according to the decision reached by the coordinator.

Participant recovery is driven by either the coordinator or the participant,
depending on whether the coordinator decided to commit or to roll back the
global transaction.

The actual participant-recovery mechanism depends on whether the global
transaction was committed or rolled back.

Participant Fails—Global Transaction Committed

In this scenario, the participant thread precommits its piece of work success-
fully and then unexpectedly terminates. The coordinator then decides to
commit the global transaction. When the coordinator sends the terminated
participant a message to commit, it receives an error indicating that the
participant is down. At this point, the coordinator takes the following
actions:

1. Drops the existing connection to the participant

2. Forks a new participant thread

3. Resends the message to commit the piece of work

If the participant is down, the coordinator is not able to fork a new participant
thread. The coordinator continues to loop through this procedure, however,
until it succeeds (when the system administrator brings the participant back
on-line).
30-14 Administrator’s Guide for Informix Dynamic Server

How the Two-Phase Commit Protocol Handles Failures
Participant Fails—Global Transaction Rolled Back

In this scenario, the participant thread precommits its piece of work success-
fully and then unexpectedly terminates. The coordinator then determines to
roll back the global transaction. The coordinator sends a message to the
terminated participant to roll back its piece of work. The participant does not
receive the message because it is not running, but the coordinator in this
scenario closes the global transaction anyway because a coordinator never
waits for an acknowledgment on a rollback transaction.

When the system administrator brings the participant back up, the piece of
work from the global transaction is still waiting for a message from the
coordinator to commit or roll back. The participant thread, which is running
the piece of work, waits for a period of time specified by the TXTIMEOUT
variable and then forks a new participant thread. This new participant thread
is responsible for determining the state of the global transaction. It forks a
new thread on the coordinator and sends a message to this thread to
determine the status of the global transaction. Because the coordinator previ-
ously made the decision to roll back the global transaction, no transaction
status is in the coordinator shared memory. The participant thread rolls back
its piece of work, therefore, and recovery is complete. Figure 30-6 on
page 30-16 illustrates this scenario.
Multiphase Commit Protocols 30-15

How the Two-Phase Commit Protocol Handles Failures
Figure 30-6
Automatic Participant Recovery

Start protocol

End participant recovery

Coordinator:
Records decision to begin precommit phase. Sends a prepare message to
the participants.

Participant 1:
Returns message: cannot commit.
Participants 2 and 3:
Return message: can commit.
Participant 3 Fails

Coordinator:
Receives cannot commit response. Records decision to roll back
transaction. Rolls back work on behalf of transaction. Removes transaction
entry from shared memory. Releases shared-memory resources. Sends a
rollback message to each participant.

Participant 3:
Interprets status as instruction to roll back. Rolls back piece of work. Removes transaction entry
from shared memory. Releases shared-memory resources.

Coordinator:
Reports that transaction status is unknown.

Start participant
recovery

After Participant 3 returns on-line, the transaction on P3 waits for a message from the
coordinator until TXTIMEOUT elapses. When TXTIMEOUT elapses, the participant forks a
new coordinating thread.

Participant 3:
Queries coordinator about the transaction status.

P2 P3P1

C

P2 P3P1

C

C

P2 P3P1

P2 P3P1
30-16 Administrator’s Guide for Informix Dynamic Server

Presumed-Abort Optimization
Race Conditions

A race condition might develop between the coordinator and the participant
when the global transaction is committed.

For example, a race condition can result if a network failure occurs after the
coordinator determines that the transaction should be committed. When the
network comes back up, the coordinator tries to send the commit instruction
to all the participants as described in “Participant Fails—Global Transaction
Committed” on page 30-14. If a participant does not receive a message from
the coordinator before the TXTIMEOUT period, this participant attempts to
contact the coordinator using the mechanism in “Participant Fails—Global
Transaction Rolled Back” on page 30-15. In this scenario, however, the global
transaction is committed, so the participant finds a transaction status in the
coordinator shared memory. In this case, the participant goes to sleep,
allowing the coordinator time to send it the message to commit its piece of
work.

Presumed-Abort Optimization
Presumed-abort optimization is the term that describes how the two-phase
commit protocol handles the rollback of a transaction (an abort).

Rollback is handled in the following manner. When the coordinator deter-
mines that the transaction must be rolled back, it sends a message to all the
participants to roll back their piece of work. The coordinator does not wait for
an acknowledgment of this message but proceeds to close the transaction and
remove it from shared memory. If a participant tries to determine the status
of this transaction — that is, find out whether the transaction was committed
or rolled back (during participant recovery, for example)—it does not find
any transaction status in shared memory. The participant must interpret this
as meaning that the transaction was rolled back.
Multiphase Commit Protocols 30-17

Independent Actions
How Does Presumed-Abort Optimization Affect Automatic Recovery?

Each participant database server must initiate automatic recovery if the
coordinating thread fails in the following situations:

■ Before it makes a decision to commit or roll back the transaction

■ After it decides to roll back a transaction

This responsibility is part of the presumed-abort optimization. (See
“Automatic-Recovery Mechanisms for Coordinator Failure” on page 30-10.)

Why Is an Optimization Realized?

Optimization is realized because the coordinator is not required to flush the
logical-log record (BEGPREP) that indicates a two-phase commit protocol has
begun. If this information is lost (for example, if the coordinator fails before
making a decision), each participant automatically rolls back its piece of
work. Thus the logical log can be buffered, which represents the most
significant part of the streamlined processing.

To a lesser extent, message traffic is reduced because the coordinator receives
acknowledgment only when a transaction commits. Participants do not
acknowledge rollbacks.

Independent Actions
An independent action in the context of two-phase commit is an action that
occurs independently of the two-phase commit protocol. Independent
actions might or might not be in opposition to the actions that the two-phase
commit protocol specifies. If the action is in opposition to the two-phase
commit protocol, the action results in an error or a heuristic decision. Heuristic
decisions can result in an inconsistent database and require manual two-
phase commit recovery. Manual recovery is an extremely complicated
administrative procedure that you should try to avoid. (For a discussion of
the manual-recovery process, see Chapter 31, “Recovering Manually from
Failed Two-Phase Commit.”)
30-18 Administrator’s Guide for Informix Dynamic Server

What Initiates Independent Action?
What Initiates Independent Action?
Independent action during a two-phase commit protocol is rare, but it can
occur in the following situations:

■ The participant’s piece of work develops into a long-transaction
error and is rolled back.

■ An administrator kills a participant thread during the postdecision
phase of the protocol using onmode -z.

■ An administrator kills a participant transaction (piece of work)
during the postdecision phase of the protocol using onmode -Z.

■ An administrator kills a global transaction at the coordinator
database server using onmode -z or onmode -Z after the coordinator
issued a commit decision and became aware of a participant failure.
This action always results in an error, specifically error -716.

Possible Results of Independent Action
As mentioned earlier, not all independent actions are in opposition to the
two-phase commit protocol. Independent actions can yield the following
three possible results:

■ Successful completion of the two-phase commit protocol

■ An error condition

■ A heuristic decision

If the action is not in opposition to the two-phase protocol, the transaction
should either commit or roll back normally. If the action ends the global
transaction prematurely, an error condition results. Ending the global trans-
action at the coordinator is not considered a heuristic decision. If the action is
in opposition to the two-phase commit protocol, a heuristic decision results.
All these situations are discussed in the sections that follow.
Multiphase Commit Protocols 30-19

Possible Results of Independent Action
Independent Actions That Allow Successful Completion of
Transaction

Independent actions are not necessarily in opposition to the two-phase
commit protocol. For example, if a piece of work at a participant database
server is rolled back because it developed into a long transaction, and the
coordinator issues a decision to roll back the global transaction, the database
remains consistent.

Independent Actions That Result in an Error Condition

If you, as administrator at the coordinator database server, execute either
onmode -z (kill the coordinator thread) or onmode -Z (kill the global trans-
action) after the coordinator issues its final commit decision, you are
removing all knowledge of the transaction from shared memory at the
coordinator database server.

This action is not considered a heuristic decision because it does not interfere
with the two-phase protocol; it is either acceptable, or it interferes with
participant recovery and causes an error.

The action is acceptable any time that all participants are able to commit the
transaction without difficulty. In this case, your action to end the transaction
forcibly is superfluous. The indication that you executed onmode -Z reaches
the coordinator only when the coordinator is preparing to terminate the
transaction.

In practice, however, you would probably consider executing onmode -z or
onmode -Z at the coordinator database server only if you were attempting to
hasten the conclusion of a global transaction that has remained open for an
unusually long period. In this scenario, the source of the problem is probably
a failure at some participant database server. The coordinator has not
received acknowledgment that the participant committed its piece of work,
and the coordinator is attempting to establish communication with the
participant to investigate.

If you execute either onmode -z or onmode -Z while the coordinator is
actively trying to reestablish communication, the coordinating thread obeys
your instruction to die, but not before it writes error -716 into the database
server message log. The action is considered an error because the two-phase
commit protocol was forcibly broken, preventing the coordinator from deter-
mining whether the database is consistent.
30-20 Administrator’s Guide for Informix Dynamic Server

Possible Results of Independent Action
Killing a global transaction at a coordinator database server is not considered
a heuristic decision, but it can result in an inconsistent database. For example,
if the participant eventually comes back on-line and does not find the global
transaction in the coordinator shared memory, it rolls back its piece of work,
thereby causing a database inconsistency.

Independent Actions That Result in Heuristic Decisions

Some independent actions can develop into heuristic decisions when both of
the following conditions are true:

■ The participant database server already sent a can commit message
to the coordinator and then rolls back.

■ The coordinator’s decision is to commit the transaction.

When both conditions are true, the net result is a global transaction that is
inconsistently implemented (committed by one or more database servers and
rolled back by another). The database becomes inconsistent.

The following two heuristic decisions are possible:

■ Heuristic rollback (described in “The Heuristic Rollback Scenario”
on page 30-22)

■ Heuristic end transaction (described in “The Heuristic
End-Transaction Scenario” on page 30-26).

Once a heuristic rollback or end transaction occurs, you might have to
perform manual recovery, a complex and time-consuming process. You need
to understand heuristic decisions fully in order to avoid them. Always be
wary of executing onmode -z or onmode -Z within the context of two-phase
commit.
Multiphase Commit Protocols 30-21

The Heuristic Rollback Scenario
The Heuristic Rollback Scenario
Heuristic rollback is an independent action that either the database server or
the administrator can take to roll back a piece of work that has already sent a
can commit message.

Conditions That Result in a Heuristic Rollback

The following two conditions can cause a heuristic rollback:

■ The logical log fills to the point defined by the LTXEHWM configu-
ration parameter. (See Chapter 33, “Configuration Parameters.”) The
source of the long-transaction condition is a piece of work being
performed on behalf of a global transaction.

■ An administrator executes onmode -z session_id to kill a database
server thread that is executing a piece of work being performed on
behalf of a global transaction.

In either case, if the piece of work has already sent a can commit message to
its coordinator, the action is considered a heuristic decision.

Condition 1: Logical Log Fills to a High-Water Mark

Under two-phase commit, a participant database server that is waiting for
instructions from the coordinator is blocked from completing its transaction.
Because the transaction remains open, the logical-log files that contain
records associated with this transaction cannot be freed. The result is that the
logical log continues to fill because of the activity of concurrent users.

If the logical log fills to the value of the long-transaction high-water mark
(LTXHWM) while the participant is waiting, the database server directs all
database server threads that own long transactions to begin rolling them
back. If a piece of work that is precommitted is the offending long trans-
action, the database server has initiated a heuristic rollback. That is, this
database server is rolling back a precommitted piece of work without the
instruction or knowledge of the coordinator.
30-22 Administrator’s Guide for Informix Dynamic Server

The Heuristic Rollback Scenario
Under two-phase commit, the logical-log files that contain records associated
with the piece of work are considered open until an ENDTRANS logical-log
record is written. This type of transaction differs from a transaction involving
a single database server where a rollback actually closes the transaction.

The logical log might continue to fill until the exclusive high-water mark is
reached (LTXEHWM). If this happens, all user threads are suspended except
those that are currently rolling back or currently committing. In the two-
phase commit scenario, the open transaction prevents you from backing up
the logical-log files and freeing space in the logical log. Under these specific
circumstances, the logical log can fill completely. If this happens, the partic-
ipant database server shuts down, and you must perform a data restore.

Condition 2: System Administrator Executes onmode -z

You, as administrator, can decide to initiate a heuristic rollback of a precom-
mitted piece of work by executing onmode -z. You might make this decision
because you want to free the resources that are held by the piece of work. (If
you kill the participant thread by executing onmode -z, you free all locks and
shared-memory resources that are held by the participant thread even
though you do not end the transaction.)

What Happens When a Heuristic Rollback Occurs?

This section describes what happens at both the coordinator and participant
when a heuristic rollback occurs, and how this process can result in an
inconsistent database:

1. At the participant database server where the rollback occurred, a
record is placed in the database server logical log (type HEURTX).
Locks and resources held by the transaction are freed. The partic-
ipant thread writes the following message in the database server
message log indicating that a long-transaction condition and
rollback occurred:

Transaction Completed Abnormally (rollback):
tx=address flags=0xnn
Multiphase Commit Protocols 30-23

The Heuristic Rollback Scenario
2. The coordinator issues postdecision phase instructions to commit the
transaction.

The participant thread at the database server where the heuristic
rollback occurred returns error message -699 to the coordinator as
follows:

-699 Transaction heuristically rolled back.

This error message is not returned to the application at this point; it
is an internal notification to the coordinator. The coordinator waits
until all participants respond to the commit instruction. The coordi-
nator does not determine database consistency until all participants
report.

3. The next steps depend on the actions that occur at the other
participants. Two possible situations are possible.

Situation 1: Coordinator Issues a Commit and All Participants Report Heuristic
Rollbacks

 The coordinator gathers all responses from participants. If every participant
reports a heuristic rollback, the following events occur as a consequence:

1. The coordinator writes the following message to its own database-
server message log:

Transaction heuristically rolled back.

2. The coordinator sends a message to all participants to end the
transaction.

3. Each participant writes an ENDTRANS record in its logical-log buffer.
(The transaction entry is removed from the shared-memory
transaction table.)

4. The coordinator writes an ENDTRANS record in its logical-log buffer.
(The transaction entry is removed from the shared-memory
transaction table.)

5. The coordinator returns error -699 to the application, as follows:
-699 Transaction heuristically rolled back.

6. In this situation, all databases remain consistent.
30-24 Administrator’s Guide for Informix Dynamic Server

The Heuristic Rollback Scenario
Situation 2: Coordinator Issued a Commit; One Participant Commits and One
Reports a Heuristic Rollback

The coordinator gathers all responses from participants. If at least one
participant reports a heuristic rollback, and at least one reports an acknowl-
edgment of a commit, the result is referred to as a mixed-transaction result. The
following events occur as a consequence:

1. The coordinator writes the following message to its own database
server message log:

Mixed transaction result. (pid=nn user=userid)

The pid value is the user-process identification number of the
coordinator process. The user value is the user ID associated with
the coordinator process. Associated with this message are additional
messages that list each of the participant database servers that
reported a heuristic rollback. The additional messages take the
following form:

Participant database server dbservername heuristically
rolled back.

2. The coordinator sends a message to each participant that heuristi-
cally rolled back its piece of work, directing each one to end the
transaction.

3. Each participant writes an ENDTRANS message in its logical-log
buffer. (The transaction entry is removed from the shared-memory
transaction table.)

4. The coordinator writes an ENDTRANS message in its logical-log
buffer. (The transaction entry is removed from the shared-memory
transaction table.)

5. The coordinator returns error -698 to the application, as follows:
-698 Inconsistent transaction. Number and names of
servers rolled back.

6. Associated with this error message is the list of participant database
servers that reported a heuristic rollback. If a large number of
database servers rolled back the transaction, this list could be
truncated. The complete list is always included in the message log
for the coordinator database server.

In this situation, examine the logical log at each participant database server
site and determine whether your database system is consistent. (See
“Determine If a Transaction Was Implemented Inconsistently” on page 31-4.)
Multiphase Commit Protocols 30-25

The Heuristic End-Transaction Scenario
The Heuristic End-Transaction Scenario
Heuristic end transaction is an independent action taken by the administrator
to roll back a piece of work and remove all information about the transaction
from the database server shared-memory transaction table. The heuristic
end-transaction process is initiated when the administrator executes the
onmode -Z address command.

Whenever you initiate a heuristic end transaction by executing onmode -Z,
you remove critical information required by the database server to support
the two-phase commit protocol and its automatic-recovery features. If you
execute onmode -Z, it becomes your responsibility to determine whether
your networked database system is consistent.

When to Perform a Heuristic End Transaction

You should execute the onmode -Z option to initiate a heuristic end trans-
action in only one, rare, situation. This situation occurs when a piece of work
that has been heuristically rolled back remains open, preventing your logical-
log files from becoming free. As a result, the logical log is dangerously close
to full.

In general, the coordinator issues its commit-or-rollback decision within a
reasonable period of time. However, if the coordinator fails and does not
return on-line to end a transaction that was heuristically rolled back at your
participant database server, you might face a serious problem.

The problem scenario begins in this way:

1. The participant thread that is executing a piece of work on behalf of
a global transaction has sent a can commit response to the coordi-
nator.

2. The piece of work waits for instructions from the coordinator.

3. While the piece of work is waiting, the logical log fills past the
long-transaction high-water mark.
30-26 Administrator’s Guide for Informix Dynamic Server

The Heuristic End-Transaction Scenario
4. The piece of work that is waiting for instructions is the source of the
long transaction. The participant database server directs the
executing thread to roll back the piece of work. This action is a
heuristic rollback.

5. The participant continues to wait for the coordinator to direct it to
end the transaction. The transaction remains open. The logical log
continues to fill.

If the coordinator contacts the participant and directs it to end the transaction
in a reasonable period of time, no problem develops. The serious problem
arises if the heuristic rollback occurs at a participant database server, and
subsequently the coordinator fails, preventing the coordinator from directing
the participant to end the transaction.

As a consequence, the transaction remains open. The open transaction
prevents you from backing up logical-log files and freeing space in the logical
log. As the logical log continues to fill, it might reach the point specified by
the exclusive-access, long-transaction high-water mark (LTXEHWM). If this
point is reached, normal processing is suspended. At some point after the
LTXEHWM high-water mark is reached, you must decide if the open trans-
action is endangering your logical log. The danger is that if the logical log fills
completely, the database server shuts down, and you must perform a data
restore.

You must decide whether to kill the transaction and protect your system
against the possibility of filling the logical log, despite all the problems
associated with executing onmode -Z, or to wait and see if communication
with the coordinator can be reestablished in time to end the transaction
before the logical log fills.

How to Use onmode -Z

The onmode -Z address command is intended for use only if communication
between the coordinator and the participant is broken. To ensure that
communication is really broken, the onmode -Z command does not execute
unless the thread that was executing the piece of work has been dead for the
amount of time specified by TXTIMEOUT. For more information on this
option, refer to “Kill a Database Server Transaction” on page 35-34.

The address parameter is obtained from onstat -x output. See “-x Option” on
page 35-92.
Multiphase Commit Protocols 30-27

Tracking a Global Transaction
What Happens When the Transaction Is Ended Heuristically?

When you execute onmode -Z, you direct the onmode utility to remove the
participant transaction entry, which is located at the specified address, from
the transaction table.

Two records are written in the logical log to document the action. The records
are type ROLLBACK and ENDTRANS, or if the transaction was already heuris-
tically rolled back, ENDTRANS only. The following message is written to the
participant database server message log:

(timestamp) Transaction Completed Abnormally (endtx):
tx=address flags:0xnn user username tty ttyid

The coordinator receives an error message from the participant where the
onmode -Z occurred, in response to its COMMIT instruction. The coordinator
queries the participant database server, which no longer has information
about the transaction. The lack of a transaction-table entry at the participant
database server indicates that the transaction committed. The coordinator
assumes that the acknowledgment message was sent from the participant,
but somehow it was not received. Because the coordinator does not know that
this participant’s piece of work did not commit, it does not generate
messages indicating that the global transaction was inconsistently imple-
mented. Only the administrator who executed the onmode -Z command is
aware of the inconsistent implementation.

Tracking a Global Transaction
You can use the onstat -x utility to track transactions as they execute. For
sample output of the onstat -x utility, refer to “Monitoring Transactions” on
page 29-41. The fields displayed by onstat -x are described in detail in “-x
Option” on page 35-92.
30-28 Administrator’s Guide for Informix Dynamic Server

Two-Phase Commit Protocol Errors
Two-Phase Commit Protocol Errors
The following two-phase commit protocol errors require special attention
from the administrator.

Error Number Description

-698 If you receive error -698, a heuristic rollback has occurred and has
caused an inconsistently implemented transaction. The circum-
stances leading up to this event are described in “What Happens
When a Heuristic Rollback Occurs?” on page 30-23. For an expla-
nation of how the inconsistent transaction developed and to learn
the options available to you, refer to this discussion.

-699 If you receive error -699, a heuristic rollback has occurred. The
circumstances leading up to this event are described in “What
Happens When a Heuristic Rollback Occurs?” on page 30-23. For
an explanation of how the inconsistent transaction developed, refer
to this discussion.

-716 If you receive error -716, the coordinating thread has been termi-
nated by administrator action after it issued its final decision. This
scenario is described under “Independent Actions That Result in an
Error Condition” on page 30-20.
Multiphase Commit Protocols 30-29

Two-Phase Commit and Logical-Log Records
Two-Phase Commit and Logical-Log Records
The database server uses logical-log records to implement the two-phase
commit protocol. You can use these logical-log records to detect heuristic
decisions and, if necessary, to help you perform a manual recovery. (See
Chapter 31, “Recovering Manually from Failed Two-Phase Commit.”)

The following logical-log records are involved in distributed transactions:

■ BEGPREP

■ PREPARE

■ TABLOCKS

■ HEURTX

■ ENDTRANS

For information about these logical-log records, see “Logical-Log Record
Types and Additional Columns” on page 37-7.

This section examines the sequence of logical-log records that are written
during the following database server scenarios:

■ A transaction is committed.

■ A piece of work is heuristically rolled back.

■ A piece of work is heuristically ended.
30-30 Administrator’s Guide for Informix Dynamic Server

Logical-Log Records When the Transaction Commits
Logical-Log Records When the Transaction Commits
Figure 30-7 illustrates the writing sequence of the logical-log records during
a successful two-phase commit protocol that results in a committed
transaction.

Figure 30-7
Logical-Log

Records Written
During a Committed

Transaction

Start protocol

End protocol

Coordinator:
Writes log record: BEGPREP.
Sends message: precommit.

All participants:
Write log record: TABLOCKS.
Write and flush log record: PREPARE.
Send message: can commit.

Coordinator:
Writes log record: COMMIT.
Flushes logical-log buffer.
Sends message: commit.

All participants:
Writes log record: COMMIT
Flushes logical-log buffer.
Send message: committed.

Coordinator:
Writes log record: ENDTRANS.

P2 P3P1

C

P2 P3P1

C

C

Multiphase Commit Protocols 30-31

Logical-Log Records When the Transaction Commits
Some of the logical-log records must be flushed from the logical-log buffer
immediately; for others, flushing is not critical.

The coordinator’s commit-work record (COMMIT record) contains all
information needed to initiate the two-phase commit protocol. It also serves
as the starting point for automatic recovery in the event of a failure on the
coordinator’s host computer. Because this record is critical to recovery, it is
not allowed to remain in the logical-log buffer. The coordinator must
immediately flush the COMMIT logical-log record.

The participants in Figure 30-7 on page 30-31 must immediately flush both
the PREPARE and the COMMIT logical-log records. Flushing the PREPARE
record ensures that, if the participant’s host computer fails, fast recovery is
able to determine that this participant is part of a global transaction. As part
of recovery, the participant might query the coordinator to learn the final
disposition of this transaction.

Flushing the participant’s COMMIT record ensures that, if the participant’s
host computer fails, the participant has a record of what action it took
regarding the transaction. To understand why this information is crucial,
consider the situation in which a participant crashes after the PREPARE record
is written but before the COMMIT record flushes. After fast recovery, the
PREPARE record is restored, but the COMMIT record is lost (because it was in
the logical-log buffer at the time of the failure). The existence of the PREPARE
record would initiate a query to the coordinator about the transaction.
However, the coordinator would know nothing of the transaction because it
ended the transaction after it received the participant’s acknowledgment that
the commit occurred. In this situation, the participant would interpret the
lack of information as a final direction to roll back the transaction. The two-
phase commit protocol requires the participant’s COMMIT record to be
flushed immediately to prevent this kind of misunderstanding.
30-32 Administrator’s Guide for Informix Dynamic Server

Logical-Log Records Written During a Heuristic Rollback
Logical-Log Records Written During a Heuristic Rollback
Figure 30-8 on page 30-34 illustrates the sequence in which the database
server writes the logical-log records during a heuristic rollback. Because a
heuristic rollback only occurs after the participant sends a message that it can
commit, and the coordinator sends a message to commit, the first phase of
this protocol is the same as that shown in Figure 30-7 on page 30-31. When a
heuristic rollback occurs, the rollback is assumed to be the consequence of a
long-transaction condition that occurs at the Participant 1 (P1) database
server. The end result is a transaction that is inconsistently implemented. See
“The Heuristic Rollback Scenario” on page 30-22.
Multiphase Commit Protocols 30-33

Logical-Log Records Written During a Heuristic Rollback
Figure 30-8
Logical-Log

Records Written
During a Heuristic

Rollback

Start protocol

End protocol

Coordinator:
Writes log record: BEGPREP.
Sends message: precommit.

All Participants:
Write log record: TABLOCKS.
Write log record: PREPARE.
Flush logical log.
Send message: commit ok.

Within P1 participant’s environment:
Dynamic Server detects long transaction
condition. Rollback starts.
Writes log record: HEURTX.
Writes log record: ROLLBACK.
Message written in message log.

Participant 1
Writes log record: ENDTRANS.
Sends message: Transaction ended.

Participant 1:
Sends message: Transaction heuristically rolled back. Cannot commit.
Participants 2 and 3:
Write and flush log record: COMMIT.
Send message: committed.

Coordinator:
Writes log record: COMMIT.
Flushes log record.
Sends message: commit.

Coordinator:
Writes message in message log (-698).
Sends message to Participant 1: end-transaction.

Coordinator
Writes log record: ENDTRANS.
Returns error message to user: Error -698.

P2 P3P1

C

P2 P3P1

C

C

P2 P3P1

C

30-34 Administrator’s Guide for Informix Dynamic Server

Logical-Log Records Written After a Heuristic End Transaction
Logical-Log Records Written After a Heuristic End
Transaction
Figure 30-9 on page 30-36 illustrates the writing sequence of the logical-log
records during a heuristic end transaction. The event is always the result of a
database server administrator killing a transaction (see “Kill a Database
Server Transaction” on page 35-34) at a participant database server after the
participant has sent a can commit message. In Figure 30-9, the heuristic end
transaction is assumed to have occurred at the P1 participant. The result is an
inconsistently implemented transaction. See “The Heuristic End-Transaction
Scenario” on page 30-26.
Multiphase Commit Protocols 30-35

Logical-Log Records Written After a Heuristic End Transaction
Figure 30-9
Logical-Log

Records Written
During a Heuristic

End Transaction

Start protocol

End protocol

Coordinator:
Writes log record: BEGPREP.
Sends message: precommit.

All participants:
Write log record: TABLOCKS.
Write and flush log record: PREPARE.
Send message: can commit.

Coordinator:
Writes log record: COMMIT.
Flushes logical-log buffer.
Sends message: commit.
Participant 1:
Returns error message.

Participants 2 and 3:
Write log record: COMMIT.
Flush logical-log buffer.
Send message: committed.

Coordinator:
Receives error message from P1.
Establishes new connection to P1 and sends TX Inquire message to P1.

P1 participant’s environment:
Transaction is killed.
Writes log record: ROLLBACK.
Writes log record: ENDTRANS.
Message is written in the database server message log.

Participant 1:
Sends transaction status unknown message back to the coordinator.

Coordinator:
Assumes unknown status means committed.
Writes log record: ENDTRANS.

P2 P3P1

P2 P3P1

C

C

C

P2 P3P1

C

30-36 Administrator’s Guide for Informix Dynamic Server

Configuration Parameters Used in Two-Phase Commits
Configuration Parameters Used in Two-Phase
Commits
The following two configuration-file parameters are specific to distributed
environments:

■ DEADLOCK_TIMEOUT

■ TXTIMEOUT

Although both parameters specify time-out periods, the two are
independent.

Function of the DEADLOCK_TIMEOUT Parameter
If a distributed transaction is forced to wait longer than the number of
seconds specified by DEADLOCK_TIMEOUT for a shared-memory resource,
the thread that owns the transaction assumes that a multiserver deadlock
exists. The following error message is returned:

-154 ISAM error: deadlock timeout expired - Possible deadlock.

The default value of DEADLOCK_TIMEOUT is 60 seconds. Adjust this value
carefully. If you set it too low, individual database servers abort transactions
that are not deadlocks. If you set it too high, multiserver deadlocks could
reduce concurrency.

Function of the TXTIMEOUT Parameter
The TXTIMEOUT configuration parameter is specific to the two-phase commit
protocol. It is used only if communication between a transaction coordinator
and participant has been interrupted and needs to be reestablished.

The TXTIMEOUT parameter specifies a period of time that a participant
database server waits to receive a commit instruction from a coordinator
database server during a distributed transaction. If the period of time
specified by TXTIMEOUT elapses, the participant database server checks the
status of the transaction to determine if the participant should initiate
automatic participant recovery.
Multiphase Commit Protocols 30-37

Heterogeneous Commit Protocol
TXTIMEOUT is specified in seconds. The default value is 300 (five minutes).
The optimal value for this parameter varies, depending on your specific
environment and application. Before you modify this parameter, read the
discussion “How the Two-Phase Commit Protocol Handles Failures” on
page 30-10.

Heterogeneous Commit Protocol
Used in the context of Informix database servers, the term heterogeneous
environment refers to a group of database servers in which at least one of the
database servers is not an Informix database server. Heterogeneous commit
ensures the all-or-nothing basis of distributed transactions in a heteroge-
neous environment.

Unlike the two-phase commit protocol, the heterogeneous commit protocol
supports the participation of a non-Informix participant. The non-Informix
participant, called a gateway participant, must communicate with the coordi-
nator through an Informix gateway.

The database server uses heterogeneous commit protocol when the following
criteria are met:

■ Heterogeneous commit is enabled. (That is, the HETERO_COMMIT
configuration parameter is set to 1.)

■ The coordinator of the commit is a Version 7.2 or later Informix
database server.

■ The non-Informix participant communicates with the Informix
database server through an Informix gateway.

■ At most, one non-Informix participant performs an update within a
single transaction.
30-38 Administrator’s Guide for Informix Dynamic Server

Which Gateways Can Participate in a Heterogeneous Commit Transaction?
Figure 30-10 illustrates this scenario.

Which Gateways Can Participate in a Heterogeneous
Commit Transaction?
An Informix gateway acts as a bridge between an Informix application (in
this case, a database server) and a non-Informix database server. An Informix
gateway allows you to use an Informix application to access and modify data
that is stored in non-Informix databases.

The following table lists the gateways and corresponding database servers
that can participate in a transaction in which the database server uses the
heterogeneous commit protocol.

Figure 30-10
Configuration That

Requires
Heterogeneous

Commit for
Distributed

Transactions

Informix client

Database server

Coordinator

Non-Informix
participant

Informix
gateway

Database server

Informix participants

.

.

.

Database server

Gateway server

Gateway Database Servers

INFORMIX-Enterprise Gateway with DRDA IBM DB2, OS/400, SQL/DS

INFORMIX-Enterprise Gateway for EDA/SQL EDA/SQL

INFORMIX-Enterprise Gateway Manager Any database server with ODBC
connectivity
Multiphase Commit Protocols 30-39

Enabling and Disabling Heterogeneous Commit
Enabling and Disabling Heterogeneous Commit
Use one of the following methods to enable or disable heterogeneous
commit:

■ Use ON-Monitor. ♦
■ Change the HETERO_COMMIT configuration parameter in your

configuration file.

In either case, the change does not take effect until you reinitialize shared
memory by bringing the database server off-line and then on-line again.

When you set HETERO_COMMIT to 1, the transaction coordinator checks for
distributed transactions that require the use of heterogeneous commit. When
the coordinator detects such a transaction, it automatically executes the
heterogeneous commit protocol.

If you set HETERO_COMMIT to 0, or any number other than 1, the transaction
coordinator disables the heterogeneous commit protocol. The following table
summarizes which protocol, heterogeneous commit or two-phase commit,
the transaction coordinator uses to ensure the integrity of a distributed trans-
action.

HETERO_COMMIT
Setting Gateway participant updated? Database Server Protocol

Disabled No Two-phase commit

Disabled Yes Two-phase commit

Enabled No Two-phase commit

Enabled Yes Heterogeneous commit

UNIX
30-40 Administrator’s Guide for Informix Dynamic Server

How Does Heterogeneous Commit Work
How Does Heterogeneous Commit Work
The heterogeneous commit protocol is a modified version of the standard
two-phase commit protocol. The postdecision phase in the heterogeneous
commit protocol is identical to the postdecision phases in the two-phase
commit protocol. The precommit phase contains a minor modification, and a
new phase, called the gateway commit phase, is added to the heterogeneous
commit protocol.

The following sections explain the modification to the precommit phase and
the gateway commit phase. For a detailed explanation of the postdecision
phases, see “Postdecision Phase” on page 30-7.

Precommit Phase

The coordinator directs each update participant (except the gateway partic-
ipant) to prepare to commit the transaction.

If the updates satisfy all deferred constraints, all participants (except the
gateway participant) return messages to the coordinator indicating that they
can commit their piece of work.

Gateway Commit Phase

If all participants successfully return a message indicating that they are
prepared to commit, the coordinator sends a commit message to the gateway.
The gateway in turn sends a response to the coordinator indicating whether
the gateway committed its piece of the transaction. If the gateway commits
the transaction, the coordinator decides to commit the entire transaction.
Figure 30-11 on page 30-42 illustrates this process.
Multiphase Commit Protocols 30-41

How Does Heterogeneous Commit Work
If the gateway fails to commit the transaction, the coordinator rolls back the
entire transaction, as Figure 30-11 illustrates.

Heterogeneous Commit Optimization

The database server optimizes the heterogeneous commit protocol when the
only participant that receives an update is a non-Informix database. In this
case, the coordinator sends a single commit message to all participants
without invoking the heterogeneous commit protocol.

Figure 30-11
Heterogeneous

Commit Phase That
Results in a
Committed
Transaction

Start gateway commit phase

Coordinator:
Sends a commit message to the gateway participant.

Gateway Participant:
Commits the work. Returns message: committed.GP

C

C
Coordinator:
Receives gateway committed message.

End gateway commit phase

Gateway

Gateway
30-42 Administrator’s Guide for Informix Dynamic Server

Implications of a Failed Heterogeneous Commit
Implications of a Failed Heterogeneous Commit
At any time during a distributed transaction that the database server
processes using heterogeneous commit, the coordinator or any number of
participants can fail. The database server handles these failures in the same
way as in the two-phase commit protocol except in certain instances. The
following sections examine these special instances in detail.

Database Server Coordinator Failure

The consistency of data after a coordinator failure depends on the point in the
heterogeneous commit process at which the coordinator fails. If the coordi-
nator fails before sending the commit message to the gateway, the entire
transaction is aborted upon recovery as is the case with two-phase commit.

If the coordinator fails after it writes the commit log record, the entire trans-
action is committed successfully upon recovery as is the case with two-phase
commit.

If the coordinator fails after it sends the commit message to the gateway but
before it writes the commit log record, the remote Informix database server
sites in the transaction are aborted upon recovery. This abort might result in
inconsistencies if the gateway received the commit message and committed
the transaction.

The following table summarizes these scenarios.

Point of Database Server Coordinator Failure Expected Result

After the coordinator writes the PREPARE log
record and before the gateway commit phase

Data consistency is maintained.

After the coordinator sends a commit message
to the gateway but before it receives a reply

Data is probably inconsistent. No
indication of probable data incon-
sistency from the coordinator.

After gateway commit phase but before the
coordinator writes a COMMIT record to the
logical log

Data consistency is lost. No
indication of data inconsistency
from the coordinator.
Multiphase Commit Protocols 30-43

Implications of a Failed Heterogeneous Commit
Participant Failure

Whenever a participant in a distributed transaction that uses the heteroge-
neous protocol fails, the coordinator sends the following error message:

-441 Possible inconsistent data at the target DBMS name due
to an aborted commit.

In addition, the database server sends the following message to the message
log:

Data source accessed using gateway name might be in an
inconsistent state.

A participant failure is not limited to the failure of a database server or
gateway. In addition, a failure of the communication link between the coordi-
nator and the gateway is considered a gateway failure. The gateway
terminates if a link failure occurs. The gateway must terminate because it
does not maintain a transaction log and therefore cannot reestablish a
connection with the coordinator and resume the transaction. Because of this
restriction, some scenarios exist in which a gateway failure might leave data
in an inconsistent state. The following table summarizes these scenarios.

Point of Participant Failure Expected Result

After participant receives commit transaction
message from coordinator, but before partic-
ipant performs commit

Data consistency is maintained.

After participant receives commit transaction
message from coordinator and commits the
transaction, but before the participant replies to
coordinator

Data is inconsistent.

After participant commits the transaction and
sends a reply to coordinator

If the communications link fails
before the coordinator receives
the reply, then data is incon-
sistent. If the coordinator
receives the reply, then data is
consistent (provided the coordi-
nator does not fail before writing
the COMMIT record).
30-44 Administrator’s Guide for Informix Dynamic Server

Implications of a Failed Heterogeneous Commit
The recovery procedure that the database server follows when a participant
fails is identical to the procedure that is followed in two-phase commit. For
more information on this procedure, see “Participant Failure” on page 30-44.

Interpreting Heterogeneous Commit Error Messages

When the database server fails to process a distributed transaction using
heterogeneous commit, it returns one of the two error messages that are
discussed in the following sections.

Application Attempts to Update Multiple Gateway Participants

If your client application attempts to update data at more than one gateway
participant when HETERO_COMMIT is set to 1, the coordinator returns the
following error message:

-440 Cannot update more than one non-Informix DBMS within a
transaction.

If you receive this error message, rewrite the offending application so that it
updates at most one gateway participant in a single distributed transaction.

Failed Attempt to Commit Distributed Transaction Using Heterogeneous
Commit

The database server can fail to commit a distributed transaction while it is
using the heterogeneous protocol for one or more of the following reasons:

■ Communication error

■ Site failure

■ Gateway failure

■ Other unknown error

When such a failure occurs, the coordinator returns the following message:

-441 Possible inconsistent data at the target DBMS name due
to an aborted commit.
Multiphase Commit Protocols 30-45

Implications of a Failed Heterogeneous Commit
After the database server sends this message, it rolls back all update sites that
are participating in the transaction, with the possible exception of the work
done at the site of the gateway participant. The gateway participant might
have committed its updates if the failure occurred after the gateway partic-
ipant processed the commit message. If the gateway participant committed
the updates, you must manually rollback these updates.
30-46 Administrator’s Guide for Informix Dynamic Server

31
Chapter
Recovering Manually from
Failed Two-Phase Commit
Procedure to Determine If Manual Recovery Is Required 31-3
Determine If a Transaction Was Implemented Inconsistently . . . 31-4

Global Transaction Killed Prematurely 31-4
Heuristic End Transaction 31-4
Heuristic Rollback 31-5

Determine If the Distributed Database Contains
Inconsistent Data 31-6
Obtain Information from the Logical Log 31-7
The Global Transaction Identifier 31-8

Decide If Action Is Needed to Correct the Situation 31-9

Example of Manual Recovery 31-10

31-2 Ad
ministrator’s Guide for Informix Dynamic Server

Distributed transactions follow the two-phase commit protocol.
Certain actions occur independently of the two-phase commit protocol and
cause the transaction to be inconsistently implemented. (See “Independent
Actions” on page 30-18.) In these situations, it might be necessary to recover
manually from the transaction.

This chapter describes the following topics:

■ How to determine if you need to recover manually from an
inconsistently implemented two-phase commit transaction

■ How to perform a manual recovery

Procedure to Determine If Manual Recovery Is
Required
The following list outlines the steps in the procedure to determine database
consistency and to correct the situation if required:

1. Determine whether a transaction was implemented inconsistently.

2. Determine if the networked database system contains inconsistent
data.

3. Decide if action to correct the situation is required.

Each of these steps is described in the following sections.
Recovering Manually from Failed Two-Phase Commit 31-3

Determine If a Transaction Was Implemented Inconsistently
Determine If a Transaction Was Implemented
Inconsistently
Your first task is to determine whether the transaction was implemented
inconsistently as a result of an independent action.

Global Transaction Killed Prematurely

If you executed an onmode -z command to kill the global transaction on the
coordinator, the transaction might be inconsistently implemented. (For an
explanation of how this situation can arise, see “Independent Actions That
Result in an Error Condition” on page 30-20.) You can check for an incon-
sistent transaction by first examining the database server message log for the
coordinator. Look for the following error message:

-716 Possible inconsistent transaction. Unknown servers are
server-name-list.

This message lists all the database servers that were participants. Examine
the logical log of each participant. If at least one participant performed a
commit and one performed a rollback, the transaction was inconsistently
implemented.

Heuristic End Transaction

If you executed an onmode -Z address command to end a piece of work
performed by a participant, and the coordinator decided to commit the trans-
action, the transaction is implemented inconsistently. (For a description of
this scenario, see “The Heuristic End-Transaction Scenario” on page 30-26.)
Examine the logical log of each participant. If at least one participant
performed a commit and one performed a rollback, the transaction was
inconsistently implemented.
31-4 Administrator’s Guide for Informix Dynamic Server

Determine If a Transaction Was Implemented Inconsistently
Heuristic Rollback

You can determine the specific database server participants affected by a
heuristic decision to roll back a transaction in the following ways:

■ Examine the return code from the COMMIT WORK statement in the
application.

The following message indicates that one of the participants
performed a heuristic rollback:

-698 Inconsistent transaction. Number and names of
servers rolled back.

■ Examine the messages in the database server message-log file.

If a database inconsistency is possible because of a heuristic decision
at a participating database server, the following message appears in
the database server message-log file of the coordinator:

Mixed transaction result. (pid=nn user=user_id)

This message is written whenever error -698 is returned. Associated
with this message is a list of the participant database servers where
the transaction was rolled back. This is the complete list. The list that
appears with the -698 error message could be truncated if a large
number of participants rolled back the transaction.

■ Examine the logical log for each participant.

If at least one participant rolls back its piece of work, and one partic-
ipant commits its piece of work, the transaction is implemented
incorrectly.
Recovering Manually from Failed Two-Phase Commit 31-5

Determine If the Distributed Database Contains Inconsistent Data
Determine If the Distributed Database Contains
Inconsistent Data
If you determine that a transaction was inconsistently implemented, you
must determine what this situation means for your distributed database
system. Specifically, you must determine if data integrity has been affected.

A transaction that is inconsistently implemented causes problems whenever
the piece of work rolled back by one participant is dependent on a piece of
work that was updated by another participant. It is impossible to define these
dependencies with SQL because distributed transactions do not support
constraints that reference data at multiple database servers. The pieces of
work are independent (no dependencies exist) only if the data could have
been updated in two independent transactions. Otherwise, the pieces of
work are considered to be dependent.

Before you proceed, consider the transaction that caused the error. Are the
pieces of data that were updated and rolled back dependent on one another?
Multiple updates might be included in a single transaction for reasons other
than maintaining data integrity. For example, here are three possible reasons:

■ Reduced transaction overhead

■ Simplified coding

■ Programmer preference

Verify also that every participant database server that is assumed to have
committed the transaction actually modified data. A read-only database
server might be listed as a participant that committed a transaction.

If an inconsistent transaction does not lead to a violation of data integrity, you
can quit the procedure at this point.
31-6 Administrator’s Guide for Informix Dynamic Server

Determine If the Distributed Database Contains Inconsistent Data
Obtain Information from the Logical Log

To determine if data integrity has been affected by an inconsistently imple-
mented global transaction, you need to reconstruct the global transaction and
determine which parts of the transaction were committed and which were
rolled back. Use the onlog utility to obtain the necessary information. The
procedure is as follows:

1. Reconstruct the transaction at the participant that contains the
HEURTX record.

a. A participant database server logical log is the starting point for
your information search. Each record in the log has a local trans-
action identification number (xid). Obtain the xid of the HEURTX
record.

b. Use the local xid to locate all associated log records that rolled
back as part of this piece of work.

2. Determine which the database server acted as coordinator for the
global transaction.

a. Look for the PREPARE record on the participant that contains the
same local xid. The PREPARE record marks the start of the
two-phase commit protocol for the participant.

b. Use the onlog -l option to obtain the long output of the PREPARE
record. This record contains the global transaction identifier
(GTRID) and the name of the coordinating database server. For
information about GTRID, see “The Global Transaction
Identifier” on page 31-8.

3. Obtain a list of the other participants from the coordinator log.

a. Examine the log records on the coordinator database server. Find
the BEGPREP record.

b. Examine the long output for the BEGPREP record. If the first
32 bytes of the GTRID in this record match the GTRID of the
participant, the BEGPREP record is part of the same global trans-
action. Note the participants displayed in the ASCII part of the
BEGPREP long output.
Recovering Manually from Failed Two-Phase Commit 31-7

Determine If the Distributed Database Contains Inconsistent Data
4. Reconstruct the transaction at each participant.

a. At each participant database server, read the logical log to find
the PREPARE record that contains the GTRID associated with this
transaction and obtain the local xid for the piece of work
performed by this participant.

b. At each participant database server, use the local xid to locate all
logical-log records associated with this transaction (committed
or rolled back).

After you follow this procedure, you know what all the participants for the
transaction were, which pieces of work were assigned to each participant,
and whether each piece of work was rolled back or committed. From this
information, you can determine if the independent action affected data
integrity.

The Global Transaction Identifier

When a global transaction starts, it receives a unique identification number
called a global transaction identifier (GTRID). The GTRID includes the name
of the coordinator. The GTRID is written to the BEGPREP logical-log record of
the coordinator and the PREPARE logical-log record of each participant.

To see the GTRID, use the onlog -l option. The GTRID is offset 20 bytes into the
data portion of the record and is 144 bytes long. Figure 31-1 shows the
onlog -l output for a BEGPREP record. The coordinator is chrisw.

4a064 188 BEGPREP 4 0 4a038 0 1
 000000bc 00000043 00000004 0004a038C8
 00087ef0 00000002 63687269 73770000 ..~..... chrisw..
 00000000 00000000 00000000 00087eeb~.
 00006b16 00000000 00000000 00000000 ..k.....
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000001 6a756469 74685f73 judith_s
 6f630000 736f6374 63700000 oc..soct cp..

Figure 31-1
Output of the

onlog -l Option for a
BEGPREP Record
31-8 Administrator’s Guide for Informix Dynamic Server

Determine If the Distributed Database Contains Inconsistent Data
The first 32 bytes of the GTRID are identical for the BEGPREP record on the
coordinator and the PREPARE records on participants, which are part of the
same global transaction. For example, compare the GTRID for the PREPARE
record in Figure 31-2 with that of the BEGPREP record in Figure 31-1.

c7064 184 PREPARE 4 0 c7038 chrisw
 000000b8 00000044 00000004 000c7038Dp8
 00005cd6 00000002 63687269 73770000 ..˙.... chrisw..
 00000000 00000000 00000069 00087eebi..~.
 00006b16 00000000 00000010 00ba5a10 ..k.....Z.
 00000002 00ba3a0c 00000006 00000000:.
 00ba5a10 00ba5a1c 00000000 00000000 ..Z...Z.
 00ba3a0e 00254554 00ba2090 00000001 ..:..%ET
 00000000 00ab8148 0005fd70 00ab8148H ...p...H
 0005fe34 0000003c 00000000 00000000 ...4...<
 00000000 00ab80cc 00000000 00ab80c4
 00ba002f 63687269 73770000 00120018 .../chrisw......
 00120018 00ba0000

Figure 31-2
Output of the

onlog -l Option for a
PREPARE Record
Recovering Manually from Failed Two-Phase Commit 31-9

Decide If Action Is Needed to Correct the Situation
Decide If Action Is Needed to Correct the Situation
If an inconsistent transaction creates an inconsistent database, the following
three options are available to you:

■ Leave the networked database in its inconsistent state.

■ Remove the effects of the transaction wherever it was committed,
thereby rolling back the entire transaction.

■ Reapply the effects of the transaction wherever it was rolled back,
thereby committing the transaction.

You can leave the database in its inconsistent state if the transaction does not
significantly affect database data. You might encounter this situation if the
application that is performing the transaction can continue as it is, and you
decide that the price (in time and effort) of returning the database to a
consistent state by either removing the effects or reapplying the transaction
is too high.

You do not have to reach this decision immediately. You can use the methods
described in the following paragraphs to determine what data the trans-
action was updating and which records are affected.

As you make your decision, consider that no automatic process or utility can
perform a rollback of a committed transaction or can commit part of a trans-
action that has been rolled back. The following paragraphs describe how to
look through the database server message log and the logical log to locate
affected records. Without detailed knowledge of the application, messages
are not enough to determine what has happened. Based on your knowledge
of your application and your system, you must determine whether to roll
back or to commit the transaction. You must also program the compensating
transaction that will perform the rollback or the commit.
31-10 Administrator’s Guide for Informix Dynamic Server

Example of Manual Recovery
Example of Manual Recovery
This example illustrates the kind of work that is involved in manual recovery.
The following SQL statements were executed by user nhowe. Error -698 was
returned.

%dbaccess
CREATE DATABASE tmp WITH LOG;
CREATE TABLE t (a int);
CLOSE DATABASE;
CREATE DATABASE tmp@apex WITH LOG;
CREATE TABLE t (a int);
CLOSE DATABASE;
DATABASE tmp;
BEGIN WORK;
INSERT INTO t VALUES (2);
INSERT INTO tmp@apex:t VALUES (2);
COMMIT WORK;
return code -698

The following excerpt is taken from the logical log at the current database
server:

addr len type xididlink
.....
17018 16CKPOINT 0 0 13018 0
18018 20BEGIN 2 1 0 08/27/91 10:56:57 3482 nhowe
1802c 32HINSERT 2 0 18018 1000018 102 4
1804c 40CKPOINT 0 0 17018 1

begin xid id addr user
1 2 1 1802c nhowe

19018 72BEGPREP 2 0 1802c 6d69 1
19060 16COMMIT 2 0 19018 08/27/91 11:01:38
1a018 16ENDTRANS 2 0 19060 580543

The following excerpt is taken from the logical log at the database server
apex:

addr len type xididlink
.....
16018 20BEGIN 2 10 08/27/91 10:57:07 3483 pault
1602c 32HINSERT 2 0 16018 1000018 102 4
1604c 68PREPARE 2 0 1602c eh
17018 16HEURTX 2 0 1604c 1
17028 12CLR 2 0 1602c
17034 16ROLLBACK 2 0 17018 08/27/91 11:01:22
17044 40CKPOINT 0 0 15018 1

begin xid id addr user
1 2 1 17034 --------

18018 16ENDTRANS 2 0 17034 8806c3
....
Recovering Manually from Failed Two-Phase Commit 31-11

Example of Manual Recovery
First, you would try to match the transactions in the current database server
log with the transactions in the apex database server log. The BEGPREP and
PREPARE log records each contain the GTRID. You can extract the GTRID by
using onlog -l and looking at the data portion of the BEGPREP and PREPARE
log records. The GTRID is offset 22 bytes into the data portion and is 68 bytes
long. A more simple, though less precise, approach is to look at the time of
the COMMIT or ROLLBACK records. The times should be close, although there
is a slight delay because of the time taken to transmit the commit (or rollback)
message from the coordinator to the participant. (This second approach lacks
precision because concurrent transactions could commit at the same time
although concurrent transactions from one coordinator would probably not
commit at the same time.)

To correct this example situation, you would take the following steps:

1. Find all records that were updated.

2. Identify their type (insert, delete, update) using onlog and the table
of record types.

3. Use the onlog -l output for each record to obtain the local xid, the
tblspace number, and the rowid.

4. Map the tblspace number to a table name by comparing the tblspace
number to the value in the partnum column of the systables system
catalog table.

5. Using your knowledge of the application, determine what action is
required to correct the situation.

In this example, the time stamps on the COMMIT and ROLLBACK records in
the different logs are close. No other active transactions introduce the possi-
bility of another concurrent commit or rollback. In this case, an insert
(HINSERT) of assigned rowid 102 hex (258 decimal) was committed on the
current database server. Therefore, the compensating transaction is as
follows:

DELETE FROM t WHERE rowid = 258
31-12 Administrator’s Guide for Informix Dynamic Server

 IX
Reference
Se
ct

io
n

32
Chapter
ON-Monitor for UNIX
Using ON-Monitor 32-3
Help and Navigation Within ON-Monitor 32-4
Executing Shell Commands from Within ON-Monitor 32-4

ON-Monitor Screen Options 32-4

Setting Configuration Parameters with ON-Monitor 32-12

32-2 Ad
ministrator’s Guide for Informix Dynamic Server

This section is a quick reference for the database server ON-Monitor
screens. You can use it to determine the purpose and use of a specific screen
or option.

ON-Monitor is not available on Windows NT. ♦

Using ON-Monitor
To start ON-Monitor, execute the following command from the operating-
system prompt:

% onmonitor

If you are logged in as user informix or user root, the main menu appears.
All users other than informix and root have access only to the Status menu.

The ON-Monitor main menu displays six additional menus, the Force-Ckpt
option, and the Exit option. The six additional menus are as follows:

■ Status menu

■ Parameters menu

■ Dbspaces menu

■ Mode menu

■ Archive menu

■ Logical-Logs menu

The main menu, the six additional menus, and the Force-Ckpt option are
shown on the following pages (Figure 32-1 through Figure 32-7).

WIN NT
ON-Monitor for UNIX 32-3

Help and Navigation Within ON-Monitor
Help and Navigation Within ON-Monitor
All menus and screens in ON-Monitor function in the same way. For menus,
use the arrow keys or SPACEBAR to scroll to the option you want to execute
and press RETURN, or press the first capitalized letter of the option (usually
the first letter). When you move from one option to the next by pressing
SPACEBAR or an arrow key, the option explanation (line 2 of the menu)
changes.

If you want general instructions for a specific screen, press CTRL-W. If you
need help to determine what you should enter in a field on the screen, use the
TAB key to highlight the field and press CTRL-F or F2.

Some of the menus display ellipses (...) on the far right or left side. The
ellipses indicate that you can move in the direction of the dots, using the
arrow keys or SPACEBAR, to view other options.

Executing Shell Commands from Within ON-Monitor
To execute a shell command from within ON-Monitor, type an exclamation
point (!) followed by the command. For example, to list the files in the
current directory, type the following command:

!ls

ON-Monitor Screen Options
The following pages show the options that are available from the different
ON-Monitor menus, and what the options do.
32-4 Administrator’s Guide for Informix Dynamic Server

ON-M
onitor for UNIX

32-5

ON-M
onitor Screen Options

Figure 32-1
Status Menu

it
ExStatus

Exit

Profile

Userthreads

Spaces

Databases

Logs

Archive

Output

Configuration

Use the Profile option to display database server performance statistics.

Use the Userthreads option to display the status of active user threads.

Use the Spaces option to display status information about database server dbspaces,
blobspaces, or each chunk that is part of a dbspace or blobspace.

Use the Databases option to display the name, owner, and logging status of the first 100
databases.

Use the Logs option to display status information about the physical-log buffer, the physical
log, the logical-log buffer, and the logical-log files.

Use the Archive option to display a list of all archive tapes and logical log files that would
be needed if a data restore using ontape were required now.

Use the Output option to store the output of any other status information in a specified file.

Use the Configuration option to create a copy of the current (effective) database server
configuration to a specified file.

Dbspaces Mode Archive Logical-LogsForce-CkptParameters

data-Replication Use the data-Replication option to display data-replication status and configuration.

32-6
Adm

inistrator’s Guide for Inform
ix Dynam

ic Server

ON-M
onitor Screen Options

Figure 32-2
Parameters Menu

xit
EDbspaces Mode Archive Logical-LogsForce-Ckpt

Exit

Initialize Use the Initialize option to initialize database server disk space or to modify database
server disk-space parameters.

Shared- Use the Shared-Memory option to initialize database server shared-memory or to
modify database server shared-memory parameters.

Add-Log Use the Add-Log option to add a logical-log file to a database server dbspace.

Drop-Log Use the Drop-Log option to drop a logical log file from a database server dbspace.

Physical-Log Use the Physical-Log option to change the size or the location of the database server
physical log.

Memory

Status Parameters

perFormance Use the perFormance option to specify the number of virtual processors for each VP
class.

data-Replication Use the data-Replication option to specify the data-replication parameters.

diaGnostics Use the diaGnostics option to specify values for the diagnostics parameters.

pdQ Use the pdQ option to change parameters for parallel database queries.

ON-M
onitor for UNIX

32-7

ON-M
onitor Screen Options

Figure 32-3
Dbspaces Menu

it
ExMode Archive Logical-LogsForce-CkptStatus Parameters

Exit

Create Use the Create option to create a dbspace.

BLOBSpace Use the BLOBSpace option to create a blobspace.

Mirror Use the Mirror option to add mirroring to an existing blobspace or dbspace, or to
end mirroring for a blobspace or dbspace.

Drop Use the Drop option to drop a blobspace or a dbspace from the database server
configuration.

Info Use the Info option to see the identification number, location, and fullness of each
chunk assigned to a blobspace or dbspace.

Add_chunk Use the Add_chunk option to add a chunk to a blobspace or dbspace.

Status Use the Status option to change the status of a chunk in a mirrored pair.

Dbspaces

datasKip Use the datasKip option to change the database parameter.

32-8
Adm

inistrator’s Guide for Inform
ix Dynam

ic Server

ON-M
onitor Screen Options

Figure 32-4
Mode Menu

xit

ent

k.

er

edi-
EArchive Logical-LogsForce-CkptStatus Parameters Dbspaces Mode

Exit

Startup Use the Startup option to initialize shared memory and take the
database server to quiescent mode.

On-Line Use the On-Line option to take the database server from quiesc
to on-line mode.

Graceful- Use the Graceful-Shutdown option to take the database server
from on-line to quiescent mode. Users can complete their wor

Immediate- Use the Immediate-Shutdown option to take the database serv
from on-line to quiescent mode in 10 seconds.

Take- Use the Take-Offline option to detach shared memory and imm
ately take the database server to off-line mode.

Shutdown

Offline

Shutdown

Drop- Use the Drop-Proc option to drop virtual processors.
Proc

Add- Use the Add-Proc option to add virtual processors.
Proc

deCision- Use the deCision-support option to dynamically set decision-
support parameters.support

ON-M
onitor for UNIX

32-9

ON-M
onitor Screen Options

Figure 32-5
Force-Ckpt Option

it

e

Mode Archive Logical-Logs ExStatus Parameters Dbspaces Force-Ckpt

Use the Force-Ckpt option to see the time of the most-
recent checkpoint or to force the database server to execut
a checkpoint.

32-10
Adm

inistrator’s Guide for Inform
ix Dynam

ic Server

ON-M
onitor Screen Options

Figure 32-6
Archive Menu

xit
Archive

Exit

Mode Logical-Logs EStatus Parameters Dbspaces Force-Ckpt

Tape-Use the Tape-Parameters option to modify the parameters of the ontape
archive tape device. Parameters

ON-M
onitor for UNIX

32-11

ON-M
onitor Screen Options

Figure 32-7
Logical-Logs Menu

it
Dbspaces Mode Archive Logical-LogsForce-Ckpt ExStatus Parameters

Exit

DatabasesUse the Databases option to modify the logging status of a database.

Tape-Use the Tape-Parameters option to modify the parameters of the ontape
logical-log backup tape device. Parameters

Setting Configuration Parameters with ON-Monitor
Setting Configuration Parameters with ON-Monitor
Each ON-Monitor parameters screen is represented here by a pair of
examples (Figure 32-8 through Figure 32-18). The first example in each pair
shows the ON-Monitor screen. The second example in each pair shows which
parameters from the ONCONFIG configuration file correspond to which
fields in the parameters screen.

INITIALIZATION: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

DISK PARAMETERS
Page Size [2] Kbytes Mirror [N]

Tape Dev. [/dev/tapedev]
Block Size [16] Kbytes Total Tape Size [10240] Kbytes
Log Tape Dev. [/dev/tapedev]
Block Size [16] Kbytes Total Tape Size [10240] Kbytes
Stage Blob []

Root Name [rootdbs] Root Size [20000] Kbytes
Primary Path [/dev/cynsrv_root]

Root Offset [0] Kbytes
Mirror Path []

Mirror Offset [0] Kbytes
Phy. Log Size [1000] Kbytes Log. Log Size [500] Kbytes

Number of Logical Logs [6]

Figure 32-8
INITIALIZATION

Screen

INITIALIZATION: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

DISK PARAMETERS
Page Size {not in ONCONFIG} Mirror {MIRROR}

Tape Dev. {TAPEDEV}
Block Size {TAPEBLK} Total Tape Size {TAPESIZE}
Log Tape Dev. {LTAPEDEV}
Block Size {LTAPEBLK} Total Tape Size {LTAPESIZE}
Stage Blob {STAGEBLOB}

Root Name {ROOTNAME} Root Size {ROOTSIZE}
Primary Path {ROOTPATH}

Root Offset {ROOTOFFSET}
Mirror Path {MIRRORPATH}

Mirror Offset {MIRROROFFSET}
Phy. Log Size {PHYSFILE} Log. Log Size {LOGSIZE}

Number of Logical Logs {LOGFILES}

Figure 32-9
INITIALIZATION
Screen Showing

Parameter Names
32-12 Administrator’s Guide for Informix Dynamic Server

Setting Configuration Parameters with ON-Monitor
SHARED MEMORY: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

SHARED MEMORY PARAMETERS
Server Number [0] Server Name [a_server]
Server Aliases []
Dbspace Temp []
Deadlock Timeout (Secs) [60] Number of Page Cleaners [1]
Forced Residency [N] Stack Size (Kbytes) [32]
Non Res. SegSize (Kbytes) [8000] Optical Cache Size (Kbytes)[0]

Physical Log Buffer Size [32] Kbytes Dbspace Down Option [0]
Logical Log Buffer Size [32] Kbytes Preserve Log for Log Backup [N]
Max # of Logical Logs [6] Transaction Timeout [300]
Max # of Locks [2000] Long TX HWM [50]
Max # of Buffers [200] Long TX HWM Exclusive [60]

Index Page Fill Factor [90]
Add SegSize (Kbytes) [8192]
Total Memory(Kbytes) [0]

Resident Shared memory size [864] Kbytes Page Size [2] Kbytes

Enter a unique value to be associated with this version of Informix Dynamic Server

Figure 32-10
Shared Memory

Screen

SHARED MEMORY: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

SHARED MEMORY PARAMETERS
Server Number {SERVERNUM} Server Name {DBSERVERNAME}
Server Aliases {DBSERVERALIASES}
Dbspace Temp {DBSPACETEMP}
Deadlock Timeout {DEADLOCK_TIMEOUT} Number of Page Cleaners {CLEANERS}
Forced Residency {RESIDENCY} Stack Size (Kbytes) {STACKSIZE}
Non Res. SegSize {SHMVIRTSIZE} Optical Cache Size {OPCACHEMAX}

Physical Log Buffer Size {PHYSBUFF} Dbspace Down Option {ONDBSPDOWN}
Logical Log Buffer Size{LOGBUFF} Preserve Log for Log Backup{LBU PRESERVE}
Max # of Logical Logs {LOGSMAX} Transaction Timeout {TXTIMEOUT}
Max # of Locks {LOCKS} Long TX HWM {LTXHWM}
Max # of Buffers {BUFFERS} Long TX HWM Exclusive {LTXEHWM}

Index Page Fill Factor {FILLFACTOR}
Add SegSize {SHMADD}
Total Memory {SHMTOTAL}

Resident Shared memory size [] Kbyte Page Size {not in ONCONFIG}
Enter a unique value to be associated with this version of Informix Dynamic Server

Figure 32-11
SHARED MEMORY

Screen Showing
Parameter Names
ON-Monitor for UNIX 32-13

Setting Configuration Parameters with ON-Monitor
PERFORMANCE: Make desired changes and press ESC to record changes.
 Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.
 PERFORMANCE TUNING PARAMETERS

 Multiprocessor Machine [N] LRU Max Dirty [60]
 Num Procs to Affinity [0] LRU Min Dirty [50]
 Proc num to start with [0] Checkpoint Interval [300]
 Num of Read Ahead Pages [4]
 CPU VPs [1] Read Ahead Threshold [2]
 AIO VPs [2]
 Single CPU VP [N] NETTYPE settings:
 Use OS Time [N] Protocol Threads Users VP-class
 Disable Priority Aging [N] [] [] [] []
 Off-Line Recovery Threads [10] [] [] [] []
 On-Line Recovery Threads [1] [] [] [] []
 Num of LRUS queues [8] [] [] [] []

Are you running on a multiprocessor machine?

Figure 32-12
PERFORMANCE

Screen

PERFORMANCE: Make desired changes and press ESC to record changes.
 Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.
 PERFORMANCE TUNING PARAMETERS

 {MULTIPROCESSOR} {LRU_MAX_DIRTY}
 {AFF_NPROCS} {LRU_MIN_DIRTY}
 {AFF_SPROC} {CKPTINTVL}
 {RA_PAGES}
 {NUMCPUVPS} {RA_THRESHOLD}
 {NUMAIOVPS}
 {SINGLE_CPU_VP} NETTYPE settings:
 {USE_OS_TIME} (NETTYPE values are assembled
 {NOAGE} from the responses in these
 {OFF_RECVRY_THREADS} blanks)
 {ON_RECVRY_THREADS}
 {LRUS}

Are you running on a multiprocessor machine?

Figure 32-13
PERFORMANCE
Screen Showing

Parameter Names
32-14 Administrator’s Guide for Informix Dynamic Server

Setting Configuration Parameters with ON-Monitor
DATA REPLICATION: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

DATA REPLICATION PARAMETERS

Interval [30]
Timeout [30]
Auto [0]
Lost & Found [/usr/informix/etc/dr.lostfound]

Figure 32-14
DATA REPLICATION

Screen

DATA REPLICATION: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

DATA REPLICATION PARAMETERS

Interval {DRINTERVAL}
Timeout {DRTIMEOUT}
Auto {DRAUTO}
Lost & Found {DRLOSTFOUND}

Figure 32-15
DATA REPLICATION

Screen Showing
Parameter Names
ON-Monitor for UNIX 32-15

Setting Configuration Parameters with ON-Monitor
DIAGNOSTICS: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

DIAGNOSTIC PARAMETERS

Message Log [/usr/informix/server.log]
Console Msgs. [/dev/console]
Alarm Program []

Dump Shared Memory [Y]
Dump Gcore [N]
Dump Core [N]
Dump Count [1]
Dump Directory [/tmp]

Figure 32-16
DIAGNOSTICS

Screen

DIAGNOSTICS: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

DIAGNOSTIC PARAMETERS

Message Log {MSGPATH}
Console Msgs. {CONSOLE}
Alarm Program {ALARMPROGRAM}

Dump Shared Memory {DUMPSHMEM}
Dump Gcore {DUMPGCORE}
Dump Core {DUMPCORE}
Dump Count {DUMPCNT}
Dump Directory {DUMPDIR}

Figure 32-17
DIAGNOSTICS

Screen Showing
Parameter Names
32-16 Administrator’s Guide for Informix Dynamic Server

Setting Configuration Parameters with ON-Monitor
PDQ: Make desired changes and press ESC to record changes.
 Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

PARALLEL DATABASE QUERIES PARAMETERS

Maximum Priority [100]
Decision Support Queries []
 Decision Support Memory (Kbytes) []
Maximum Decision Support Scans [3]
Dataskip []
Optimizer Hint [2]

Figure 32-18
PDQ Screen

PDQ: Make desired changes and press ESC to record changes.
 Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

PARALLEL DATABASE QUERIES PARAMETERS

Maximum Priority {MAX_PDQPRIORITY}
Decision Support Queries {DS_MAX_QUERIES}
 Decision Support Memory (Kbytes) {DS_TOTAL_MEMORY}
Maximum Decision Support Scans {DS_MAX_SCANS}
Dataskip {DATASKIP}
Optimizer Hint {OPTCOMPIND}

Figure 32-19
PDQ Screen

Showing Parameter
Names
ON-Monitor for UNIX 32-17

33
Chapter
Configuration Parameters
ONCONFIG File Conventions 33-5

ONCONFIG Parameters 33-6

ADTERR, ADTMODE, ADTPATH, and ADTSIZE 33-8

AFF_NPROCS . 33-9

AFF_SPROC . 33-10

ALARMPROGRAM 33-11

BAR_ACT_LOG, BAR_BSALIB_PATH, BAR_MAX_BACKUP,
BAR_NB_XPORT_COUNT, BAR_RETRY, and
BAR_XFER_BUF_SIZE 33-11

BUFFERS . 33-12

CKPTINTVL . 33-13

CLEANERS . 33-14

CONSOLE . 33-15

DATASKIP. 33-16

DBSERVERALIASES 33-17

DBSERVERNAME 33-18

DBSPACETEMP . 33-19

DEADLOCK_TIMEOUT 33-21

DRAUTO . 33-22

DRINTERVAL . 33-23

33-2 Ad
DRLOSTFOUND 33-24

DRTIMEOUT . 33-25

DS_MAX_QUERIES 33-26

DS_MAX_SCANS 33-27

DS_TOTAL_MEMORY 33-28

DUMPCNT . 33-32

DUMPCORE . 33-33

DUMPDIR . 33-34

DUMPGCORE . 33-34

DUMPSHMEM . 33-35

FILLFACTOR . 33-36

HETERO_COMMIT 33-36

LBU_PRESERVE . 33-37

LOCKS . 33-38

LOG_BACKUP_MODE 33-39

LOGBUFF . 33-40

LOGFILES . 33-41

LOGSIZE . 33-42

LOGSMAX. 33-43

LRUS. 33-44

LRU_MAX_DIRTY 33-45

LRU_MIN_DIRTY 33-45

LTAPEBLK . 33-46

LTAPEDEV . 33-47

LTAPESIZE . 33-48
ministrator’s Guide for Informix Dynamic Server

LTXEHWM . 33-49

LTXHWM . 33-50

MAX_PDQPRIORITY 33-51

MIRROR . 33-52

MIRROROFFSET . 33-53

MIRRORPATH . 33-53

MSGPATH . 33-54

MULTIPROCESSOR 33-55

NETTYPE. 33-56

NOAGE . 33-60

NUMAIOVPS . 33-61

NUMCPUVPS . 33-62

OFF_RECVRY_THREADS 33-63

ON_RECVRY_THREADS 33-64

ONDBSPACEDOWN. 33-65

OPCACHEMAX . 33-66

OPTCOMPIND. 33-67

PHYSBUFF . 33-68

PHYSDBS. 33-69

PHYSFILE . 33-70

RA_PAGES . 33-71

RA_THRESHOLD. 33-72

RESIDENT . 33-73

RESTARTABLE_RESTORE 33-74

ROOTNAME . 33-75
Configuration Parameters 33-3

33-4 Ad
ROOTOFFSET . 33-75

ROOTPATH . 33-76

ROOTSIZE . 33-77

SERVERNUM. 33-78

SHMADD . 33-79

SHMBASE . 33-80

SHMTOTAL . 33-81

SHMVIRTSIZE . 33-82

SINGLE_CPU_VP 33-83

STACKSIZE . 33-84

STAGEBLOB . 33-85

TAPEBLK . 33-86

TAPEDEV . 33-87

TAPESIZE . 33-89

TXTIMEOUT . 33-90

USEOSTIME . 33-91
ministrator’s Guide for Informix Dynamic Server

T his chapter describes the ONCONFIG file conventions and the
ONCONFIG parameters.

ONCONFIG File Conventions
The ONCONFIG environment variable specifies the file that contains the
configuration parameters. This manual often refers to this file as “the
ONCONFIG file.” The database server uses the ONCONFIG file during
initialization.

The database server provides onconfig.std, which is a template for a config-
uration file. It contains initial values for many of the ONCONFIG parameters.
The following table lists the locations of the ONCONFIG and onconfig.std
files for each platform.

To prepare the ONCONFIG file

1. Copy onconfig.std.

2. Modify the copy of onconfig.std.

3. Set ONCONFIG to the name of the copy of onconfig.std.

If you do not set ONCONFIG, the default filename is onconfig.

Warning: Do not modify onconfig.std.

Platform ONCONFIG File Template File

UNIX $INFORMIXDIR/etc/$ONCONFIG $INFORMIXDIR/etc/onconfig.std

Windows NT %INFORMIXDIR%\etc\%ONCONFIG% %INFORMIXDIR%\etc\onconfig.std
Configuration Parameters 33-5

ONCONFIG Parameters
For more information about the ONCONFIG environment variable, see the
Informix Guide to SQL: Reference. For more information about the
onconfig.std, onconfig, and ONCONFIG files, see Appendix A.

ONCONFIG Parameters
In the ONCONFIG file, each parameter is on a separate line. The file can also
contain blank lines and comment lines that start with a # symbol. The
following line shows the syntax for a parameter line:

PARAMETER_NAME parameter_value #comment

Parameters and their values in the ONCONFIG file are case sensitive. The
parameter names consist entirely of uppercase letters. If the range of values
for a parameter is in uppercase, use uppercase for the value in the ONCONFIG
file. For example, one of the possible values for NETTYPE is CPU.

Put white space (tabs, spaces, or both) between the parameter name,
parameter value, and optional comment. Do not use any tabs or spaces
within a parameter value.

Parameter Attributes
The description for each parameter can include any of the following
attributes:

onconfig.std
value

The value that is in the onconfig.std file

if not present The value that the database server supplies if the parameter
is missing from your ONCONFIG file

units The units in which the parameter is expressed

separators The separators to use when the value has several parts. Do
not use white space within a parameter value.

range of values The range of possible values
33-6 Administrator’s Guide for Informix Dynamic Server

ONCONFIG Parameters
Changing a Parameter Value on UNIX
Use one of the utilities in the following table to change the value of a config-
uration parameter.

takes effect The time at which a change to the value of the parameter
affects the operation of the database server

UNIX utilities The UNIX utilities that you can use to change the value of
the parameter

For ON-Monitor, this section lists the menu choices and
item name that display the parameter. This section can also
list command-line utilities.

Windows NT
utilities

The command-line utility that you can use to change the
value of the parameter

refer to Cross references to related information

Utility Description

ON-Monitor In the attributes section in each parameter description, the UNIX
utilities section lists the menu choices and item name that display
the parameter in ON-Monitor.

In ON-Monitor, some of the responses are Y/N (yes/no). When
those responses are recorded in the ONCONFIG file, Y becomes 1
and N becomes 0.

A command-line
utility

In the attributes section in the descriptions for most parameters,
the UNIX utilities section lists one or more command-line utilities
that you can use to change a parameter value.

UNIX
Configuration Parameters 33-7

ADTERR, ADTMODE, ADTPATH, and ADTSIZE
Changing a Parameter Value on Windows NT
Use one of the tools in the following table to change the value of a configu-
ration parameter.

ADTERR, ADTMODE, ADTPATH, and ADTSIZE
The ADTERR, ADTMODE, ADTPATH, and ADTSIZE parameters are auditing
configuration parameters. For information on these parameters, see your
Trusted Facility Manual.

Tools Description

A text editor You can use a text editor to modify the ONCONFIG file.

A command-line
utility

In the attributes section in the descriptions for most parameters,
the Windows NT utilities section lists one or more command-line
utilities that you can use to change a parameter value.

WIN NT

UNIX
33-8 Administrator’s Guide for Informix Dynamic Server

AFF_NPROCS
AFF_NPROCS

On multiprocessor computers that support processor affinity, AFF_NPROCS
specifies the number of CPUs to which the database server can bind CPU
virtual processors. Binding a CPU virtual processor to a CPU causes the
virtual processor to run exclusively on that CPU. The database server assigns
CPU virtual processors to CPUs in serial fashion, starting with the processor
number specified by AFF_SPROC.

onconfig.std
value

0

units Number of CPUs

range of values 0 through (number of CPUs in the computer)

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, perFormance, Num Procs to
Affinity

refer to “CPU Virtual Processors” on page 9-20
“AFF_SPROC” on page 33-10
Configuration Parameters 33-9

AFF_SPROC
AFF_SPROC

On multiprocessor computers that support processor affinity, AFF_SPROC
specifies the CPU, starting with 0, on which the database server starts binding
CPU virtual processors to CPUs. The AFF_NPROCS parameter specifies the
number of CPUs that the database server will use. The NUMCPUVPS
parameter specifies the number of CPU virtual processors that the database
server will start, and the AFF_SPROC parameter specifies the CPU, of the
number specified by AFF_NPROCS, on which the database server starts the
first virtual processor. For example, if your platform has eight CPUs, and you
set AFF_NPROCS to 3 and AFF_SPROC to 5, the database server binds CPU
virtual processors to CPUs 6, 7, and 8.

onconfig.std
value

0

units CPU number

range of values 0 through (AFF_NPROCS - NUMCPUVPS + 1)

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, perFormance, Proc num (to
start with)

refer to “CPU Virtual Processors” on page 9-20
33-10 Administrator’s Guide for Informix Dynamic Server

ALARMPROGRAM
ALARMPROGRAM

Set ALARMPROGRAM to the full pathname of an executable file that you
write and that the database server executes when noteworthy events occur.
Noteworthy events include database, table, index, or blob failure; chunk or
dbspace taken off-line; internal subsystem failure; initialization failure; and
detection of long transaction.

BAR_ACT_LOG, BAR_BSALIB_PATH,
BAR_MAX_BACKUP, BAR_NB_XPORT_COUNT,
BAR_RETRY, and BAR_XFER_BUF_SIZE
The BAR_ACT_LOG, BAR_BSALIB_PATH, BAR_MAX_BACKUP,
BAR_NB_XPORT_COUNT, BAR_RETRY, and BAR_XFER_BUF_SIZE parameters
apply to the ON-Bar backup and restore system. For information on these
parameters, see your Backup and Restore Guide.

onconfig.std
value

On UNIX: /usr/informix/log_full.sh
On Windows NT: None

range of values Pathname

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, diaGnostics

refer to “Event Alarm” on page 29-8
Configuration Parameters 33-11

BUFFERS
BUFFERS

BUFFERS specifies the maximum number of shared-memory buffers that the
database server user threads have available for disk I/O on behalf of client
applications. Therefore, the number of buffers that the database server
requires depends on the applications. For example, if the database server
accesses 15 percent of the application data 90 percent of the time, you need to
allocate enough buffers to hold that 15 percent.

In general, buffer space should range from 20 to 25 percent of physical
memory. Informix recommends that you calculate all other shared-memory
parameters after you set buffer space (BUFFERS * system page size) to 20
percent of physical memory.

If you also want to perform read-ahead, increase the value of BUFFERS
further. Once you have configured all other shared-memory parameters, if
you find that you can afford to increase the size of shared memory, increase
the value of BUFFERS until buffer space reaches the recommended 25 percent
maximum.

onconfig.std
value

200

units Number of bytes

range of values For UNIX: 100 through 768 kilobytes (768 * 1024)
For Windows NT: 100 through 512 kilobytes (512 * 1024)

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Shared_Memory, Max # of
Buffers

refer to “Shared-Memory Buffer Pool” on page 11-19
“RA_PAGES” on page 33-72
“RA_THRESHOLD” on page 33-73
Performance Guide
33-12 Administrator’s Guide for Informix Dynamic Server

CKPTINTVL
System Page Size
The system page size is platform dependent. You can use the commands in
the following table to display the system page size.

On UNIX, you can also use ON-Monitor to get the system page size under the
Parameters:Shared-Memory option, which does not require the database
server to be running, and under the Parameters:Initialize option. ♦

CKPTINTVL

CKPTINTVL specifies the frequency, expressed in seconds, at which the
database server will check to determine whether a checkpoint is needed.
When a checkpoint occurs, pages in the shared-memory buffer pool are
written to disk.

Command Description

oncheck -pr Checks the root-dbspace reserved pages and displays the system
page size in the first section of its output

onstat -b Displays the system page size, given as buffer size

onconfig.std
value

300

units Seconds

range of values Any value greater than or equal to 0

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, perFormance, Checkpoint
Interval

refer to “Checkpoints” on page 11-57
Performance Guide

UNIX
Configuration Parameters 33-13

CLEANERS
If you set CKPTINTVL to an interval that is too short, the system spends too
much time performing checkpoints, and the performance of other work
suffers. If you set CKPTINTVL to an interval that is too long, fast recovery
might take too long.

In practice, 30 seconds is the smallest interval that the database server checks.
If you specify a checkpoint interval of 0, the database server will not check if
the checkpoint interval has elapsed. However, the database server will still
perform checkpoints. Other conditions, such as the physical log becoming 75
percent full, also cause the database server to perform checkpoints.

CLEANERS

CLEANERS specifies the number of page-cleaner threads available during the
database server operation. By default, the database server always runs one
page-cleaner thread. A general guideline is one page cleaner per disk drive.
The value specified has no effect on the size of shared memory.

onconfig.std
value

1

units Number of page-cleaner threads

range of values 1 through 128

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Shared-Memory, Number of
Page Cleaners

refer to “How the Database Server Flushes Data to Disk” on
page 11-46
33-14 Administrator’s Guide for Informix Dynamic Server

CONSOLE
CONSOLE

CONSOLE specifies the pathname destination for console messages.

onconfig.std
value

On UNIX: /dev/console
On Windows NT: \etc\console.log

range of values Pathname

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, diaGnostics, Console Msgs.

refer to “What Is the Console?” on page 29-12
Configuration Parameters 33-15

DATASKIP
DATASKIP

DATASKIP lets you avoid points of media failure. This capability can result in
higher availability for your data. To instruct the database server to skip some
or all unavailable fragments, set this parameter.

Whenever the database server skips over a dbspace during query processing,
a warning is returned. The previously reserved SQLCA warning flag
sqlwarn.sqlwarn7 is set to W for INFORMIX-ESQL/C.

An application can use the SQL statement SET DATASKIP to override the
DATASKIP value set by the ONCONFIG parameter or by onspaces. If the appli-
cation then executes the SQL statement SET DATASKIP DEFAULT, the
DATASKIP value for that session returns to whatever value is currently set for
the database server.

syntax DATASKIP state

or

DATASKIP state dpspace1 dpspace2 ...

The state entry is required. If state is ON, then at least one
dbspace entry is required.

onconfig.std
value

None

if not present OFF

separators Space

range of values ALL = Skip all unavailable fragments.
OFF = Turn off dataskip.
ON = Skip some unavailable fragments.

UNIX utilities ON-Monitor: Parameters menu, pdQ screen
onspaces -f; see page 35-61

Windows NT
utilities

onspaces -f; see page 35-61

refer to “Specify DATASKIP Parameter” on page 35-61 and your
Performance Guide
33-16 Administrator’s Guide for Informix Dynamic Server

DBSERVERALIASES
DBSERVERALIASES

DBSERVERALIASES specifies a list of alternative dbservernames. If the
database server supports more than one communication protocol (for
example, both an IPC mechanism and the TCP network protocol), you must
describe each valid connection to the database server with an entry in the
sqlhosts file or registry. DBSERVERALIASES lets you assign multiple aliases to
a database server, so that each entry in the sqlhosts file or registry can have
a unique name.

For each alternate name listed in DBSERVERALIASES, the database server
starts an additional listener thread. If you have many client applications
connecting to the database server, you can distribute the connection requests
between several listener threads and reduce connection time. To take
advantage of the alternate connections, instruct some of your client applica-
tions to use a CONNECT TO dbserveralias statement instead of CONNECT TO
dbservername.

onconfig.std
value

None

if not present None

separators Comma

range of values Up to 18 lowercase characters

takes effect When shared memory is initialized. In addition, the file or
registry of each database server might need to be
updated.

UNIX utilities Parameters, Shared-Memory, Server Aliases

refer to “ONCONFIG Parameters for Connectivity” on page 4-50
“Using Multiple Connection Types” on page 4-57
Configuration Parameters 33-17

DBSERVERNAME
DBSERVERNAME

DBSERVERNAME specifies a unique name associated with this specific
occurrence of the database server. The value of DBSERVERNAME is called the
dbservername. Each dbservername is associated with a communication
protocol in the sqlhosts file or registry. If the database server uses multiple
communication protocols, additional values for dbservername must be
defined with the DBSERVERALIASES configuration parameter.

Client applications use the dbservername in the INFORMIXSERVER
environment variable and in SQL statements such as CONNECT and
DATABASE, which establish a connection to a database server.

onconfig.std
value

None

if not present On UNIX: hostname
On Windows NT: ol_hostname
(hostname is the name of the host computer.)

range of values Up to 18 lowercase characters. The first character must be
a letter. DBSERVERNAME can include any printable
character except the following characters:

■ Uppercase characters

■ A field delimiter (space or tab)

■ A newline character

■ A comment character

takes effect When shared memory is initialized. The sqlhosts file or
registry of each database server that communicates with
this database server might need to be updated. In
addition, the INFORMIXSERVER environment variable
for all users might need to be changed.

UNIX utilities Parameters, Shared-Memory, Server Name

refer to “The DBSERVERNAME Configuration Parameter” on
page 4-51
33-18 Administrator’s Guide for Informix Dynamic Server

DBSPACETEMP
Informix recommends that you use DBSERVERNAME to assign a name
instead of using the default name because of possible conflict with other
database servers on the same host computer

DBSPACETEMP

DBSPACETEMP specifies a list of dbspaces that the database server uses to
manage globally the storage of temporary tables. Use of this parameter
enables the database server to spread out I/O for temporary tables efficiently
across multiple disks. The database server also uses temporary dbspaces
during backups to store the before images of data that is overwritten while
the backup is occurring.

The list of dbspaces can contain standard dbspaces, temporary dbspaces, or
both. Use a colon or comma to separate the dbspaces in your list. If both
standard and temporary dbspaces are listed in the DBSPACETEMP configu-
ration parameter or environment variable, the following rules apply:

■ Sort, backup, implicit, and nonlogging explicit temporary tables are
created in temporary dbspaces if adequate space exists.

■ Explicit temporary tables created without the WITH NO LOG option
are created in standard (rather than temporary) dbspaces.

onconfig.std
value

None

if not present ROOTNAME

separators Comma or colon (no white space)

range of values A list of dbspaces. The length of the list cannot exceed 254
characters.

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Shared-Memory, Dbspace
Temp

refer to “What Is a Temporary Table?” on page 13-24
“Where Are Temporary Tables Stored?” on page 13-26
Informix Guide to SQL: Reference
Configuration Parameters 33-19

DBSPACETEMP
You can use the PSORT_DBTEMP environment variable to specify a list of
directories to be used for the temporary storage of implicit sort files. For the
order of precedence that the database server uses when it creates implicit sort
files, see your Performance Guide.

If a client application needs to specify an alternative list of dbspaces to use for
its temporary-table locations, the client can enumerate them by using the
DBSPACETEMP environment variable.

Hash Joins Overflow and DBSPACETEMP
If you do not set the DBSPACETEMP environment variable or DBSPACETEMP
configuration parameter, and the optimizer chooses to perform a join or
group-by operations using a hash join, the database server directs any
overflow that results from the join to the tmp directory.

When Changes to DBSPACETEMP Take Effect
When you create a temporary dbspace with ON-Monitor (UNIX only) or
onspaces, the database server does not use the newly created temporary
dbspace until you perform the following steps:

1. Add the name of a new temporary dbspace to your list of temporary
dbspaces in the DBSPACETEMP configuration parameter, the
DBSPACETEMP environment variable, or both.

2. Reinitialize the database server.
33-20 Administrator’s Guide for Informix Dynamic Server

DEADLOCK_TIMEOUT
DEADLOCK_TIMEOUT

DEADLOCK_TIMEOUT specifies the maximum number of seconds that a
database server thread can wait to acquire a lock.

This parameter is used only for distributed queries that involve a remote
database server. Nondistributed queries do not use this parameter.

onconfig.std
value

60

units Seconds

range of values Positive integers

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Shared-Memory, Deadlock
Timeout

refer to “Configuration Parameters Used in Two-Phase
Commits” on page 30-37
Configuration Parameters 33-21

DRAUTO
DRAUTO

DRAUTO determines how a secondary database server reacts to a high-avail-
ability data-replication failure. This parameter should have the same value
on both high-availability data-replication servers.

If DRAUTO is set to OFF, the secondary database server remains a secondary
database server in read-only mode when a high-availability data-replication
failure occurs.

If DRAUTO is set to either RETAIN_TYPE or REVERSE_TYPE, the secondary
database server switches to type standard automatically when a high-avail-
ability data-replication failure is detected. If DRAUTO is set to RETAIN_TYPE,
the original secondary database server switches back to type secondary when
the high-availability data-replication connection is restored. If DRAUTO is set
to REVERSE_TYPE, the original secondary database server switches to type
primary when the high-availability data-replication connection is restored,
and the original primary switches to type secondary.

onconfig.std
value

0

range of values 0 or OFF = Do not automatically switch.

1 or RETAIN_TYPE = Automatically switch secondary to
standard on a high-availability data-replication failure.
Switch back to secondary when restarting high-avail-
ability data replication.

2 or REVERSE_TYPE = Automatically switch secondary to
standard on a high-availability data-replication failure.
Switch to primary (and switch original primary to
secondary) when restarting high-availability data
replication.

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, data-Replication, Auto

refer to “What Is Automatic Switchover?” on page 25-19
33-22 Administrator’s Guide for Informix Dynamic Server

DRINTERVAL
Use this parameter carefully. A network failure (that is, when the primary
database server does not really fail, but the secondary database server
perceives network slowness as a high-availability data-replication failure)
can cause the two database servers to become out of synch.

DRINTERVAL

DRINTERVAL specifies the maximum time interval in seconds between
flushing of the high-availability data-replication buffer. To update synchro-
nously, set the parameter to -1.

onconfig.std
value

30

units Seconds

range of values -1, 0, and positive integer values

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, data-Replication, Interval

refer to “When Are Log Records Sent?” on page 25-10
Configuration Parameters 33-23

DRLOSTFOUND
DRLOSTFOUND

DRLOSTFOUND specifies the pathname to a file that contains transactions
committed on the primary database server but not committed on the
secondary database server when the primary database server experiences a
failure. The file is created with a time stamp appended to the filename, so that
the database server does not overwrite another lost-and-found file if one
already exists.

This parameter is not applicable if updating between the primary and
secondary database servers occurs synchronously (that is, if DRINTERVAL is
set to -1).

onconfig.std
value

On UNIX: /usr/etc/dr.lostfound
On Windows NT: \tmp

range of values Pathname

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, data-Replication, Lost & Found

refer to “Lost-and-Found Transactions” on page 25-11
33-24 Administrator’s Guide for Informix Dynamic Server

DRTIMEOUT
DRTIMEOUT

DRTIMEOUT applies only to high-availability data-replication pairs. This
value specifies the length of time, in seconds, that a database server in a high-
availability data-replication pair waits for a transfer acknowledgment from
the other database server in the pair. Use the following formula to calculate
DRTIMEOUT:

DRTIMEOUT = wait_time / 4

In this formula, wait_time is the length of time, in seconds, that a database
server in a high-availability data-replication pair must wait before it assumes
that a high-availability data-replication failure occurred.

For example, suppose you determine that the wait_time for your system is 160
seconds. Use the preceding formula to set DRTIMEOUT as follows:

DRTIMEOUT = 160 seconds / 4 = 40 seconds

onconfig.std
value

30

units Seconds

range of values Positive integers

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, data-Replication, Timeout

refer to “How Are High-Availability Data-Replication Failures
Detected?” on page 25-16
Configuration Parameters 33-25

DS_MAX_QUERIES
DS_MAX_QUERIES

DS_MAX_QUERIES is the maximum number of queries that can run
concurrently. The memory grant manager (MGM) reserves memory for a
query based on the following formula:

memory_reserved = (DS_TOTAL_MEMORY / DS_MAX_QUERIES) *
DS_MAX_QUERIES * (PDQPRIORITY / 100) *
(MAX_PDQPRIORITY / 100)

onconfig.std
value

On UNIX: None
On Windows NT: 32

if not present NUMCPUVPS * 2 * 128

units Number of queries

range of values 1 through (8 * 1024 * 1024)

UNIX utilities ON-Monitor: Parameters menu, pdQ screen
onmode -Q; see page 35-39.

Windows NT
utilities

onmode -Q; see page 35-39.

refer to Performance Guide
33-26 Administrator’s Guide for Informix Dynamic Server

DS_MAX_SCANS
DS_MAX_SCANS

DS_MAX_SCANS limits the number of PDQ scan threads that the database
server can execute concurrently. When a user issues a query, the database
server apportions some number of scan threads, depending on the following
values:

■ The value of PDQ priority (set by the environment variable
PDQPRIORITY or the SQL statement SET PDQPRIORITY)

■ The ceiling that you set with DS_MAX_SCANS

■ The factor that you set with MAX_PDQPRIORITY

■ The number of fragments in the table to scan (nfrags in the formula)

The memory grant manager (MGM) tries to reserve scan threads for a query
according to the following formula:

reserved_threads = min (nfrags, (DS_MAX_SCANS *
PDQPRIORITY / 100 *
MAX_PDQPRIORITY / 100))

If the DS_MAX_SCANS part of the formula is greater than or equal to the
number of fragments in the table to scan, then the query is held in the ready
queue until as many scan threads are available as there are table fragments.
Once underway, the query executes quickly because threads are scanning
fragments in parallel.

onconfig.std
value

1,048,576 (1024 * 1024)

units Number of PDQ scan threads

range of values 10 through (1024 * 1024)

UNIX utilities ON-Monitor: Parameters menu, pdQ screen
onmode -S; see page 35-39.

Windows NT
utilities

onmode -S; see page 35-39.

refer to Performance Guide
Configuration Parameters 33-27

DS_TOTAL_MEMORY
For example, if nfrags equals 24, DS_MAX_SCANS equals 90, PDQPRIORITY
equals 50, and MAX_PDQPRIORITY equals 60, the query will not begin
execution until nfrags scan threads are available. Scanning will take place in
parallel.

If you cause the DS_MAX_SCANS formula to fall below the number of
fragments, the query might begin execution sooner, but the query will take
longer to execute because some threads will scan fragments serially.

If you reduce DS_MAX_SCANS to 40 in the previous example, the query needs
fewer resources (12 scan threads) to begin execution, but each thread will
need to scan two fragments serially. Execution will take longer.

DS_TOTAL_MEMORY
onconfig.std

value
On UNIX: None
On Windows NT: 4,096

if not present If SHMTOTAL=0 and DS_MAX_QUERIES is set:
DS_MAX_QUERIES * 128.

If SHMTOTAL=0 and DS_MAX_QUERIES is not set:
NUMCPUVPS * 2 * 128.

If SHMTOTAL>0: SHMTOTAL - (all non-DS memory). Non-
DS memory includes the resident memory segment,
memory reserved for buffer cache, and memory reserved
for user connections in various protocols, which is
specified by the third argument of NETTYPE (default is 50
connections).

units Kilobytes

range of values If DS_MAX_QUERY is set: DS_MAX_QUERY * 128 through
maxmem
If DS_MAX_QUERY is not set: NUMCPUVPS * 2 * 128
through maxmem
33-28 Administrator’s Guide for Informix Dynamic Server

DS_TOTAL_MEMORY
DS_TOTAL_MEMORY specifies the amount of memory available for PDQ
queries. It should be smaller than the computer physical memory, minus
fixed overhead such as operating-system size and buffer-pool size.

Do not confuse DS_TOTAL_MEMORY with the configuration parameter
SHMTOTAL. For OLTP applications, set DS_TOTAL_MEMORY to between 20
and 50 percent of the value of SHMTOTAL in kilobytes. For applications that
involve large decision-support queries, increase the value of
DS_TOTAL_MEMORY to between 50 and 80 percent of SHMTOTAL. If your
database server instance is used exclusively for decision-support queries, set
this parameter to 90 percent of SHMTOTAL.

Algorithm for DS_TOTAL_MEMORY
The database server derives a value for DS_TOTAL_MEMORY when you do
not set DS_TOTAL_MEMORY or if you set it to an inappropriate value.
Whenever the database server changes the value that you assigned to
DS_TOTAL_MEMORY, it notifies you by sending the following message to
your console:

DS_TOTAL_MEMORY recalculated and changed from old_value Kb to new_value Kb

The algorithm that the database server uses to derive the new value for
DS_TOTAL_MEMORY is documented in the following sections. When you
receive the preceding message, you can use the algorithm to investigate what
values the database server considers inappropriate and take corrective action
based on your investigation.

UNIX utilities ON-Monitor: Parameters menu, pdQ screen
onmode -M; see page 35-39.

Windows NT
utilities

onmode -M; see page 35-39.

refer to Performance Guide
“Derive a Minimum for Decision-Support Memory” on
page 33-30
Configuration Parameters 33-29

DS_TOTAL_MEMORY
Derive a Minimum for Decision-Support Memory

In the first part of the algorithm, the database server establishes a minimum
for decision- support memory. When you assign a value to the configuration
parameter DS_MAX_QUERIES, the database server sets the minimum amount
of decision-support memory according to the following formula:

min_ds_total_memory = DS_MAX_QUERY * 128Kb

When you do not assign a value to DS_MAX_QUERIES, the database server
instead uses the following formula based on the value of NUMCPUVPS:

min_ds_total_memory = (number_of_CPU_VPS) * 2 * 128Kb

Derive a Working Value for Decision-Support Memory

In the second part of the algorithm, the database server establishes a working
value for the amount of decision-support memory. The database server
verifies this amount in the third and final part of the algorithm.

When DS_TOTAL_MEMORY Is Set

The database server first checks if SHMTOTAL is set. When SHMTOTAL is set,
the database server uses the following formula to calculate
DS_TOTAL_MEMORY:

IF DS_TOTAL_MEMORY <= SHMTOTAL - nondecision_support_memory THEN
decision_support_memory = DS_TOTAL_MEMORY

ELSE
decision_support_memory = SHMTOTAL - nondecision_support_memory

This algorithm effectively prevents you from setting DS_TOTAL_MEMORY to
values that the database server cannot possibly allocate to decision-support
memory.

When SHMTOTAL is not set, the database server sets decision-support
memory equal to the value that you specified in DS_TOTAL_MEMORY.
33-30 Administrator’s Guide for Informix Dynamic Server

DS_TOTAL_MEMORY
When DS_TOTAL_MEMORY Is Not Set

When you do not set DS_TOTAL_MEMORY, the database server proceeds as
follows. First, the database server checks if you set SHMTOTAL. When
SHMTOTAL is set, the database server uses the following formula to calculate
the amount of decision-support memory:

decision_support_memory = SHMTOTAL - nondecision_support_memory

When the database server finds that you did not set SHMTOTAL, it sets
decision-support memory as shown in the following example:

decision_support_memory = min_ds_total_memory

Check Derived Value for Decision-Support Memory

The final part of the algorithm verifies that the amount of shared memory is
greater than min_ds_total_memory and less than the maximum possible
memory space for your computer. When the database server finds that the
derived value for decision-support memory is less than min_ds_total_memory,
it sets decision-support memory equal to min_ds_total_memory.

When the database server finds that the derived value for decision-support
memory is greater than the maximum possible memory space for your
computer, it sets decision-support memory equal to the maximum possible
memory space.

Inform User When Derived Value Is Different from User Value

When, at any point during the processing of this algorithm, the database
server changes the value that you set for DS_TOTAL_MEMORY, it sends a
message to your console in the following format:

DS_TOTAL_MEMORY recalculated and changed from old_value Kb to new_value Kb

In the message, old_value represents the value that you assigned to
DS_TOTAL_MEMORY in your configuration file, and new_value represents the
value that the database server derived.
Configuration Parameters 33-31

DUMPCNT
DUMPCNT

DUMPCNT specifies the number of assertion failures for which one database
server thread dumps shared memory or generates a core file by calling gcore.
An assertion is a test of some condition or expression with the expectation
that the outcome is true. For example, the following statement illustrates the
concept of an assertion failure:

if (a != b)
assert_fail("a != b");

onconfig.std
value

1

if not present 1

units Number of assertion failures

range of values Positive integers

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, diaGnostics, Dump Count

refer to “Collecting Diagnostic Information” on page 27-11

UNIX
33-32 Administrator’s Guide for Informix Dynamic Server

DUMPCORE
DUMPCORE

DUMPCORE controls whether assertion failures cause a virtual processor to
dump core. The core file is left in the directory from which the database
server was last invoked. (The DUMPDIR parameter has no impact on the
location of the core file.)

Warning: When DUMPCORE is set to 1, an assertion failure causes a virtual
processor to core dump, which in turn causes the database server to abort.
DUMPCORE should be set only for debugging purposes in a controlled environment.

onconfig.std
value

0

range of values 0 = Do not dump core.
1 = Dump core.

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, diaGnostics, Dump Core

refer to “Collecting Diagnostic Information” on page 27-11

UNIX
Configuration Parameters 33-33

DUMPDIR
DUMPDIR

DUMPDIR specifies a directory where the database server dumps shared
memory, gcore files, or messages from a failed assertion. Because shared
memory can be large, set DUMPDIR to a file system with a significant amount
of space.

DUMPGCORE

DUMPGCORE is used with operating systems that support gcore. If you set
DUMPGCORE, but your operating system does not support gcore, messages
in the database server message log indicate that an attempt was made to
dump core, but that the database server is unable to find the expected file. (If
your operating system does not support gcore, set DUMPCORE instead.)

onconfig.std
value

tmp

if not present tmp

range of values Any directory to which user informix has write access

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, diaGnostics, Dump Directory

refer to “Collecting Diagnostic Information” on page 27-11

onconfig.std
value

0

range of values 0 = Do not dump gcore.
1 = Dump gcore.

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, diaGnostics, Dump Gcore

refer to “Collecting Diagnostic Information” on page 27-11

UNIX
33-34 Administrator’s Guide for Informix Dynamic Server

DUMPSHMEM
If DUMPGCORE is set, the database server calls gcore whenever a virtual
processor encounters an assertion failure. The gcore utility directs the virtual
processor to dump core to the directory specified by DUMPDIR and continue
processing.

The core dump output generated by gcore is saved to the file core.pid.cnt.
The pid value is the virtual-processor process identification number. The cnt
value is incremented each time this process encounters an assertion failure.
The cnt value can range from 1 to the value of DUMPCNT. After that, no more
core files are created. If the virtual processor continues to encounter assertion
failures, errors are reported to the message log (and perhaps to the appli-
cation), but no further diagnostic information is saved.

DUMPSHMEM

DUMPSHMEM indicates that shared memory should be dumped on an
assertion failure. All the shared memory used by the database server is
dumped; it is probably quite large. The shared-memory dump is placed in a
file in the directory specified by DUMPDIR.

The filename takes the format shmem.pid.cnt. The pid value is the virtual-
processor process identification number. The cnt value is incremented each
time that this virtual processor encounters an assertion failure. The cnt value
can range from 1 to the value of DUMPCNT. After the value of DUMPCNT is
reached, no more files are created. If the database server continues to detect
inconsistencies, errors are reported to the message log (and perhaps to the
application), but no further diagnostic information is saved.

onconfig.std
value

1

range of values 0 = Do not dump shared memory.
1 = Dump shared memory.

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, diaGnostics, Dump Shared
Memory

refer to “Collecting Diagnostic Information” on page 27-11
Configuration Parameters 33-35

FILLFACTOR
FILLFACTOR

FILLFACTOR specifies the degree of index-page fullness. A low value
provides room for growth in the index. A high value compacts the index. If
an index is full (100 percent), any new inserts result in splitting nodes. You
can also set the FILLFACTOR as an option on the CREATE INDEX statement.
The setting on the CREATE INDEX statement overrides the ONCONFIG file
value.

HETERO_COMMIT

onconfig.std
value

90

units Percent

range of values 1 through 100

takes effect When the index is built. Existing indexes are not changed.
To use the new value, the indexes must be rebuilt.

UNIX utilities ON-Monitor: Parameters, Shared-Memory, Index Page
Fill Factor

refer to “Structure of B-Tree Index Pages” on page 38-48

onconfig.std
value

On Windows NT: 0

range of values 1 = Enable heterogeneous commit.
0 = Disable heterogeneous commit.

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Shared-Memory, Heteroge-
neous Commit

refer to “Heterogeneous Commit Protocol” on page 30-38
INFORMIX-Enterprise Gateway Manager User Manual
33-36 Administrator’s Guide for Informix Dynamic Server

HETERO_COMMIT
The HETERO_COMMIT configuration parameter specifies whether or not the
database server is prepared to participate with Informix Gateway products
in heterogeneous commit transactions. Setting HETERO_COMMIT to 1 allows
a single transaction to update one non-Informix database (accessed using any
of the Gateway products) and one or more Informix databases.
Configuration Parameters 33-37

LBU_PRESERVE
If HETERO_COMMIT is 0, a single transaction can update databases as
follows:

■ One or more Informix databases and no non-Informix database

■ One non-Informix database and no Informix databases

You can read data from any number of Informix and non-Informix databases,
regardless of the setting of HETERO_COMMIT.

LBU_PRESERVE

LBU_PRESERVE reserves the last logical log for administrative tasks by setting
the logs-full high-water mark. When LBU_PRESERVE is enabled, the database
server blocks further OLTP activity when the next-to-last log fills, rather than
the last log. Setting LBU_PRESERVE prevents backups from failing due to lack
of logical-log space.

onconfig.std
value

0

range of values 1 = Enable the logs-full high-water mark.
0 = Disable the logs-full high-water mark.

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Shared-Memory, Preserve Log
for Log Backup

refer to “Enabling the Logs-Full High-Water Mark” on page 18-9
33-38 Administrator’s Guide for Informix Dynamic Server

LOCKS
LOCKS

LOCKS specifies the maximum number of locks available to database server
threads during processing. Although each additional lock takes up just 44
bytes of resident shared memory, locks can become a resource drain if you
have a limited amount of shared memory. For example, if you set LOCKS to
1,000,000, the database server allocates 40 megabytes of resident shared
memory for locks.

Tip: When you drop a database, a lock is acquired and held on each table in the
database until the database is dropped. For more information on the DROP
DATABASE statement, see the “Informix Guide to SQL: Syntax.”

onconfig.std
value

2,000

range of values 2,000 through 8,000,000

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Shared-Memory, Max # of
Locks

refer to “Lock Table” on page 11-29;
“How Database Server Threads Access Shared Buffers”
on page 11-37
Configuration Parameters 33-39

LOG_BACKUP_MODE
LOG_BACKUP_MODE

The LOG_BACKUP_MODE parameter will be present only if you use
INFORMIX-Enterprise Command Center (IECC) to turn on or turn off
continuous backups of the logical-log files, and you use ON-Bar as your
backup and restore tool. You must set the LOG_BACKUP_MODE parameter
only through IECC.

IECC sets the LOG_BACKUP_MODE parameter to a value of CONT to turn on
continuous logical-log backups. It sets LOG_BACKUP_MODE to MANUAL to
turn off continuous logical-log backups.

The LOG_BACKUP_MODE parameter has the same effect as setting the
ALARMPROGRAM parameter to the ALARMPROGRAM onconfig.std value
when IECC is not installed.

onconfig.std
value

None

range of values CONT = Continuous
MANUAL = Manual

refer to INFORMIX-Enterprise Command Center User Guide
Backup and Restore Guide
33-40 Administrator’s Guide for Informix Dynamic Server

LOGBUFF
LOGBUFF

LOGBUFF specifies the size in kilobytes of each of the three logical-log buffers
in shared memory. Triple buffering permits user threads to write to the active
buffer while one of the other buffers is being flushed to disk. If flushing is not
complete by the time the active buffer fills, the user thread begins writing to
the third buffer.

Informix recommends that you set LOGBUFF to 16 or 32 kilobytes, or perhaps
64 kilobytes for heavy workloads.

System Page Size
The system page size is platform dependent. You can use the commands in
the following table to display the system page size.

On UNIX, you can also use ON-Monitor to get the system page size under the
Parameters:Shared-Memory option, which does not require the database
server to be running, and under the Parameters:Initialize option. ♦

onconfig.std
value

32

units Kilobytes

range of values (2 * page size) through LOGSIZE

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Shared-Memory, Logical Log
Buffer Size

refer to “Logical-Log Buffer” on page 11-22

Command Description

oncheck -pr Checks the root-dbspace reserved pages and displays the system
page size in the first section of its output

onstat -b Displays the system page size, given as buffer size

UNIX
Configuration Parameters 33-41

LOGFILES
Important: The database server uses the LOGBUFF parameter to set the size of
internal buffers that are used during recovery. If you set LOGBUFF too high, the
server can run out of memory and shut down during recovery.

LOGFILES

LOGFILES specifies the number of logical-log files created by the database
server during disk initialization. To change the number of logical-log files,
add or drop a logical log files. If you use ON-Monitor (UNIX only) or
onparams to add or drop log files, the database server automatically updates
LOGFILES.

onconfig.std
value

On UNIX: 6
On Windows NT: 10

if not present 6

units Number of logical-log files

range of values 3 through LOGSMAX (integers only)

takes effect During disk initialization and when you use onparams to
add a new log file. On UNIX, the value is also updated
when you use ON-Monitor to add a new log file.

UNIX utilities Parameters, Initialize, Number of Logical Logs
onparams; see page 35-43.

Windows NT
utilities

onparams; see page 35-43.

refer to “What Should Be the Size and Number of Logical-Log
Files?” on page 18-11
“Adding a Logical-Log File” on page 19-4
“Dropping a Logical-Log File” on page 19-6
33-42 Administrator’s Guide for Informix Dynamic Server

LOGSIZE
LOGSIZE

LOGSIZE specifies the size that is used when logical-log files are created. It
does not change the size of existing logical-log files. The total logical-log size
is LOGSIZE * LOGFILES.

To verify the page size that the database server uses on your platform, see the
last line of output from the onstat -b command.

onconfig.std
value

On UNIX: 1,500
On Windows NT: 500

if not present On UNIX: 1,500
On Windows NT: 200

units Kilobytes

range of values 200 through (ROOTSIZE -PHYSFILE - 512 - (63 *
((pagesize)/1024))) / LOGFILES, where pagesize is the
system page size

takes effect When shared memory is initialized. The size of log files
added after shared memory is initialized reflects the new
value, but the size of existing log files does not change.

UNIX utilities ON-Monitor: Parameters, Initialize, Log. Log Size

refer to “How Big Should the Logical Log Be?” on page 18-5
“What Should Be the Size and Number of Logical-Log
Files?” on page 18-11
“Changing LOGSIZE or LOGFILES” on page 19-10
Configuration Parameters 33-43

LOGSMAX
LOGSMAX

LOGSMAX specifies the maximum number of logical-log files that an instance
of the database server supports. The database server requires at least three
logical-log files for operation.

In general, you can set the value of LOGSMAX equal to the value of LOGFILES.
If you plan to relocate the logical-log files out of the root dbspace after you
initialize the database server, assign LOGSMAX the value of LOGFILES plus 3.

onconfig.std
value

On UNIX: 6
On Windows NT: 20

if not present 3

units Number of logical-log files

range of values LOGFILES through 32,767 (integers only)

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Shared-Memory, Max # of
Logical Logs

refer to “What Should Be the Size and Number of Logical-Log
Files?” on page 18-11
“Moving a Logical-Log File to Another Dbspace” on
page 19-8
“Changing Logical-Log Configuration Parameters” on
page 19-10
33-44 Administrator’s Guide for Informix Dynamic Server

LRUS
LRUS

LRUS specifies the number of LRU (least-recently-used) queues in the
shared-memory buffer pool. You can tune the value of LRUS, in combination
with the LRU_MIN_DIRTY and LRU_MAX_DIRTY parameters, to control how
frequently the shared-memory buffers are flushed to disk.

onconfig.std
value

8

if not present If MULTIPROCESSOR is set: MAX(4, NUMCPUVPS)
If MULTIPROCESSOR is not set: 4

units Number of LRU queues

range of values For 64-bit platforms: 1 through 512
For all other platforms: 1 through 128

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, perFormance, Num of LRU
queues

refer to “LRU Queues” on page 11-37
Performance Guide
Configuration Parameters 33-45

LRU_MAX_DIRTY
LRU_MAX_DIRTY

LRU_MAX_DIRTY specifies the percentage of modified pages in the LRU
queues that, when reached, flags the queue to be cleaned.

LRU_MIN_DIRTY

LRU_MIN_DIRTY specifies the percentage of modified pages in the LRU
queues that, when reached, flags the page cleaners that cleaning is no longer
mandatory. Page cleaners might continue cleaning beyond this point under
some circumstances.

onconfig.std
value

60

units Percent

range of values 0 through 100

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, perFormance, LRU Max Dirty

refer to “LRU Queues” on page 11-37
“Limiting the Number of Pages Added to the MLRU
Queues” on page 11-40

onconfig.std
value

50

units Percent

range of values 0 through 100

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, perFormance, LRU Min Dirty

refer to “LRU Queues” on page 11-37
“When MLRU Cleaning Ends” on page 11-41
33-46 Administrator’s Guide for Informix Dynamic Server

LTAPEBLK
LTAPEBLK

LTAPEBLK specifies the block size of the device to which the logical logs are
backed up when you use ontape for dbspace backups. LTAPEBLK also
specifies the block size for the device to which data is loaded or unloaded
when you use the -l option of onload or onunload. If you are using onload
or onunload, you can specify a different block size at the command line.

Specify LTAPEBLK as the largest block size permitted by your tape device.
The database server does not check the tape device when you specify the
block size. Verify that the LTAPEDEV tape device can read the block size that
you specify. If not, you might not be able to read from the tape.

The UNIX dd utility can verify that the LTAPEDEV tape device can read the
block size. It is available with most UNIX systems. ♦

onconfig.std
value

16

units Kilobytes

range of values Values greater than (page size/1024)

takes effect For ontape: When you execute ontape
For onload and onunload: When shared memory is
initialized

UNIX utilities ON-Monitor: Parameters, Initialize, Block Size (follows
Log Tape Dev.)

refer to Archive and Backup Guide for information on how this
parameter affects ontape. For information on how this
parameter affects onload and onunload, see the Informix
Migration Guide.

UNIX
Configuration Parameters 33-47

LTAPEDEV
System Page Size
The system page size is platform dependent. You can use the commands in
the following table to display the system page size.

On UNIX, you can also use ON-Monitor to get the system page size under the
Parameters:Shared-Memory option, which does not require the database
server to be running, and under the Parameters:Initialize option. ♦

LTAPEDEV

LTAPEDEV specifies the device to which the logical logs are backed up when
you use ontape for backups. LTAPEDEV also specifies to which device data is
loaded or unloaded when you use the -l option of onload or onunload.

Command Description

oncheck -pr Checks the root-dbspace reserved pages and displays the system
page size in the first section of its output

onstat -b Displays the system page size, given as buffer size

onconfig.std
value

On UNIX: /dev/tapedev
On Windows NT: \\.\TAPE1

if not present On UNIX: /dev/null

takes effect For ontape: When you execute ontape
For onload and onunload: When shared memory is
initialized

UNIX utilities ON-Monitor: Parameters, Initialize, Log Tape Dev

refer to Archive and Backup Guide for information on how this
parameter affects ontape. For information on how this
parameter affects onload or onunload, see the Informix
Migration Guide.
“TAPEDEV” on page 33-88

UNIX
33-48 Administrator’s Guide for Informix Dynamic Server

LTAPESIZE
If you are using LTAPEDEV to specify a target device for ontape, read about
setting and changing the value in the Archive and Backup Guide. If you are
using LTAPEDEV to specify a device for onunload or onload, the same infor-
mation for TAPEDEV is relevant for LTAPEDEV.

LTAPESIZE

LTAPESIZE specifies the maximum tape size of the device to which the logical
logs are backed up when you use ontape for backups. LTAPEDEV also
specifies the maximum tape size of the device to which data is loaded or
unloaded when you use the -l option of onload or onunload. If you are using
onload or onunload, you can specify a different tape size on the command
line.

onconfig.std
value

10,240

units Kilobytes

range of values Positive integers

takes effect For ontape: When you execute ontape
For onload and onunload: When shared memory is
initialized

UNIX utilities ON-Monitor: Parameters, Initialize, Total Tape Size
(follows Log Tape Dev.)

refer to Archive and Backup Guide for information on how this
parameter affects ontape. For information on how this
parameter affects onload or onunload, see the Informix
Migration Guide.
Configuration Parameters 33-49

LTXEHWM
LTXEHWM

LTXEHWM specifies the long-transaction, exclusive-access, high-water mark. If
the logical log fills to LTXEHWM, the long transaction currently being rolled
back is given exclusive access to the logical log. For example, if you set
LTXEHWM to 60 percent of the logical-log space, and the log fills to that
percentage, at that point the thread that is rolling back the long transaction is
given exclusive access to the logical log. The term exclusive is not entirely
accurate. Most database server activity is suspended until the transaction has
completed its rollback, but transactions that are in the process of rolling back
or committing a transaction retain access to the logical log.

When the database server is initialized, if the value in the current configu-
ration file is greater than 60, a warning is issued. Informix recommends that
you change the value in your configuration file and increase the size of your
logical-log files proportionately.

onconfig.std
value

60

units Percent

range of values LTXHWM through 100

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Shared-Memory, Long TX HWM
Exclusive

refer to “Avoiding Long Transactions” on page 18-18
“LTXHWM” on page 33-51
33-50 Administrator’s Guide for Informix Dynamic Server

LTXHWM
LTXHWM

LTXHWM specifies the long-transaction high-water mark. The value of LTXHWM
is the percentage of available logical-log space that, when filled, triggers the
database server to check for a long transaction. If a long transaction is found,
the transaction is aborted, and the database server rolls back all modifications
associated with it. Other transactions continue to execute, and the rollback
procedure itself generates logical-log records, so the logical log continues to
fill. (The LTXEHWM parameter exists for this reason.)

When the database server is initialized, if the value in the current configu-
ration file is greater than 50, a warning is issued. Informix recommends that
you change the value in your configuration file and increase the size of your
logical-log files proportionately.

onconfig.std
value

50

units Percent

range of values 1 through 100

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Shared-Memory, Long TX HWM

refer to “Avoiding Long Transactions” on page 18-18
Configuration Parameters 33-51

MAX_PDQPRIORITY
MAX_PDQPRIORITY

MAX_PDQPRIORITY limits the PDQ resources that the database server can
allocate to any one DSS query. MAX_PDQPRIORITY is a factor that is used to
scale the value of PDQ priority set by users. For example, suppose that the
database administrator sets MAX_PDQPRIORITY to 80. If a user sets the
PDQPRIORITY environment variable to 50 and then issues a query, the
database server silently processes the query with a PDQ priority of 40.

MAX_PDQPRIORITY lets the database administrator run decision support
concurrently with OLTP without a deterioration of OLTP performance.
However, if MAX_PDQPRIORITY is too low, the performance of decision
support queries can degrade.

onconfig.std
value

100

if not present 100

range of values 0 through 100

takes effect On all user sessions

UNIX utilities ON-Monitor: Parameters menu, pdQ screen
onmode -D; see page 35-39.

Windows NT
utilities

onmode -D; see page 35-39.

refer to Performance Guide
33-52 Administrator’s Guide for Informix Dynamic Server

MIRROR
MAX_PDQPRIORITY takes one of the following values and affects all user
sessions.

MIRROR

MIRROR is a flag that indicates whether mirroring is enabled for the database
server. Enable mirroring if you plan to create a mirror for the root dbspace as
part of initialization. Otherwise, leave mirroring disabled.

Value Description

0 PDQ is turned off; DSS queries use no parallelism.

1 The database server fetches data from fragmented tables in parallel
(parallel scans) but uses no other form of parallelism.

100 Use all available resources for processing queries in parallel.

number The number is an integer number between 0 and 100 that indicates
the percentage of the user requested PDQ resources that the database
server actually allocates to the query. Resources include the memory,
CPU, disk I/O, and scan threads.

onconfig.std
value

0

range of values 0 = Disable mirroring.
1 = Enable mirroring.

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Initialize, Mirror

refer to “Enabling Mirroring” on page 24-4
Configuration Parameters 33-53

MIRROROFFSET
MIRROROFFSET

MIRROROFFSET specifies the offset into the disk partition or into the device
to reach the chunk that serves as the mirror for the initial chunk of the root
dbspace.

MIRRORPATH

MIRRORPATH specifies the full pathname of the chunk that serves as the
mirror for the initial chunk of the root dbspace. MIRRORPATH should be a
link to the chunk pathname of the actual mirrored chunk for the same reasons
that ROOTPATH is specified as a link. Similarly, select a short pathname for
the mirrored chunk.

onconfig.std
value

0

units Kilobytes

range of values Any value greater than or equal to 0

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Initialize, Offset (below Mirror
Path)

refer to “Mirroring the Root Dbspace During Initialization” on
page 24-7

onconfig.std
value

None

range of values Pathname

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Initialize, Mirror Path

refer to “Mirroring the Root Dbspace During Initialization” on
page 24-7
33-54 Administrator’s Guide for Informix Dynamic Server

MSGPATH
MSGPATH

MSGPATH specifies the full pathname of the message-log file. The database
server writes status messages and diagnostic messages to this file during
operation.

If the file specified by MSGPATH does not exist, the database server creates the
file in the specified directory. If the directory specified by MSGPATH does not
exist, the database server sends the messages to the database administrator’s
terminal.

If the file specified by MSGPATH does exist, the database server opens it and
appends messages to it as they occur.

onconfig.std
value

On UNIX: /usr/informix/online.log
On Windows NT: online.log

if not present On UNIX: /dev/tty

range of values Pathname

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, diaGnostics, Message Log

refer to “What Is the Message Log?” on page 29-7
Configuration Parameters 33-55

MULTIPROCESSOR
MULTIPROCESSOR

MULTIPROCESSOR specifies whether the database server performs locking in
a manner that is suitable for a single-processor computer or a multiprocessor
computer.

onconfig.std
value

0

if not present Platform dependent.

range of values 0 = No multiprocessor
1 = Multiprocessor available

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, perFormance, Multiprocessor
Machine

refer to “CPU Virtual Processors” on page 9-20
33-56 Administrator’s Guide for Informix Dynamic Server

NETTYPE
NETTYPE
syntax On UNIX or Windows NT:

NETTYPE protocol,poll_threads,connections,VP_class

On UNIX:

NETTYPE SQLMUX

The protocol value is required. You cannot use any white
space in the fields, but you can omit trailing commas.

onconfig.std
values

On UNIX: None
On Windows NT: onsoctcp,1,,NET

if not present protocol:
On UNIX: nettype field from the sqlhosts file or registry

(optionally minus the database server prefix of on or ol)
On Windows NT: onsoctcp

poll_threads: 1

connections: 50

VP_class: NET if it is for DBSERVERALIASES; CPU if it is for
DBSERVERNAME

units poll_threads: NUMCPUVPS

connections: Number of connections

separators Commas
Configuration Parameters 33-57

NETTYPE
Except for the NETTYPE parameter that lets the database server implement
multiplexed connections on UNIX, the NETTYPE parameter provides tuning
options for the protocols defined by dbservername entries in the sqlhosts file
or registry.

Each dbservername entry in the sqlhosts file or registry is defined on either
the DBSERVERNAME parameter or the DBSERVERALIASES parameter in the
ONCONFIG file.

range of values protocol:
On UNIX: same as the nettype values (with or without

the database server prefix of on or ol) that are accepted in
the sqlhosts file or registry

On Windows NT: onsoctcp

poll_threads:
On UNIX if VP_class is NET: A value greater than or

equal to 1
On UNIX if VP_class is CPU: 1 through NUMCPUVPS
On Windows NT: Any value greater than or equal to 1

connections: 1 through 32767

VP_class:
CPU = CPU VPs
NET = Network VPs

To enable multiplexed connections on UNIX, use SQLMUX
as the only parameter value.

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters: perFormance, Protocol,
Threads, Users (connections), VP-class entries for the
protocols supported on the computer

refer to “What Is a Multiplexed Connection?” on page 4-7
“The nettype and Protocol Field” on page 4-31
“Network Virtual Processors” on page 9-28
“Should Poll Threads Run on CPU or Network Virtual
Processors?” on page 9-29
“Multiplexed Connections” on page 33-60
33-58 Administrator’s Guide for Informix Dynamic Server

NETTYPE
The NETTYPE configuration parameter describes a network connection as
follows:

■ The protocol (or type of connection)

■ The number of poll threads assigned to manage the connection

■ The expected number of concurrent connections

■ The class of virtual processor that will run the poll threads

You can specify a NETTYPE parameter for each protocol that you want the
database server to use. The following example illustrates NETTYPE param-
eters for two types of connections to the database server, a shared memory
connection for local clients and a network connection that uses sockets:

NETTYPE ipcshm,3,,CPU
NETTYPE soctcp,,20,NET

The NETTYPE parameter for the shared-memory connection (ipcshm)
specifies three poll threads to run in CPU virtual processors. The number of
connections is not specified, so it is set to 50. The NETTYPE parameter for the
sockets connection (soctcp) specifies that only 20 simultaneous connections
are expected for this protocol and that one (because the number of poll
threads is not specified) poll thread will run in a network virtual processor
(in this case, SOC).

Protocol
The protocol entry is the same as the nettype field in the sqlhosts file or
registry, except that the database server prefix of on or ol is optional. The first
three characters of the protocol entry specify the interface type, and the last
three characters specify the IPC mechanism or the network protocol.

Number of Poll Threads
If your database server has a large number of connections, you might be able
to improve performance by increasing the number of poll threads. In general,
each poll thread can handle approximately 200 to 250 connections.
Configuration Parameters 33-59

NETTYPE
The default value of connections is 50. This field specifies the maximum
number of connections that can use this protocol at the same time. If you
know that only a few connections will be using a protocol concurrently, you
might save memory by explicitly setting the estimated number of
connections.

For all net types other than ipcshm, the poll threads dynamically reallocate
resources to support more connections as needed. Avoid setting the value for
the number of concurrent connections to much higher than you expect.
Otherwise, you might waste system resources.

Class of Virtual Processor
You can set the VP_class entry to specify either CPU or NET. However, the
combined number of poll threads defined with the CPU VP class for all net
types cannot exceed the maximum number of CPU VPS.

Default Values
Informix recommends that you use NETTYPE to configure each of your
connections. However, if you do not use NETTYPE, the database server uses
the default values to create a single poll thread for the protocol. If the
dbservername is defined by DBSERVERNAME, by default the poll thread is
run by the CPU class. If the dbservername is defined by DBSERVERALIASES,
the default VP class is NET.

Multiplexed Connections
To enable the database server to use multiplexed connections, you must
include a special NETTYPE parameter with the value SQLMUX, as shown in the
following example:

NETTYPE SQLMUX
33-60 Administrator’s Guide for Informix Dynamic Server

NOAGE
NOAGE

Some operating systems lower the priority of processes as the processes run
over a long period of time. NOAGE, when set to 1, disables priority aging of
CPU virtual processors by the operating system. When NOAGE is set to the
default, 0, the operating system might lower the priority of CPU virtual
processors, as well as other processes, as they accumulate processing time. If
your operating system supports priority aging, Informix recommends that
you set NOAGE to 1.

onconfig.std
value

0

range of values 0 = Use priority aging.
1 = Disable priority aging.

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, perFormance, Disable Priority
Aging

refer to “Preventing Priority Aging” on page 9-22
Configuration Parameters 33-61

NUMAIOVPS
NUMAIOVPS

NUMAIOVPS specifies the number of virtual processors of the AIO class to
run. Unless kernel asynchronous I/O is implemented, the AIO virtual
processors perform all the database server disk I/O, other than I/O to the log
files.

onconfig.std
value

On UNIX: None
On Windows NT: 1

if not present max((2 * number_of_chunks), 6), where number_of_chunks is
the number of chunks that you have allocated

units Number of AIO VPs

range of values Integer greater than or equal to 1

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, perFormance, AIO VPs
onmode -p; see page 35-37.

Windows NT
utilities

onmode -p; see page 35-37.

refer to “Asynchronous I/O” on page 9-26
33-62 Administrator’s Guide for Informix Dynamic Server

NUMCPUVPS
NUMCPUVPS

NUMCPUVPS specifies the number of virtual processors of the CPU class to
run. CPU virtual processors run all threads that start as the result of a
connection by a client application, as well as internal threads. On a single-
processor computer, allocate only one CPU virtual processor. On a multipro-
cessor computer, do not allocate more CPU virtual processors than there are
CPUs on the computer.

onconfig.std
value

1

units Number of CPU VPs

range of values 1 through the number of CPUs

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, perFormance, CPU VPs
onmode -p; see page 35-37.

Windows NT
utilities

onmode -p; see page 35-37.

refer to “CPU Virtual Processors” on page 9-20
Configuration Parameters 33-63

OFF_RECVRY_THREADS
OFF_RECVRY_THREADS

OFF_RECVRY_THREADS is the number of recovery threads used in logical
recovery when the database server is off-line (during a cold restore). This
number of threads is also used to roll forward logical-log records in fast
recovery.

Before you perform a cold restore, you can set the value of this parameter to
approximately the number of tables that have a large number of transactions
against them in the logical log. For single-processor computers, more than 30
to 40 threads is probably too many because the increase in parallel processing
is probably offset by the overhead of thread management.

onconfig.std
value

10

units Number of recovery threads

range of values Positive integers

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, perFormance, Off-Line
Recovery Threads

refer to Backup and Restore Guide for ON-Bar and Archive and
Backup Guide for ON-Archive or ontape
33-64 Administrator’s Guide for Informix Dynamic Server

ON_RECVRY_THREADS
ON_RECVRY_THREADS

ON_RECVRY_THREADS is the maximum number of recovery threads that the
database server uses for logical recovery when the database server is on-line
(that is, during a warm restore).

You can tune ON_RECVRY_THREADS to the number of tables that are likely to
be recovered because the logical-log records that are processed during
recovery are assigned threads by table number. The maximum degree of
parallel processing occurs when the number of recovery threads matches the
number of tables being recovered.

onconfig.std
value

1

units Number of recovery threads

range of values Positive integers

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, perFormance, On-Line
Recovery Threads

refer to Backup and Restore Guide for ON-Bar. See your Archive and
Backup Guide for ON-Archive or ontape.
Configuration Parameters 33-65

ONDBSPACEDOWN
ONDBSPACEDOWN

ONDBSPACEDOWN defines the action that the database server will take when
any disabling event occurs on a noncritical dbspace.

onconfig.std
value

On UNIX: 0
On Windows NT: 2

range of values 0 = Continue. Causes the database server to mark a
noncritical dbspace down and continue whenever a
disabling I/O error occurs on it.

1 = Abort. Causes the database server to crash without
allowing a checkpoint to occur whenever a disabling I/O
error occurs on any dbspace. Critical dbspaces run only in
this mode.

2 = Wait. Causes the database server to hang all updating
threads as soon as the next checkpoint request occurs
after a disabling I/O occurs on a noncritical dbspace.

UNIX utilities ON-Monitor: Parameters, Shared-Memory, Dbspace
Down Option

refer to “Monitoring the Database Server for Disabling I/O
Errors” on page 29-52
33-66 Administrator’s Guide for Informix Dynamic Server

OPCACHEMAX
OPCACHEMAX

OPCACHEMAX specifies the size of the memory cache for the Optical
Subsystem. The database server stores pieces of TEXT or BYTE data types in
the memory cache before it delivers them to the subsystem. Use this
parameter only if you use the Optical Subsystem.

onconfig.std
value

0

if not present 128

units Kilobytes

range of values 0 through (4 * 1024 * 1024)

takes effect When the Optical Subsystem needs more memory

UNIX utilities ON-Monitor: Parameters, Initialize, StageBlob

refer to Guide to the Optical Subsystem

UNIX
Configuration Parameters 33-67

OPTCOMPIND
OPTCOMPIND

OPTCOMPIND helps the optimizer choose an appropriate access method for
your application.

Tip: You can think of the name of the variable as arising from “OPTimizer COMPare
(the cost of using) INDexes (with other methods).”

onconfig.std
value

2

range of values 0 = When appropriate indexes exist for each ordered pair
of tables, the optimizer chooses index scans (nested-
loop joins), without consideration of the cost, over
table scans (sort-merge joins or hash joins). This value
ensures compatibility with previous versions of the
database server.

1 = If the transaction isolation mode is not Repeatable
Read, the optimizer behaves as it does for the value 2.
Otherwise, the optimizer behaves as it does for the
value 0. Informix recommends this setting for optimal
performance.

2 = The optimizer uses costs to determine an execution
path regardless of the transaction-isolation mode.
Index scans (nested-loop joins) are not given
preference over table scans (other join methods); the
optimizer bases its decision purely on costs. This
value is the default if the variable is not set.

UNIX utilities ON-Monitor: Parameters menu, pdQ screen

refer to Performance Guide
The OPTCOMPIND environment variable in the Informix
Guide to SQL: Reference
33-68 Administrator’s Guide for Informix Dynamic Server

PHYSBUFF
Because of the nature of hash joins and sort-merge, an application with
isolation mode set to Repeatable Read might temporarily lock all records in
tables that are involved in the join (even those records that fail to qualify the
join) for each ordered set of tables. This situation leads to higher contention
among connections. Conversely, nested-loop joins lock fewer records but
provide inferior performance when the database server retrieves a large
number of rows. Thus, both join methods offer advantages and
disadvantages. A client application can also influence the optimizer in its
choice of a join method.

PHYSBUFF

PHYSBUFF specifies the size in kilobytes of each of the two physical-log
buffers in shared memory. Double buffering permits user threads to write to
the active physical-log buffer while the other buffer is being flushed to the
physical log on disk. The value of the PHYSBUFF parameter determines how
frequently the database server needs to flush the physical-log buffer to the
physical-log file.

A write to the physical-log buffer is exactly one page in length. Choose a
value for PHYSBUFF that is evenly divisible by the page size. If the value of
PHYSBUFF is not evenly divisible by the page size, the database server rounds
down the size to the nearest value that is evenly divisible by the page size.

The minimum value for PHYSBUFF is the size of one page. The recommended
value for PHYSBUFF is 16 pages.

onconfig.std
value

32

units Kilobytes

range of values (Page size) through PHYSFILE

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Shared-Memory, Physical-log
Buffer Size

refer to “Physical-Log Buffer” on page 11-24
Configuration Parameters 33-69

PHYSDBS
System Page Size
The system page size is platform dependent. You can use the commands in
the following table to display the system page size.

On UNIX, you can also use ON-Monitor to get the system page size under the
Parameters:Shared-Memory option, which does not require the database
server to be running, and under the Parameters:Initialize option. ♦

PHYSDBS

PHYSDBS specifies the name of the dbspace that contains the physical log.
You can move the physical log to a dbspace other than the root dbspace to
reduce disk contention.

Command Description

oncheck -pr Checks the root-dbspace reserved pages and displays the system
page size in the first section of its output

onstat -b Displays the system page size, given as buffer size

onconfig.std
value

rootdbs

if not present ROOTNAME

units A dbspace

range of values Up to 18 characters

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Physical-Log, Dbspace Name

refer to “Where Is the Physical Log Located?” on page 20-8 and
“Changing the Physical-Log Location and Size” on
page 21-3

UNIX
33-70 Administrator’s Guide for Informix Dynamic Server

PHYSFILE
PHYSFILE

PHYSFILE specifies the size of the physical log.

onconfig.std
value

On UNIX: 1000
On Windows NT: 2000

if not present 200

units Kilobytes

range of values 200 or more

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Init, Phys. Log Size

refer to “How Big Should the Physical Log Be?” on page 20-5 and
“Changing the Physical-Log Location and Size” on
page 21-3
Configuration Parameters 33-71

RA_PAGES
RA_PAGES

RA_PAGES specifies the number of disk pages to attempt to read ahead
during sequential scans of data or index records. Read-ahead can greatly
speed up database processing by compensating for the slowness of I/O
processing relative to the speed of CPU processing.

This parameter works with the RA_THRESHOLD parameter. Specifying
values that are too large can result in excessive buffer-caching activity. For
more information on calculating RA_PAGES and RA_THRESHOLD, see your
Performance Guide.

onconfig.std
value

None

if not present If MULTIPROCESSOR is 0: 4
If MULTIPROCESSOR is 1: 8

units Number of pages

range of values RA_THRESHOLD through BUFFERS

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, perFormance, Num of Read
Ahead Pages

refer to “Configuring the Database Server to Read Ahead” on
page 11-42
33-72 Administrator’s Guide for Informix Dynamic Server

RA_THRESHOLD
RA_THRESHOLD

RA_THRESHOLD is used with RA_PAGES when the database server reads
during sequential scans of data and index records. RA_THRESHOLD specifies
the read-ahead threshold; that is, the number of unprocessed pages in
memory that signals the database server to perform the next read-ahead.

Specifying values that are too large for RA_PAGES and RA_THRESHOLD can
result in excessive buffer-caching activity. For more information on calcu-
lating RA_PAGES and RA_THRESHOLD, see your Performance Guide.

onconfig.std
value

None

if not present RA_PAGES/2

units Number of pages

range of values 0 through (RA_PAGES-1)

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, perFormance, Read Ahead
Threshold

refer to “Configuring the Database Server to Read Ahead” on
page 11-42
Configuration Parameters 33-73

RESIDENT
RESIDENT

The RESIDENT parameter specifies whether resident and virtual segments of
shared memory remain resident in operating-system physical memory. If
your operating system supports forced residency, you can specify that
resident and virtual segments of shared memory not be swapped to disk.

Warning: The size of shared memory is a factor in your decision. Before you decide
on residency, verify that, after satisfying the database-server requirements, the
amount of physical memory available is sufficient to execute all required operating-
system and application processes.

onconfig.std
value

0

range of values 0 = Off
-1 = Make all resident and virtual segments resident
number, where number > 0 = Make number segments
resident

if not present 0

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Shared-Memory, Forced
Residency
onmode; see page 35-28.

Windows NT
utilities

onmode; see page 35-28.

refer to “The Resident Portion of Shared Memory” on page 11-18
33-74 Administrator’s Guide for Informix Dynamic Server

RESTARTABLE_RESTORE
RESTARTABLE_RESTORE

If you set RESTARTABLE_RESTORE to 1, you simply enable the database server
to restart a failed physical or logical restore close to the point at which the
failure occurred. You can only perform a restartable if you use the ON-Bar
backup and restore tool.

The database server uses physical recovery and logical recovery to restore
data from tape:

■ Physical recovery

The database server writes dbspace pages from the backup tape to
disk. This action leaves the dbspace consistent to the point in time at
which it was originally backed up. However, the point in time is
different for each dbspace managed by the database server, because
the backup times are usually different. A restartable restore is
restartable to the level of a dbspace. If only some chunks of a dbspace
are restored when the restore fails, the entire dbspace needs to be
recovered again when you restart the restore.

■ Logical recovery

The database server replays records from logical log files on tape to
bring data in all of the dbspaces up to date. At the end of logical
recovery, all dbspaces are consistent to the same point in time.

Important: If the database server crashes in the middle of a warm logical restore, you
must restart the physical restore, and then restart the logical restore.

For more information on the requirements and procedures to restart a failed
restore, refer to your Backup and Restore Guide.

onconfig.std
value

0

range of values 0 = No
1 = Yes

takes effect When shared memory is initialized

refer to Backup and Restore Guide
Configuration Parameters 33-75

ROOTNAME
ROOTNAME

ROOTNAME specifies a name for the root dbspace for this database server
configuration. The name must be unique among all dbspaces and blobspaces
managed by this instance of the database server. The name cannot exceed 18
characters. Valid characters are restricted to digits, letters, and the under-
score. Informix recommends that you select a name that is easily recognizable
as the root dbspace.

ROOTOFFSET

ROOTOFFSET specifies the offset into an allocation of disk space (file, disk
partition, or device) at which the initial chunk of the root dbspace begins.

onconfig.std
value

rootdbs

units A dbspace

range of values Up to 18 characters

takes effect When disk is initialized (destroys all data)

UNIX utilities ON-Monitor: Parameters, Initialize, Root Name

refer to “Allocating Disk Space” on page 14-4

onconfig.std
value

0

units Kilobytes

range of values Any value greater than or equal to 0

takes effect When disk is initialized (destroys all data)

UNIX utilities ON-Monitor: Parameters, Initialize, Offset (follows Root
Size)

refer to “Allocating Raw Disk Space on UNIX” on page 14-8
33-76 Administrator’s Guide for Informix Dynamic Server

ROOTPATH
ROOTPATH

ROOTPATH specifies the full pathname, including the device or filename, of
the initial chunk of the root dbspace. ROOTPATH is stored in the reserved
pages as a chunk name. You must set the permissions of the file specified in
ROOTPATH to 660. The owner and group must both be informix.

If you use unbuffered disk space for your initial chunk on UNIX, Informix
recommends that, instead of entering the actual device name for the initial
chunk, you define ROOTPATH as a pathname that is a link to the root dbspace
initial chunk. “Creating a Link to Each Raw Device on UNIX” on page 14-9
presents a rationale for using links rather than device names. ♦

onconfig.std
value

On UNIX: /dev/dynsrv_root
On Windows NT: None

range of values Pathname

takes effect When disk is initialized (destroys all data)

UNIX utilities ON-Monitor: Parameters, Initialize, Primary Path

refer to “Allocating Disk Space” on page 14-4

UNIX
Configuration Parameters 33-77

ROOTSIZE
ROOTSIZE

ROOTSIZE specifies the size of the initial chunk of the root dbspace, expressed
in kilobytes. To change ROOTSIZE after you initialize the database server,
completely unload and reload your data.

onconfig.std
value

20,000

if not present 0

units Kilobytes

range of values 0 through (maximum capacity of the storage device)

takes effect When disk is initialized (destroys all data)

UNIX utilities ON-Monitor: Parameters, Initialize, Root Size

refer to “Calculate the Size of the Root Dbspace” on page 13-30
33-78 Administrator’s Guide for Informix Dynamic Server

SERVERNUM
SERVERNUM

SERVERNUM specifies a relative location in shared memory. The value that
you choose is not important, but it must be unique for each database server
on your local host computer. The value does not need to be unique on your
network. Informix recommends that you choose a value other than 0 to avoid
inadvertent duplication of SERVERNUM.

onconfig.std
value

0

range of values 0 through 255

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Shared-Memory, Server
Number

refer to “The Role of the SERVERNUM Configuration Parameter”
on page 5-5
Configuration Parameters 33-79

SHMADD
SHMADD

SHMADD specifies the size of a segment that is dynamically added to the
virtual portion of shared memory. It is more efficient to add memory in large
segments, but it is wasteful if the added memory is not used. Also, the
operating system might require you to add memory in a few large segments
rather than many small segments.

Informix recommends the guidelines in the following table for setting the
initial value of SHMADD.

The following command displays the size of memory segments and the
amount of memory that is used or free in each:

onstat -g seg

onconfig.std
value

8192

units Segment size

range of values 1024 through 524,288

units Bytes

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Shared-Memory, Add Seg Size

refer to “The Virtual Portion of Shared Memory” on page 11-25

Amount of Physical Memory
Recommended
SHMADD Value

Less than 256 megabytes 8192

Greater than 256 megabytes and less than 512 megabytes 16,384

Greater than 512 megabytes 32,768
33-80 Administrator’s Guide for Informix Dynamic Server

SHMBASE
SHMBASE

SHMBASE specifies the base address where shared memory is attached to the
memory space of a virtual processor. Do not change the value of SHMBASE.
The onconfig.std value for SHMBASE is platform dependent.

ON-Monitor, which is available only on UNIX, does not prompt for this value
during initialization. ♦

onconfig.std
value

On UNIX: Platform dependent
On Windows NT: 0xC000000L

units Address

range of values Positive integers

takes effect When shared memory is initialized

refer to “Setting Operating-System Shared-Memory Configu-
ration Parameters” on page 12-3

UNIX
Configuration Parameters 33-81

SHMTOTAL
SHMTOTAL

SHMTOTAL specifies the total amount of shared memory (resident, virtual,
communications, and virtual extension portions of shared memory) to be
used by the database server for all memory allocations. The onconfig.std
value of 0 implies that no limit on memory allocation is stipulated.

SHMTOTAL enables you to limit the demand for memory that the database
server can place on your system. However, applications might fail if the
database server requires more memory than the limit imposed by
SHMTOTAL. When this situation occurs, the database server writes the
following message in the message log:

size of resident + virtual segments xx + yy > zz total allowed by configuration
parameter SHMTOTAL

This message includes the following values.

onconfig.std
value

0

units Kilobytes

range of values Integer greater than or equal to 1

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Shared-Memory, Total Memory

refer to “How Much Shared Memory Does the Database Server
Need?” on page 11-9

Value Description

xx Current size of resident segments

yy Current size of virtual segments

zz Total shared-memory required
33-82 Administrator’s Guide for Informix Dynamic Server

SHMVIRTSIZE
SHMVIRTSIZE

SHMVIRTSIZE specifies the initial size of a virtual shared-memory segment.
Use the following algorithm to determine the size of the virtual portion of
shared memory:

fixed_overhead + shared_structures + (mncs * private_structures)

This algorithm includes the following values.

onconfig.std
value

On UNIX: 8000
On Windows NT: 8192

if not present If SHMADD is present: SHMADD
If SHMADD is not present: 8

units Kilobytes

range of values Positive integers

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Shared-Memory, Non Res. Seg
Size

refer to “The Virtual Portion of Shared Memory” on page 11-25

Value Description

fixed_overhead global pool + thread pool after booting (partially dependent on the number of virtual
processors

shared_structures AIO vectors + sort memory + dbspace backup buffers + dictionary size + size of
stored procedure cache + histogram pool + other pools (see the onstat display)

mncs maximum number of concurrent sessions

private_structures stack (generally 32 kilobytes but dependent on recursion in stored procedures and
triggers) + heap (about 30 kilobytes) + session control-block structures
Configuration Parameters 33-83

SINGLE_CPU_VP
If messages in the message file indicate that the database server is adding
segments to the virtual portion of shared memory for you, add the amount
indicated by these messages to the value of SHMVIRTSIZE. Informix recom-
mends that you initially create a virtual portion of shared memory of a size
that is more than sufficient for your daily processing, if possible.

The following command determines peak usage and lowers the value of
SHMVIRTSIZE accordingly:

% onstat -g seg

SINGLE_CPU_VP

SINGLE_CPU_VP specifies whether or not the database server is running with
only one CPU virtual processor.

When SINGLE_CPU_VP is nonzero, the database server can use code that is
optimized for a single CPU virtual processor. This arrangement lets it bypass
many of the mutex calls that it must use when it runs multiple CPU virtual
processors.

If you set this parameter to nonzero and then attempt to bring up the
database server with NUMCPUVPS set to a value greater than 1, you receive
the following error message, and the database-server initialization fails:

Cannot have SINGLE_CPU_VP non-zero and CPU VPs greater than 1.

onconfig.std
value

0

range of values 0 = Running with multiple CPU VPs
Any nonzero value = Running with one CPU VP

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, perFormance, Single CPU VP

refer to “Running on a Single-Processor Computer” on page 9-21
33-84 Administrator’s Guide for Informix Dynamic Server

STACKSIZE
If you set SINGLE_CPU_VP to nonzero and try to add a CPU virtual processor,
you receive one of the following messages:

onmode: failed when trying to change the number of classname VPs by n.

onmode: failed when trying to change the number of cpu virtual processors by n.

Informix strongly recommends that you set this parameter when the
database server will run only one CPU virtual processor. Depending on the
application and work load, setting this parameter can improve performance
by up to 10 percent.

STACKSIZE

The STACKSIZE parameter specifies the stack size for the database server user
threads. The value of STACKSIZE does not have an upper limit, but setting a
value that is too large wastes virtual memory space and can cause swap-
space problems.

Informix has determined that the default size of 32 kilobytes is sufficient for
nonrecursive database activity. When the database server performs recursive
database tasks, as in some stored procedures, for example, it explicitly checks
for the possibility of stack-size overflow and automatically expands the
stack.

onconfig.std
value

32

units Kilobytes

range of values 32 through (limit determined by the database server
configuration and the amount of memory available)

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Shared-Memory, Stack Size
(kilobytes)

refer to “Stacks” on page 9-15
The CREATE FUNCTION statement in the Informix Guide to
SQL: Syntax
Configuration Parameters 33-85

STAGEBLOB
Warning: Setting the value of STACKSIZE too low can cause stack overflow, the
result of which is undefined but usually undesirable.

STAGEBLOB

Use this parameter only if you are storing TEXT or BYTE data types on optical
storage with the Optical Subsystem. This parameter has no affect on ordinary
blobspaces.

STAGEBLOB is the blobspace name for the area where the Optical Subsystem
stages TEXT and BYTE data types that are destined for storage on optical disk.

onconfig.std
value

None

range of values Up to 18 characters

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Initialize, Stage Blob

refer to Guide to the Optical Subsystem
33-86 Administrator’s Guide for Informix Dynamic Server

TAPEBLK
TAPEBLK

TAPEBLK specifies the block size of the device to which ontape writes during
a dbspace backup. TAPEBLK also specifies the default block size of the device
to which data is loaded or unloaded when you use onload or onunload. If
you are using onload or onunload, you can specify a different block size on
the command line.

The database server does not check the tape device when you specify the
block size. Verify that the TAPEBLK tape device can read the block size that
you specify. If not, you might not able to read from the tape.

System Page Size
The system page size is platform dependent. You can use the commands in
the following table to display the system page size.

onconfig.std
value

16

units Kilobytes

range of values Values greater than (page size)/1024

takes effect For ontape: When you execute ontape
For onload and onunload: When shared memory is
initialized

UNIX utilities ON-Monitor: Parameters, Initialize, Block Size (follows
Tape Dev)

refer to Informix Migration Guide

Command Description

oncheck -pr Checks the root-dbspace reserved pages and displays the system
page size in the first section of its output

onstat -b Displays the system page size, given as buffer size
Configuration Parameters 33-87

TAPEDEV
On UNIX, you can also use ON-Monitor to get the system page size under the
Parameters:Shared-Memory option, which does not require the database
server to be running, and under the Parameters:Initialize option. ♦

TAPEDEV

TAPEDEV specifies the device to which ontape back ups dbspace data.
TAPEDEV also specifies the default device to which data is loaded or
unloaded when you use onload or onunload.

Using Symbolic Links
TAPEDEV can be a symbolic link, enabling you to switch between tape
devices without changing the pathname specified in TAPEDEV.

Using a Remote Device
You can use the following syntax to specify a tape device attached to another
host computer:

host_machine_name:tape_device_pathname

onconfig.std
value

On UNIX: /dev/tapedev
On Windows NT: \\.\TAPE0

if not present On UNIX: /dev/null

units Pathname

takes effect For ontape: When you execute ontape
For onload and onunload: When shared memory is
initialized

UNIX utilities ON-Monitor: Parameters, Initialize, Tape Dev

refer to Archive and Backup Guide for information on how this
parameter affects ontape. For information on how this
parameter affects onload and onunload, see the Informix
Migration Guide.

UNIX

UNIX

UNIX
33-88 Administrator’s Guide for Informix Dynamic Server

TAPEDEV
The following example specifies a tape device on the host computer kyoto:

kyoto:/dev/rmt01

Verify the Tape Block Size and Tape Size
If you change the tape device, verify that TAPEBLK and TAPESIZE are correct
for the new device.

Tape Devices Must Rewind Before Opening and on Closing
The tape device specified by TAPEDEV must perform a rewind before it opens
and when it closes. The database server requires this action because of a
series of checks that it performs before it writes to a tape.

When the database server attempts to write to any tape other than the first
tape in a multivolume dbspace or logical-log backup, the database server first
reads the tape header to make sure that the tape is available for use. Then the
device is closed and reopened. The database server assumes the tape was
rewound when it closed, and the database server begins to write.

Whenever the database server attempts to read a tape, it first reads the header
and looks for the correct information. The database server does not find the
correct header information at the start of the tape if the tape device did not
rewind when it closed during the write process.
Configuration Parameters 33-89

TAPESIZE
TAPESIZE

The TAPESIZE parameter specifies the size of the device to which ontape
backs up dbspace data. TAPESIZE also specifies the size of the default device
to which data is loaded or unloaded when you use onload or onunload. If
you are using onload or onunload, you can specify a different tape size on
the command line.

onconfig.std
value

10,240

units Kilobytes

range of values Positive integers

takes effect For ontape: When you execute ontape
For onload and onunload: When shared memory is
initialized

UNIX utilities ON-Monitor: Parameters, Initialize, Total Tape Size
(follows Tape Dev)

refer to Informix Migration Guide
33-90 Administrator’s Guide for Informix Dynamic Server

TXTIMEOUT
TXTIMEOUT

TXTIMEOUT specifies the amount of time that a participant in a two-phase
commit waits before it initiates participant recovery.

This parameter is used only for distributed queries that involve a remote
database server. Nondistributed queries do not use this parameter.

onconfig.std
value

300

units Seconds

range of values Positive integers

takes effect When shared memory is initialized

UNIX utilities ON-Monitor: Parameters, Shared-Memory, Transaction
Timeout

refer to “How the Two-Phase Commit Protocol Handles Failures”
on page 30-10
Configuration Parameters 33-91

USEOSTIME
USEOSTIME

Setting USEOSTIME to 1 specifies that the database server is to use subsecond
granularity when it obtains the current time from the operating system for
SQL statements. If subsecond granularity is not needed, the database server
retrieves the current time from the operating system once per second, making
the granularity of time for client applications one second. When the host
computer for the database server has a clock with subsecond granularity,
applications that depend on subsecond accuracy for their SQL statements
should set USEOSTIME to 1.

Systems that run with USEOSTIME set to nonzero notice a performance
degradation of up to 4 to 5 percent versus running with USEOSTIME turned
off.

This setting does not affect any calls regarding the time from application
programs to Informix embedded-language library functions.

onconfig.std
value

0

range of values 0 = Off
1 = On

takes effect During initialization

UNIX utilities ON-Monitor: Parameters, perFormance, Use OS Time

refer to Performance Guide
33-92 Administrator’s Guide for Informix Dynamic Server

34
Chapter
The sysmaster Database
What Is the sysmaster Database? 34-3

Using the System-Monitoring Interface 34-5
What Are the SMI Tables? 34-5
Accessing SMI Tables. 34-6

SELECT Statements 34-6
Triggers and Event Alarms 34-7
SPL and SMI Tables 34-7
Locking and SMI Tables 34-7

The System-Monitoring Interface Tables 34-8
sysadtinfo . 34-9
sysaudit . 34-10
syschkio . 34-11
syschunks . 34-11
sysconfig . 34-13
sysdatabases. 34-14
sysdbslocale . 34-15
sysdbspaces . 34-15
sysdri . 34-17
sysextents. 34-18
syslocks . 34-18
syslogs. 34-19
sysprofile . 34-20
sysptprof . 34-23
syssesprof . 34-24
syssessions . 34-26
sysseswts . 34-28
systabnames . 34-29
sysvpprof . 34-30

34-2 Ad
The SMI Tables Map 34-30

Using SMI Tables to Obtain onstat Information 34-33
ministrator’s Guide for Informix Dynamic Server

This chapter describes the sysmaster database and contains reference
information for the system-monitoring interface (SMI). It provides information
on the following topics:

■ How to use SMI tables

■ Descriptions of the SMI tables

■ A map of the documented SMI tables

The sysmaster database also contains information about ON-Archive catalog
tables. For information about ON-Archive, see your Archive and Backup Guide.

What Is the sysmaster Database?
The database server creates and maintains the sysmaster database. It is
analogous to the system catalog for databases, which is described in the
Informix Guide to SQL: Reference. Just as a system catalog for every database
managed by the database server keeps track of objects and privileges in the
database, a sysmaster database for every database server keeps track of infor-
mation about the database server.
The sysmaster Database 34-3

What Is the sysmaster Database?
The sysmaster database contains the following tables:

■ SMI tables

The system-monitoring interface tables in the sysmaster database
provide information about the state of the database server. You can
query these tables to identify processing bottlenecks, determine
resource usage, track session or database server activity, and so on.
This chapter describes these tables, which are slightly different than
ordinary tables.

■ ON-Archive catalog tables

The ON-Archive catalog tables store information about ON-Archive
requests, volume sets, and save sets.

Warning: The database server relies on information in the sysmaster database. Do
not change any of the tables in sysmaster or any of the data within the tables. Such
changes could cause unpredictable and debilitating results.

The database server creates the sysmaster database when it initializes disk
space. The database server creates the database with unbuffered logging. You
cannot drop the database or any of the tables in it, and you cannot turn
logging off.

As user dddd, you can create stored procedures in the sysmaster database.
(You can also create triggers on tables within sysmaster, but the database
server never executes those triggers.)

Joins of multiple tables in sysmaster might return inconsistent results
because the database server does not lock the tables during a join. You can
join sysmaster tables with tables in other databases. However, to join
sysmaster tables with tables in a nonlogging database, first make the
nonlogging database the current database.

When you bring the database server up for the first time, it runs a script
called buildsmi, which is in the etc directory. This script builds the database
and tables that support SMI. The database server requires approximately
1750 free pages of logical-log space to build the sysmaster database.
34-4 Administrator’s Guide for Informix Dynamic Server

Using the System-Monitoring Interface
If you receive an error message that directs you to run this script, a problem
probably occurred while the database server was building the SMI database,
tables, and views.

Warning: When you use buildsmi, the existing sysmaster database is dropped and
then re-created; if you have information in the ON-Archive catalog tables, it will be
overwritten.

Using the System-Monitoring Interface
This section describes the SMI tables and how you access them to monitor the
database server operation.

What Are the SMI Tables?
The system-monitoring interface consists of tables and pseudo-tables that the
database server maintains automatically. While the SMI tables appear to the
user as tables, they are not recorded on disk like normal tables. Instead, the
database server constructs the tables in memory, on demand, based on infor-
mation in shared memory at that instant. When you query the SMI using one
of these tables, the database server reads information from these shared-
memory structures and returns it to you. Because the database server contin-
ually updates the data in shared memory, the information that SMI provides
lets you examine the current state of your database server.

The SMI tables provide information on the following topics:

■ Auditing

■ Disk usage

■ User profiling

■ Database-logging status

■ Tables

■ Chunks

■ Chunk I/O

■ Dbspaces

■ Locks
The sysmaster Database 34-5

Accessing SMI Tables
■ Extents

■ Virtual processor CPU usage

■ System profiling

The data in the SMI tables changes dynamically as users access and modify
databases that the database server manages.

Accessing SMI Tables
Any user can use SQL SELECT statements to query any SMI table except
sysadtinfo and sysaudit. Only user informix can query sysadtinfo and
sysaudit. Standard users cannot execute statements other than SELECT state-
ments on SMI tables. Attempts to do so result in permission errors.

The user informix can execute SQL statements other than SELECT, but the
results of such statements are unpredictable.

You cannot use dbschema or dbexport on any of the tables in the sysmaster
database. If you do, the database server generates the following error
message:

Database has pseudo tables - can’t build schema

SELECT Statements

You can use SELECT statements on SMI tables wherever you can use SELECT
against ordinary tables (from DB-Access, in a stored procedure, with ESQL/C,
and so on) with one restriction: you cannot (meaningfully) reference rowid
when you query SMI tables. SELECT statements that use rowid do not return
an error, but the results are unpredictable.

All standard SQL syntax, including joins between tables, sorting of output,
and so on, works with SMI tables. For example, if you want to join an SMI
table with an non-SMI table, name the SMI table with the following standard
syntax:

sysmaster:[@dbservername][owner.]tablename
34-6 Administrator’s Guide for Informix Dynamic Server

Accessing SMI Tables
Triggers and Event Alarms

Triggers based on changes to SMI tables never run. Although you can define
triggers on SMI tables, triggers are activated only when an INSERT, UPDATE,
or DELETE statement occurs on a table. The updates to the SMI data occur
within the database server, without the use of SQL, so a trigger on an SMI
table is never activated, even though the data returned by a SELECT
statement indicates that it should be.

To create an event alarm, query for a particular condition at predefined
intervals, and execute a stored procedure if the necessary conditions for the
alarm are met.

SPL and SMI Tables

You can access SMI tables from within SPL. When you reference SMI tables,
use the same syntax that you use to reference a standard table.

Locking and SMI Tables

The information in the SMI tables changes based on the database server
activity. However, the database server does not update the information using
SQL statements. When you use SMI tables with an isolation level that locks
objects, it prevents other users from accessing the object, but it does not
prevent the data from changing. In this sense, all the SMI tables have a
permanent Dirty Read isolation level.
The sysmaster Database 34-7

The System-Monitoring Interface Tables
The System-Monitoring Interface Tables
The database server supports the following SMI tables.

Table Description Reference

sysadtinfo Auditing configuration information page 34-9

sysaudit Auditing event masks page 34-10

syschkio Chunk I/O statistics page 34-11

syschunks Chunk information page 34-11

sysconfig Configuration information page 34-13

sysdatabases Database information page 34-14

sysdbslocale Locale information page 34-15

sysdbspaces Dbspace information page 34-15

sysdri Data-replication information page 34-17

sysextents Extent-allocation information page 34-18

sysextspaces External spaces information page 34-18

syslocks Active locks information page 34-18

syslogs Logical-log file information page 34-19

sysprofile System-profile information page 34-20

sysptprof Table information page 34-23

syssesprof Counts of various user actions page 34-24

syssessions Description of each user connected page 34-26

sysseswts User’s wait time on each of several objects page 34-28

systabnames Database, owner, and table name for the tblspace page 34-29

sysvpprof User and system CPU used by each virtual processor page 34-30
34-8 Administrator’s Guide for Informix Dynamic Server

sysadtinfo
Many other tables in the sysmaster database are part of the system-
monitoring interface but are not documented. Their schemas and column
content can change from version to version.

sysadtinfo
The sysadtinfo table contains information about the auditing configuration
for the database server. For more information, see your Trusted Facility
Manual. You must be user informix or user root to retrieve information from
the sysadtinfo table.

Column Type Description

adtmode integer If auditing is on or off

■ 0 off

■ 1 on

adterr integer Action on errors

■ 0 continually retry audit writes until they succeed.
Processing for the thread that generated the error stops.

■ 1 write all failed audit writes to the message log and
continue processing.

adtsize integer Maximum size of an audit file

adtpath char(128) Directory where audit files are written

adtfile integer Number of the audit file
The sysmaster Database 34-9

sysaudit
sysaudit
For each defined audit mask (that is, for each username), the sysaudit table
contains flags that represent the database events that generate audit records.
The success and failure columns represent the bitmasks that compose the
audit masks. If a bit is set in both the success the and failure columns, the
corresponding event generates an audit record whether or not the event
succeeded.

You must be user informix or user root to retrieve information from the
sysaudit table.

Use the onaudit utility to list or modify an audit mask. For information about
onaudit, and for additional information about auditing, see your Trusted
Facility Manual.

Column Type Description

username char(8) Name of the mask

succ1 integer Bitmask of the audit mask for success

succ2 integer Bitmask of the audit mask for success

succ3 integer Bitmask of the audit mask for success

succ4 integer Bitmask of the audit mask for success

succ5 integer Bitmask of the audit mask for success

fail1 integer Bitmask of the audit mask for failure

fail2 integer Bitmask of the audit mask for failure

fail3 integer Bitmask of the audit mask for failure

fail4 integer Bitmask of the audit mask for failure

fail5 integer Bitmask of the audit mask for failure
34-10 Administrator’s Guide for Informix Dynamic Server

syschkio
syschkio
The syschkio table provides I/O statistics for individual chunks that the
database server manages.

syschunks
The syschunks table describes each of the chunks that the database server
manages. In the flags and mflags columns, each bit position represents a
separate flag. Thus, it might be easier to read values in the flags and mflags
columns if the values are returned using the HEX function.

Column Type Description

chunknum smallint Chunk number

reads integer Number of physical reads

pagesread integer Number of pages read

writes integer Number of physical writes

pageswritten integer Number of pages written

mreads integer Number of physical reads (mirror)

mpagesread integer Number of pages read (mirror)

mwrites integer Number of physical writes (mirror)

mpageswritten integer Number of pages written (mirror)

Column Type Description

chknum smallint Chunk number

dbsnum smallint Dbspace number

nxchknum smallint Number of the next chunk in this dbspace

chksize integer Number of pages in this chunk

offset integer Page offset of the chunk in its device or path

(1 of 3)
The sysmaster Database 34-11

syschunks
nfree integer Number of free pages in the chunk

is_offline integer 1 if the chunk is off-line, 0 if not

is_recovering integer 1 if the chunk is being recovered, 0 if not

is_blobchunk integer 1 if the chunk is in a blobspace, 0 if not

is_inconsistent integer 1 if the chunk is undergoing logical restore, 0 if not

flags smallint Flags Hexadecimal Meaning

16 0x0010 chunk is a mirrored chunk

32 0x0020 chunk is in off-line mode

64 0x0040 chunk is in on-line mode

128 0x0080 chunk is in recovery mode

256 0x0100 chunk has just been
mirrored

512 0x0200 chunk is part of a
blobspace

1024 0x0400 chunk is being dropped

2048 0x0800 chunk is part of an optical
stageblob

4096 0x1000 chunk is inconsistent

16384 0x4000 chunk contains temporary
log space

32768 0x8000 chunk was added during
roll forward

fname char(128) Pathname for the device of this chunk

mfname char(128) Pathname for the device of the mirrored chunk, if any

moffset integer Page offset of the mirrored chunk

Column Type Description

(2 of 3)
34-12 Administrator’s Guide for Informix Dynamic Server

sysconfig
sysconfig
The sysconfig table describes the effective, original, and default values of the
configuration parameters. For more information about the ONCONFIG file
and the configuration parameters, see Chapter 33, “Configuration
Parameters.”

mis_offline integer 1 if mirror is off-line, 0 if not

mis_recovering integer 1 if mirror is being recovered, 0 if not

mflags smallint Mirrored chunk flags; values and meanings are the
same as the flags column.

Column Type Description

cf_id integer Unique numeric identifier

cf_name char(18) Configuration parameter name

cf_flags integer Reserved for future use

cf_original char(256) Value in the ONCONFIG file at boot time

cf_effective char(256) Value effectively in use

cf_default char(256) Value provided by the database server if no value
is specified in the ONCONFIG file

Column Type Description

(3 of 3)
The sysmaster Database 34-13

sysdatabases
sysdatabases
The sysdatabases table describes each database that the database server
manages.

Column Type Description

name char(18) Database name

partnum integer The partition number (tblspace identifier) for
the systables table for the database

owner char(8) User ID of the creator of the database

created date Date created

is_logging integer 1 if logging is active, 0 if not

is_buff_log integer 1 if buffered logging, 0 if not

is_ansi integer 1 if ANSI-compliant, 0 if not

is_nls integer 1 if GLS-enabled, 0 if not

flags smallint Logging flags

0 no logging

1 unbuffered logging

2 buffered logging

4 ANSI-compliant database

8 read-only database

16 GLS database
34-14 Administrator’s Guide for Informix Dynamic Server

sysdbslocale
sysdbslocale
The sysdbslocale table lists the locale of each database that the database
server manages.

sysdbspaces
The sysdbspaces table describes each of the dbspaces that the database
server manages. In the flags column, each bit position represents a separate
flag. Thus, it might be easier to read values in the flags column if the values
are returned using the HEX function.

Column Type Description

dbs_dbsname char(18) Database name

dbs_collate char(32) The locale of the database

Column Type Description

dbsnum smallint Dbspace number

name char(18) Dbspace name

owner char(8) User ID of owner of the dbspace

fchunk smallint Number of the first chunk in the dbspace

nchunks smallint Number of chunks in the dbspace

is_mirrored integer 1 if dbspace is mirrored, 0 if not

is_blobspace integer 1 if the dbspace is a blobspace, 0 if not

is_temp integer 1 if the dbspace is a temporary dbspace, 0 if not

flags smallint Flags Hexadecimal Meaning

1 0x0001 dbspace has no mirror

2 0x0002 dbspace uses mirroring

4 0x0004 dbspace mirroring disabled

(1 of 2)
The sysmaster Database 34-15

sysdbspaces
8 0x0008 dbspace newly mirrored

16 0x0010 blobspace

32 0x0020 blobspace on removable media

64 0x0040 blobspace on optical media

128 0x0080 blobspace that has been dropped

256 0x0100 blobspace is an optical stageblob

512 0x0200 space is being recovered

1024 0x0400 space has been physically
recovered

2048 0x0800 space is in logical recovery

Column Type Description

(2 of 2)
34-16 Administrator’s Guide for Informix Dynamic Server

sysdri
sysdri
The sysdri table provides information on the high-availability data-repli-
cation status of the database server.

Column Type Description

type char(50) High-availability data replication type
Possible values:

primary
secondary
standard
not initialized

state char(50) State of high-availability data replication
Possible values:

off
on
connecting
failer
read-only

name char(20) The name of the other database server in the high-
availability data-replication pair

intvl integer The high-availability data-replication interval

timeout integer The high-availability data-replication timeout value
for this database server

lostfound char(128) The pathname to the lost-and-found file
The sysmaster Database 34-17

sysextents
sysextents
The sysextents table provides information on extent allocation.

syslocks
The syslocks table provides information on all the currently active locks in
the database server.

Column Type Description

dbsname char(18) Database name

tabname char(18) Table name

start integer Physical address for the extent

size integer Size of the extent, in pages

Column Type Description

dbsname char(18) Database name

tabname char(18) Table name

rowidlk integer Real rowid, if it is an index key lock

keynum smallint Key number of index key lock

type char(4) Type of lock

B byte lock

IS intent shared lock

S shared lock

XS shared key value held by a repeatable reader

U update lock

IX intent exclusive lock

SIX shared intent exclusive lock

(1 of 2)
34-18 Administrator’s Guide for Informix Dynamic Server

syslogs
syslogs
The syslogs table provides information on space use in logical-log files. It has
the following columns. In the flags column, each bit position represents a
separate flag. For example, for a log file, the flags column can have flags set
for both current log file and temporary log file. Thus, it might be easier to
read values in the flags column if the values are returned using the HEX
function.

X exclusive lock

XR exclusive key value held by a repeatable reader

owner integer Session ID of the lock owner

waiter integer Session ID of the user waiting for the lock. If more than
one user is waiting, only the first session ID appears.

Column Type Description

number smallint Logical-log file number

uniqid integer Log-file ID

size integer Number of pages in the log file

used integer Number of pages used in the log file

is_used integer 1 if file is used, 0 if not

is_current integer 1 if file is the current file, 0 if not

is_backed_up integer 1 if file has been backed up, 0 if not

is_new integer 1 if the log has been added since the last level-0
dbspace backup, 0 if not

is_archived integer 1 if file has been placed on the archive tape, 0 if not

is_temp integer 1 if the file is flagged as a temporary log file, 0 if not

(1 of 2)

Column Type Description

(2 of 2)
The sysmaster Database 34-19

sysprofile
sysprofile
The sysprofile table contains profile information about the database server.

flags smallint Flags Hexadecimal Meaning

1 0x01 log file in use

2 0x02 current log file

4 0x04 log file has been backed up

8 0x08 newly added log file

16 0x10 log file has been written to
dbspace backup tape

32 0x20 log is a temporary log file

Column Type Description

name char(13) Name of profiled event (see table that follows for a
list of possible events)

srtspmax integer Maximum disk space required by a sort

totsorts integer Total number of sorts performed

value integer Value of profiled event (see table that follows for a
list of possible events)

Column Type Description

(2 of 2)
34-20 Administrator’s Guide for Informix Dynamic Server

sysprofile
The following table lists the events that, together with a corresponding value,
make up the rows of the sysprofile table.

Events Profiled in
sysprofile Description

dskreads Number of actual reads from disk

bufreads Number of reads from shared memory.

dskwrites Actual number of writes to disk

bufwrites Number of writes to shared memory

isamtot Total number of calls

isopens isopen calls

isstarts isstart calls

isreads isread calls

iswrites iswrite calls

isrewrites isrewrite calls

isdeletes isdelete calls

iscommits iscommit calls

isrollbacks isrollback calls

ovlock Overflow lock table

ovuser Overflow user table

ovtrans Overflow transaction table

latchwts Latch request waits

bufwts Buffer waits

lockreqs Lock requests

lockwts Lock waits

ckptwts Checkpoint waits

(1 of 3)
The sysmaster Database 34-21

sysprofile
deadlks Deadlocks

lktouts Deadlock time-outs

numckpts Number checkpoints

plgpagewrites Physical-log pages written

plgwrites Physical-log writes

llgrecs Logical-log records

llgpagewrites Logical-log writes

llgwrites Logical-log pages written

pagreads Page reads

pagwrites Page writes

flushes Buffer-pool flushes

compress Page compresses

fgwrites Foreground writes

lruwrites Least-recently used (LRU) writes

chunkwrites Writes during a checkpoint

btradata Data pages read ahead through leaf

btraidx Leaf read aheads through parent

dpra Data-page read aheads

rapgs_used Read-ahead pages used

seqscans Sequential scans

totalsorts Total sorts

Events Profiled in
sysprofile Description

(2 of 3)
34-22 Administrator’s Guide for Informix Dynamic Server

sysptprof
sysptprof
The sysptprof table lists information about a tblspace, also referred to as a
partition. Tblspaces corresponds to tables.

Profile information for a table is available only when a table is open. When
the last user who has a table open closes it, the partition structure in shared
memory is freed and thus any profile statistics are lost.

memsorts Sorts that fit in memory

disksorts Sorts that did not fit in memory

maxsortspace Maximum disk space used by a sort

Column Type Description

dbsname char(18) Database name

tabname char(18) Table name

partnum integer Partition (tblspace) number

lockreqs integer Number of lock requests

lockwts integer Number of lock waits

deadlks integer Number of deadlocks

lktouts integer Number of lock timeouts

isreads integer Number of isreads

iswrites integer Number of iswrites

isrewrites integer Number of isrewrites

isdeletes integer Number of isdeletes

bufreads integer Number of buffer reads

(1 of 2)

Events Profiled in
sysprofile Description

(3 of 3)
The sysmaster Database 34-23

syssesprof
syssesprof
The syssesprof table lists cumulative counts of the number of occurrences of
user actions such as writes, deletes, or commits.

bufwrites integer Number of buffer writes

seqscans integer Number of sequential scans

pagreads integer Number of page reads

pagwrites integer Number of page writes

Column Type Description

sid integer Session ID

lockreqs integer Number of locks requested

locksheld integer Number of locks currently held

lockwts integer Number of times waited for a lock

deadlks integer Number of deadlocks detected

lktouts smallint Number of deadlock timeouts

logrecs integer Number of logical-log records written

isreads integer Number of reads

iswrites integer Number of writes

isrewrites integer Number of rewrites

isdeletes integer Number of deletes

iscommits integer Number of commits

isrollbacks integer Number of rollbacks

longtxs integer Number of long transactions

(1 of 2)

Column Type Description

(2 of 2)
34-24 Administrator’s Guide for Informix Dynamic Server

syssesprof
bufreads integer Number of buffer reads

bufwrites integer Number of buffer writes

seqscans integer Number of sequential scans

pagreads integer Number of page reads

pagwrites integer Number of page writes

total_sorts integer Number of total sorts

dsksorts integer Number of sorts that did not fit in memory

max_sortdiskspace integer Number of maximum space used by a sort

logspused integer Number of bytes of logical-log space used by
current transaction of session

maxlogsp integer Maximum number of bytes of logical-log
space ever used by the session

Column Type Description

(2 of 2)
The sysmaster Database 34-25

syssessions
syssessions
The syssessions table provides general information on each user connected
to the database server. In the state column, each bit position represents a
separate flag. Thus, it might be easier to read values in the state column if the
values are returned using the HEX function.

Column Type Description

sid integer Session ID

username char(8) User ID

uid smallint User ID number

pid integer Process ID of the client

hostname char(16) Hostname of client

tty char(16) Name of the user’s stderr file

connected integer Time that user connected to the database server

feprogram char(16) Reserved for future use

pooladdr integer Session pool address

is_wlatch integer 1 if the primary thread for the session is waiting on a latch

is_wlock integer 1 if the primary thread for the session is waiting on a lock

is_wbuff integer 1 if the primary thread for the session is waiting on a
buffer

is_wckpt integer 1 if the primary thread for the session is waiting on a
checkpoint

is_wlogbuf integer 1 if the primary thread for the session is waiting on a log
buffer

is_wtrans integer 1 if the primary thread for the session is waiting on a
transaction

is_monitor integer 1 if the session is a special monitoring process

is_incrit integer 1 if the primary thread for the session is in a critical section

(1 of 2)
34-26 Administrator’s Guide for Informix Dynamic Server

syssessions
state integer Flags Hexadecimal Meaning

1 0x00000001 user structure in use

2 0x00000002 waiting for a latch

4 0x00000004 waiting for a clock

8 0x00000008 waiting for a buffer

16 0x00000010 waiting for a checkpoint

32 0x00000020 in a read RSAM call

64 0x00000040 writing logical-log file to
backup tape

128 0x00000080 ON-Monitor (UNIX-only)

256 0x00000100 in a critical section

512 0x00000200 special daemon

1024 0x00000400 archiving

2048 0x00000800 clean up dead processes

4096 0x00001000 waiting for write of log buffer

8192 0x00002000 special buffer-flushing thread

16384 0x00004000 remote database server

32768 0x00008000 deadlock timeout used to set
RS_timeout

65536 0x00010000 regular lock timeout

262144 0x00040000 waiting for a transaction

524288 0x00080000 primary thread for a session

1048576 0x00100000 thread for building indexes

2097152 0x00200000 btree cleaner thread

Column Type Description

(2 of 2)
The sysmaster Database 34-27

sysseswts
sysseswts
The sysseswts table provides information on the amount of time that users
wait for various database objects.

Column Type Description

sid integer Session ID

reason char(16) Description of reason for wait:

■ unspecified

■ buffer

■ lock

■ asynchronous I/O

■ mt yield 0

■ mt yield n

■ mt yield

■ checkpoint

■ log i/o

■ log copy

■ condition

■ lock mutex

■ lockfree mutex

■ deadlock mutex

■ lrus mutex

■ tblsp mutex

■ log mutex

■ ckpt mutex

■ mutex

■ mt ready

■ mt yield x

■ running

(1 of 2)
34-28 Administrator’s Guide for Informix Dynamic Server

systabnames
systabnames
The systabnames table describes each table that the database server
manages.

numwaits integer Number of waits for this reason

cumtime float Cumulative time waited for this reason in microseconds

maxtime integer Maximum time waited during this session for this reason

Column Type Description

partnum integer Tblspace identifier

dbsname char(18) Database name

owner char(8) User ID of owner

tabname char(18) Table name

collate char(32) Collation associated with a GLS database

Column Type Description

(2 of 2)
The sysmaster Database 34-29

sysvpprof
sysvpprof
The sysvpprof table lists user and system CPU time for each virtual processor.

The SMI Tables Map
Figure 34-1 displays the columns in the SMI tables.

Column Type Description

vpid integer Virtual processor ID

class char(50) Type of virtual processor:

■ cpu

■ adm

■ lio

■ pio

■ aio

■ tli

■ soc

■ str

■ shm

■ opt

■ msc

■ adt

usercpu float Number of microseconds of user time

syscpu float Number of microseconds of system time
34-30 Administrator’s Guide for Informix Dynamic Server

The SM
I Tables M

ap
Figure 34-1

Columns in the SMI tables

(1 of 2)

ysconfig

me

gs

iginals

ective

fault
Thesysm
aster Database

34-31

s

cf_id

cf_na

cf_fla

cf_or

cf_eff

cf_de

syschunks

chknum

dbsnum

nxchknum

chksize

offset

nfree

is_offline

is_recovering

is_blobchunk

is_inconsistent

flags

fname

mfname

moffset

mis_offline

mis_recovering

mflags

syschkio

chunknum

reads

pagesread

writes

pageswritten

mreads

mpagesread

mwrites

mpageswritten

sysdbspaces

dbsnum

name

owner

fchunk

nchunks

is_mirrored

is_blobspace

is_temp

flags
sysdri

type

state

name

intvl

timeout

lostfound

syslogs

number

uniqid

size

used

is_used

is_current

is_backed_up

is_new

is_archived

is_temp

flags

sysprofile

name

value

sysvpprof

vpid

class

usercpu

syscpu

34-32
Adm

inistrator’s Guide for Inform
ix Dynam

ic Server

The SM
I Tables M

ap

(2 of 2)

databases

m

d

ging

ff_log

i

systabnames

partnum

dbsname

owner

tabname

collate

sysptprof

dbsname

tabname

partnum

lockreqs

lockwts

deadlks

lktouts

isreads

iswrites

isrewrites

isdeletes

bufreads

bufwrites

seqscans

pagreads

pagwrites

syslocks

dbsname

tabname

rowidlk

keynum

type

owner (sid)

waiter (sid)

sysseswts

sid

reason

numwaits

cumtime

maxtime

syssesprof

sid

lockreqs

locksheld

lockwts

deadlks

lktouts

logrecs

isreads

iswrites

isrewrites

isdeletes

iscommits

isrollbacks

longtxs

bufreads

bufwrites

seqscans

pagreads

pagwrites

total_sorts

dsksorts

max_sort
diskspace

logspused

maxlogsp

sysextents

dbsname

tabname

start

size

sys

name

partnu

owner

create

is_log

is_bu

is_ans

is_nls

flags

syssessions

sid

username

uid

pid

hostname

tty

connected

feprogram

pooladdr

is_wlatch

is_wlock

is_wbuff

is_wckpt

is_wlogbuf

is_wtrans

is_monitor

is_incrit

state

Using SMI Tables to Obtain onstat Information
Using SMI Tables to Obtain onstat Information
You can obtain information provided by the onstat utility by querying appro-
priate SMI tables using SQL. The following table indicates which SMI tables to
query to obtain the information provided by a given onstat option. For
descriptions of the onstat options, see “onstat: Monitor Database Server
Operation” on page 35-62.

onstat Option SMI Tables to Query onstat Fields Not in SMI Tables

-d sysdbspaces
syschunks

address
bpages

-D sysdbspaces
syschkio

-F sysprofile address
flusher
snoozer
state
data

-g dri sysdri Last DR CKPT (id/pg)
DRAUTO

-g glo sysvpprof listing of virtual processors by class

-k syslocks address
lklist
tblsnum

(1 of 2)
The sysmaster Database 34-33

Using SMI Tables to Obtain onstat Information
-l syslogs
sysprofile

all physical-log fields (except numpages and
numwrits)
all logical-log buffer fields (except numrecs,
numpages, and numwrits)
address
begin
% used

-p sysprofile

-u syssessions
syssesprof

address
wait
nreads
nwrites

onstat Option SMI Tables to Query onstat Fields Not in SMI Tables

(2 of 2)
34-34 Administrator’s Guide for Informix Dynamic Server

35
Chapter
Utilities
The -V Option . 35-4

Multibyte Characters 35-4

oncheck: Check, Repair, or Display 35-5

ondblog: Change Logging Mode 35-18

oninit: Initialize Dynamic Server 35-20

onlog: Display Logical-Log Contents. 35-23

onmode: Mode and Shared-Memory Changes 35-28

onparams: Modify Log-Configuration Parameters 35-43

onspaces: Manage Database Spaces 35-48

onstat: Monitor Database Server Operation 35-62

ontape: Logging, Archives, and Restore. 35-95

35-2 Ad
ministrator’s Guide for Informix Dynamic Server

This chapter consists of reference material for the Dynamic Server
utilities. These utilities let you perform administrative tasks from the
command line. This chapter documents the following utilities:

■ oncheck

■ ondblog

■ oninit

■ onlog

■ onmode

■ onparams

■ onspaces

■ onstat

■ ontape

Except in the case of oninit and some oncheck and onlog options, you must
initialize the database server before you execute any of the utilities.
Utilities 35-3

The -V Option
The -V Option
All of the Informix command-line utilities let you use the -V option. This
option displays the software version number and the serial number. You use
the -V option primarily for debugging. When an Informix Technical Support
representative asks for the version number, you can use -V to find the
information.

Multibyte Characters
The database server utilities support multibyte command-line arguments.
For a complete listing of the utilities that support multibyte command-line
arguments, see the Informix Guide to GLS Functionality.

GLS
35-4 Administrator’s Guide for Informix Dynamic Server

oncheck: C
heck, Repair, or Display
oncheck: Check, Repair, or Display
Depending on the options that you choose, oncheck can perform the
following functions:

■ Check specified disk structures for inconsistencies

■ Repair indexes that are found to contain inconsistencies

■ Display information about the disk structures

For background information on the various disk structures that the database
server manages, see Chapter 38, “Disk Structures and Storage.”

The oncheck utility is frequently confused with onstat. For a comparison of
oncheck and onstat, see “Monitoring with onstat and oncheck Utilities” on
page 29-12.

oncheck Check-and-Repair Options
The oncheck utility can repair the following types of structures:

■ Partition page statistics

■ Bitmap pages

■ Partition blobpages

■ Blobspace blobpages

■ Indexes

If oncheck detects inconsistencies in other structures, messages alert you to
these inconsistencies, but oncheck cannot resolve the problem. For more
details about database server consistency checking, see Chapter 27, “What Is
Consistency Checking?”
Utilities 35-5

oncheck: Check, Repair, or Display
Use the -y option to instruct oncheck to perform repair actions automatically.
For example, the following commands instruct oncheck to perform repairs
automatically:

oncheck -cd -y
oncheck -cD -y
oncheck -ci -y
oncheck -cI -y

If you do not use the -y option, oncheck prompts you when it encounters an
inconsistency and allows you to request a repair. If you specify option -n,
oncheck does not prompt you because this option instructs oncheck to not
perform repairs.

The oncheck utility does not repair fragmented indexes. If oncheck
encounters an inconsistency in a fragmented index, it displays a message
similar to the following:

Please Drop and Re-create Index index_name for table_name.

Any user can execute the check options. Only user informix or root can
display database data or initiate repair options.

What Does Each Option Do?

As shown in Figure 35-1 on page 35-7, the oncheck options are divided into
three categories: check, repair, and display. The display or print options
(those prefixed with the letter p) are identical in function to the -c options,
except that the -p options display additional information about the data that
is being checked as the oncheck utility executes.

In general, the -c options check for consistency and display a message on
your screen only if they find an error or inconsistency.
35-6 Administrator’s Guide for Informix Dynamic Server

oncheck: Check, Repair, or Display
Figure 35-1 associates oncheck options with their function.

Figure 35-1
oncheck Options and Their Function

Locking and oncheck

The oncheck utility places a shared lock on tables when it checks data and
indexes. It also places a shared lock on system catalog tables when they are
checked. It places an exclusive lock on a table when it executes repair options.

Object Check Repair Display

Blobspace TEXT and BYTE values -pB

Chunks and extents -ce -pe

Data rows, no TEXT and BYTE values -cd -pd

Data rows, TEXT and BYTE values -cD -pD

Index (key values) -ci, -ciw -ci -y

-pk -y, -pkw -y

-pk

Index (keys plus rowids) -cI, -cIw -cI -y

-pK -y, -pKw -y

-pK

Index (leaf key values) -pl -y, -plw -y -pl

Index (leaf keys plus rowids) -pL -y, -pLw -y -pL

Pages (by table or fragment) -pp

Pages (by chunk) -pP

Root reserved pages -cr -pr

Space usage (by table or fragment) -pt

Space usage (by table, with indexes) -pT

System catalog tables -cc -pc
Utilities 35-7

oncheck: Check, Repair, or Display
Syntax

-cr

-pe

-pr

-pc

-cc

-pd

-y

-n -q

database

database

table:

owner. rowid

database

table:

owner.

-ci

-cI
-pk

-pK
-pl

-pL

-pt

-pT
owner.

logical pagenum

tblspacenum

-pD

oncheck

index_name#

frag_dbs,

frag_dbs,

oncheck Options (1 of 2)

w

-cD

database

table

-cd

frag_dbs,owner.

table

database-pB

-ce

-cR

-pR

:

35-8 Administrator’s Guide for Informix Dynamic Server

oncheck: Check, Repair, or Display
Option Descriptions
You cannot combine oncheck option flags except as described in the
paragraphs that follow.

Using the -cc Option to Check System Catalog Tables

The -cc option checks each of the system catalog tables for the specified
database. If the database is omitted, all system catalog tables for all databases
are checked. Before you execute oncheck, execute the SQL statement UPDATE
STATISTICS to ensure that an accurate check occurs.

To check a table, oncheck compares each system catalog table to its corre-
sponding entry in the tblspace tblspace. (See “Structure of the Tblspace
Tblspace” on page 38-19.) The -pc option performs the same checks and also
displays the system catalog information as it checks it, including extent use
for each table.

% oncheck -cc
% oncheck -cc stores7

-pP chunk num logical pagenum

tblspace num logical pagenum

oncheck

frag_dbs,owner.

-pp database table: rowid

oncheck Options (2 of 2)
Utilities 35-9

oncheck: Check, Repair, or Display
Using the -cd and -cD Options to Check Pages

The -cd option reads all pages, excluding blobpages, from the tblspace for the
specified database, table, or fragment and checks each page for consistency.
Entries in the bit-map page (see “Structure of a Dbspace Bit-Map Page” on
page 38-25) are checked against the pages to verify mapping.

If the database contains fragmented tables, and you do not specify a
fragment, all fragments in the table are checked. If a table is not specified, all
tables in the database are checked. (The -pd option displays a hexadecimal
dump of specified pages but does not check for consistency.)

The -cD option performs checks that are similar to the checks performed
when you use the -cd option, but it includes a consistency check of dbspace
blobpages if any exist. The -cD option does not read an entire blobpage as it
does with standard pages. Instead, oncheck reads only the header of each
blobpage and checks it for consistency. This limited consistency checking is
done to avoid the performance degradation that could occur if oncheck were
to read each blobpage. Because oncheck does not read the entire page, it does
not compare beginning time stamps (stored in the header) with ending time
stamps (stored at the end of a blobpage).

To monitor blobspace blobpages, refer to oncheck -pB (“Using the -pB
Option to Display Blobspace Statistics” on page 35-13).

% oncheck -pB stores7:catalog

If oncheck finds an inconsistency, a message similar to the following example
is displayed:

BAD PAGE 20001c:pg_addr 20001c != bp-> bf_pagenum 200045

If no inconsistencies are found, oncheck displays a header similar to the one
in the following example for each table that it checks:

TBLSPACE data check for stores7:informix.customer

The oncheck utility displays a header similar to the following example for
fragmented tables, one per fragment:

TBLspace data check for stores7:informix.tab1
Table fragment in DBspace db1
35-10 Administrator’s Guide for Informix Dynamic Server

oncheck: Check, Repair, or Display
If you specify a single fragment, oncheck displays a single header for that
fragment.

The oncheck utility locks each table as its indexes are checked for both the -cd
and -cD options.

Using the -ce Option to Check the Chunk Free List

The -ce option checks each chunk free list and corresponding free space and
each tblspace extent. (See “Next-Extent Allocation” on page 38-31 and
“Structure of the Chunk Free-List Page” on page 38-18, respectively.) The
oncheck process verifies that the extents on disk correspond to the current
control information describing them.

The -pe option performs the same checks and also displays the chunk and
tblspace extent information as it checks it.

% oncheck -ce

Using the -ci and -cI Options to Check Index Node Links

The -ci option checks the ordering of key values and the consistency of
horizontal and vertical node links for all indexes associated with the
specified table. (See “Structure of B-Tree Index Pages” on page 38-48.)

If an index is not specified, all indexes are checked.

If a table is not specified, all tables in the database are checked.

If inconsistencies are detected, you are prompted for confirmation to repair
the problem index. If you specify the -y (yes) option, indexes are automati-
cally repaired. If you specify the -n (no) option, the problem is reported but
not repaired. No prompting occurs.

If oncheck does not find inconsistencies, the only message displayed is as
follows:

validating indexes......

The message is followed by the names of the indexes that oncheck is
checking.
Utilities 35-11

oncheck: Check, Repair, or Display
Index rebuilding can be time consuming if you use oncheck. Processing is
usually faster if you use the DROP INDEX and CREATE INDEX SQL statements
to drop the index and re-create it.

The -cI option performs the same checks as -ci, but it also checks that the key
value tied to a rowid in an index is the same as the key value in the row. The
same -ci repair options are available with -cI.

The following example checks all indexes on the customer table:

% oncheck -cI -n stores7:customer

The following example checks the index zip_ix on the customer table:

% oncheck -cI -n stores7:customer#zip_ix

By default, both the -ci and -cI options cause oncheck to lock each table as it
checks the indexes that belong to the table. You can append option w,
however, to instruct oncheck not to place a shared lock on a table. However,
if you use option w together with the repair option, -y, oncheck still places an
exclusive lock on the table when it must perform a repair action. For more
information on option w, see “Using Option w to Turn Off Locking” on
page 35-17.

Using the -cr and -cR Options to Check Reserved Pages

The -cr option checks each of the root dbspace reserved pages (see “Reserved
Pages” on page 38-6) as follows:

■ It validates the contents of the ONCONFIG file with the
PAGE_CONFIG reserved page.

■ It ensures that all chunks can be opened, that chunks do not overlap,
and that chunk sizes are correct.

The following example checks each of the root dbspace reserved pages:

% oncheck -cr

The -cR option performs the same operations as the -cr option, but it also
checks all logical-log and physical-log pages for consistency. The -cr option is
considerably faster because does not check the log file pages.
35-12 Administrator’s Guide for Informix Dynamic Server

oncheck: Check, Repair, or Display
If you have changed the value of a configuration parameter (either through
ON-Monitor or by editing the configuration file), and you have not yet reini-
tialized shared memory, oncheck -cr and oncheck -cR detects the
inconsistency and returns an error message.

The -pr and -pR options perform the same checks as oncheck -cr and
oncheck -cR, respectively, and also displays the reserved-page information
as it checks the reserved pages.

If oncheck -cr does not display any error messages after you execute it,
you can assume that all three items in the preceding list were checked
successfully.

Using the -pB Option to Display Blobspace Statistics

The -pB option displays statistics that describe the average fullness of
blobspace blobpages in a specified table. These statistics provide a measure
of storage efficiency for individual TEXT and BYTE objects in a database or
table. If a table or fragment is not specified, statistics are displayed for the
entire database. (See “Optimizing Blobspace Blobpage Size” on page 14-21.)

% oncheck -pB photo_base:photos

Using the -pd and -pD Options to Display Rows in Hexadecimal Format

The -pd option takes a database, a table, a fragment, and a specific rowid or
tblspace number and logical page number as input. In every case, -pd prints
page-header information and displays the specified rows for the database
object (database, table, fragment, rowid, or page number) that you specify in
hexadecimal and ASCII format. No checks for consistency are performed.

If you specify a rowid (expressed as a hexadecimal value), the rowid maps to
a particular page, and all rows from that page are printed.

If you specify a logical page number (expressed as a decimal), all the rows of
the tblspace number with the logical page number are printed.

If you specify a fragment, all the rows in the fragment are printed, with their
rowids, forward pointers, and page type.

If you specify a table, all the rows in the table are printed, with their rowids,
forward pointers, and page type.
Utilities 35-13

oncheck: Check, Repair, or Display
If you specify a database, all the rows in all the tables in the database are
printed. TEXT and BYTE column descriptors stored in the data row are
printed, but TEXT and BYTE data itself is not.

The -pD option prints the same information as -pd. In addition, -pD prints
TEXT and BYTE values stored in the tblspace or header information for TEXT
and BYTE objects stored in a blobspace blobpage.

% oncheck -pd stores7:customer,frgmnt1
% oncheck -pd stores7:customer
% oncheck -pD stores7:customer 0x101

Using the -pk and -pK, -pl, and -pL Options to Display Index
Information

Repair options are available for each option.

The -pk option performs the same checks as the -ci option. (See “Using the -ci
and -cI Options to Check Index Node Links” on page 35-11.) In addition, -pk
displays the key values for all indexes on the specified table as it checks them.

The -pK option performs the same checks as the -cI option. (See “Using the
-ci and -cI Options to Check Index Node Links” on page 35-11.) The -pK
option displays the key values and rowids as it checks them.

The -pl option performs the same checks as the -ci option and displays the
key values, but only leaf-node index pages are checked. The root and
branch-node pages are ignored. See “Structure of B-Tree Index Pages” on
page 38-48.

The -pL option performs the same checks as the -cI option and displays the
key values and rowids, but only for leaf-node index pages. The root and
branch-node pages are ignored.

% oncheck -pL -n stores7.customer

The following example displays information on all indexes on the customer
table:

% oncheck -pl -n stores7:customer

The following example displays information about the index zip_ix, which
was created on the customer table:

% oncheck -pl -n stores7:customer#zip_ix
35-14 Administrator’s Guide for Informix Dynamic Server

oncheck: Check, Repair, or Display
Using the -pp and -pP Options to Display the Contents of a
Logical Page

The -pp option requires as input either of the following values:

■ A table name and a rowid

If the table that you want to check is fragmented, you must also
supply the name of the dbspace in which the fragment is located.

■ A tblspace number and logical page number

Use the -pp option to dump the contents of the logical page number
contained in the rowid. The page contents appear in ASCII format. The
display also includes the number of slot-table entries on the page.

To obtain the rowid of a specific data row, use oncheck -pD.

The -pP option provides the same information as the -pp option but requires
a chunk number and logical page number as input.

% oncheck -pp stores7:customer,frag_dbspce1 0x211
% oncheck -pp stores7:orders 0x211
% oncheck -pP 0x100000a 25
% oncheck -pP 3 15

Using -pr Option to Display Reserved-Page Information

The -pr option performs the same checks as the -cr option. (For a description
of the -cr option, see “Using the -cr and -cR Options to Check Reserved
Pages” on page 35-12.) In addition, -pr displays the reserved-page infor-
mation as it checks the reserved pages. For a listing and explanation of
oncheck -pr output, see “Reserved Pages” on page 38-6.

% oncheck -pr

If you have changed the value of a configuration parameter (either through
ON-Monitor or by editing the ONCONFIG file), and you have not yet reini-
tialized shared memory, oncheck -cr detects the inconsistency, prints both
values, and displays an error message.
Utilities 35-15

oncheck: Check, Repair, or Display
Using the -pt and -pT Options to Display Tblspace Information for a
Particular Table or Fragment

The -pt option prints a tblspace report for a given table or fragment whose
name and database you specify when you execute oncheck at the command
line. The report contains general allocation information including the
maximum row size, the number of keys, the number of extents, their sizes,
the pages allocated and used per extent, the current serial value, and the date
that the table was created. The Extents fields list the physical address for the
tblspace tblspace entry for the table and the address of the first page of the
first extent. If a table is not specified, this information is displayed for all
tables in the database.

The -pT option prints the same information as the -pt option. In addition, the
-pT option displays index-specific information and page-allocation
information by page type (for dbspaces).

Output for both -pt and -pT contains listings for Number of pages used. The
value shown in the output for this field is never decremented because the
disk space allocated to a tblspace as part of an extent remains dedicated to
that extent even after space is freed by deleting rows. (See your Performance
Guide.) For an accurate count of the number of pages currently used, refer to
the detailed information on tblspace use (organized by page type) that the
-pT option provides.

% oncheck -pT stores7:customer
35-16 Administrator’s Guide for Informix Dynamic Server

oncheck: Check, Repair, or Display
Using Option w to Turn Off Locking

If you append option w to the index-checking options, oncheck will not place
a shared lock on affected tables while checking the indexes. Instead the w
option places an IS (intent shared) lock on the table, which prevents actions
such as dropping the table or the indexes during the check.

Using option w allows users to manipulate table rows, performing inserts,
updates, and deletions, while oncheck checks or prints the indexes. You can
append option w to the -ci, -cI, -pk, -pK, -pl, and -pL options. For example,
the following sample command instructs oncheck not to lock indexes for the
customer table while it validates the order of key values, validates horizontal
links, and ensures that no node appears twice in the index:

oncheck -ciw stores7:customer

When you specify option w, oncheck does not lock indexes for tables that use
row lock mode. If oncheck detects page lock mode, it displays a warning
message and places a shared lock on the table regardless.
Utilities 35-17

35-18 Administrator’s Guide for Informix Dynamic Server

ondblog: Change Logging Mode
ondblog: Change Logging Mode
The ondblog utility lets you change the logging mode for one or more
databases.

If you add logging to a database, you must create a level-0 backup before the
change takes effect.

Syntax

Element Purpose Key Considerations
buf Sets the logging mode so that transaction

information is written to a buffer before it
is written to a logical log.

None.

unbuf Sets the logging so that data is not written
to a buffer before it is written to a logical
log.

None.

nolog Sets the logging so that no database trans-
actions are logged.

None.

ansi Change the logging of the database to be
ANSI compliant.

None.

cancel Cancels the logging mode change request
before the next level-0 backup occurs.

None.

-f dbfile Changes the logging status of the
databases that are listed (one per line) in
the text file whose pathname is given by
dbfile.

Additional Information: This command is
useful if the list of databases is very long or
often used.

db_list Names a space-delimited list of databases
whose logging status is to be changed.

Additional Information: If you do not specify
anything, all databases that are managed by the
database server are modified.

buf

unbuf

nolog

ansi

db_list

-f dbfile

cancel

ondblog

ondblog: Change Logging Mode
On UNIX, the Database option in the ON-Monitor Logical-Logs menu is
similar to these ondblog command options. ♦

For information on how to change the logmode using ON-Archive, see your
Archive and Backup Guide. For information about changing the logging status
of a database, see Chapter 17, “Managing Database-Logging Status.”

UNIX
Utilities 35-19

35-20 Administrator’s Guide for Informix Dynamic Server

oninit: Initialize Dynamic Server
oninit: Initialize Dynamic Server
The oninit utility initializes database server shared memory and brings the
database server on-line.

If you use oninit options, you can also initialize disk space. You must be
logged in as root or user informix to execute oninit.

For information about what happens during initialization, see Chapter 8,
“Initializing the Database Server.”

Syntax

Element Purpose Key Considerations
-y Causes the database server to automatically respond yes to all

prompts.
None.

-y

oninit Initialize Shared
Memory Only

p. 35-21

Initialize Disk Space and
Shared Memory

p. 35-22

oninit: Initialize Dynamic Server
Initialize Shared Memory Only

Initializing Shared Memory with No Options

If you execute oninit without options, the database server is left in on-line
mode after shared memory is initialized. For example, the following
commands take the database server off-line and then reinitialize shared
memory:

% onmode -ky
% oninit

Initializing Shared Memory with the -s Option

The -s option initializes shared memory and leaves the database server in
quiescent mode. This option is equivalent to the ON-Monitor Mode menu,
Startup option.

The following commands take the database server off-line, then reinitialize
shared memory, and leave the database server in quiescent mode:

% onmode -ky
% oninit -s

Element Purpose Key Considerations
-p Directs oninit not to search for (and delete)

temporary tables.
Additional Information: If you use this
option, the database server returns to on-line
mode more rapidly, but space used by
temporary tables left on disk is not reclaimed.

-s Initializes shared memory and leaves the
database server in quiescent mode. See
“Initializing Shared Memory with the -s
Option” on page 35-21.

Additional Information: This option is equiv-
alent to the ON-Monitor Mode menu, Startup
option. The database server should be in
off-line mode to initialize shared memory.

-s-p

Initialize Shared
Memory Only
Utilities 35-21

oninit: Initialize Dynamic Server
&Initialize Disk Space and Shared Memory

Warning: When you initialize disk space, the initialization destroys all data that
your database server currently manages.

The database server must be off-line when you initialize disk space.

Specify the Number of Virtual Processors
Use NUMCPUVPS and NUMAIOVPS to specify the initial number of VPs for
the CPU and AIO classes. For more information about these parameters, see
“NUMCPUVPS” on page 33-63 and “NUMAIOVPS” on page 33-62.

Element Purpose Key Considerations
-i Causes the database server to initialize disk space and

shared memory. Leaves the database server in on-line
mode after initializing disk space.

None.

-s When used with -i, the -s option causes the database server
to be left in quiescent mode after disk initialization.

None.

-s

-i

&Initialize Disk
Space and

Shared Memory
35-22 Administrator’s Guide for Informix Dynamic Server

onlog: Displ
ay Logical-Log Contents
onlog: Display Logical-Log Contents
The onlog utility displays the contents of a logical-log file, either on disk or
on a backup tape created by ontape. (To display the contents of backup tapes
created by ON-Archive, use the LIST/LOGRECORDS command as described
in your Archive and Backup Guide.)

The onlog output is useful in debugging situations, when you want to track
a specific transaction or see what changes have been made to a specific
tblspace. (For information about interpreting the logical-log file contents, see
Chapter 37, “Interpreting Logical-Log Records.”)

Any user can run all of the onlog options except the -l option. Only user
informix can run the -l option.

If the database server is in off-line mode when you execute onlog, only the
files on disk are read. If the database server is in quiescent or on-line mode,
onlog also reads the logical-log records stored in the logical-log buffers in
shared memory (after all records on disk have been read).

When the database server reads a log file with status U (see the -l option of
the onstat utility described on page 35-80) from disk while in on-line mode,
the database server denies all access to the logical-log files, effectively
stopping database activity for all sessions. For this reason, Informix recom-
mends that you wait to read the contents of the logical-log files until after the
files have been backed up, and then read the files from tape.

Syntax

Element Purpose Key Considerations
-q Suppresses the initial header and the one-line header that

appears every 18 records by default.
None.

-q

onlog
Log-Record

Display Filters
p. 35-26

Log-Record
Read Filters

p. 35-25
Utilities 35-23

onlog: Display Logical-Log Contents
Read Filters

You direct onlog to read the following portions of the logical log as it searches
for records to include in the output display:

■ Records stored on disk

■ Records stored on tapes created by ontape

■ Records from the specified logical-log file

By default, onlog displays the logical-log record header, which describes the
transaction number and the record type. The record type identifies the type
of operation performed.

In addition to the header, you can use the read filters to direct onlog to
display the following information:

■ Copies of blobpages from blobspaces (copied from the logical-log
backup tape only, not available from disk)

■ Logical-log record header and data (including copies of blobs stored
in a dbspace)

Display Filters

You can display every logical-log record header, or you can specify output
based on the following criteria:

■ Records associated with a specific table

■ Records initiated by a specific user

■ Records associated with a specific transaction

If an Error Is Detected

If onlog detects an error in the log file, such as an unrecognizable log type, it
displays the entire log page in hexadecimal format and terminates.
35-24 Administrator’s Guide for Informix Dynamic Server

onlog: Display Logical-Log Contents
Log-Record Read Filters

The onlog utility uses the pathnames that are stored in the root dbspace
reserved pages to locate the logical-log files.

Element Purpose Key Considerations
-b Displays logical-log records

associated with blobspace
blobpages.

Additional Information: Dynamic Server stores these
records on the logical-log backup tape as part of blobspace
logging.

-d device Names the pathname of the
tape device where the
logical-log backup tape
whose contents you want to
display is mounted.

Additional Information: The device that you name must be
the same as the pathname of the device assigned to the
configuration parameter LTAPEDEV. If the -d option is not
used, onlog reads the logical-log files stored on disk,
starting with the logical-log file with the lowest logid.

References: For pathname syntax, see your operating-
system documentation.

-n logid Directs onlog to read only
the logical-log records
contained in the log file that
you specify using logid.

Restriction: Value must be an unsigned integer between 3
and the value assigned to the configuration parameter
LOGMAX.

Additional Information: If you do not use the -n option,
onlog reads all logical-log files available (either on disk or
on tape created by ontape). To determine the logid of a
particular logical-log file, use the onstat utility.

References: For information about the onstat utility, see
page 29-16.

Log-Record
Read Filters

-b

-d device -n logid
Utilities 35-25

onlog: Display Logical-Log Contents
Log-Record Display Filters

Element Purpose Key Considerations
-l Displays the long listing

of the logical-log record.
Additional Information: The long listing of a log record
includes a complex hexadecimal and ASCII dump of the
entire log record. The listing is not intended for casual use.

-t tblspace_num Displays records
associated with the
tblspace that you specify.

Restrictions: Unsigned integer. Number, greater than 0,
must be contained in the partnum column of the systables
system catalog table.

Additional Information: This value can be specified as
either an integer or hexadecimal value. (If you do not use a
0x prefix, the value is interpreted as an integer.) To
determine the tblspace number of a particular tblspace,
query the systables system catalog table as described on
page 38-21.

-u username Displays records for a
specific user.

Restrictions: User name must be an existing login name.
User name must conform to operating-system-specific rules
for login name.

-x transaction_id Displays only records
associated with the
transaction that you
specify.

Restriction: Value must be an unsigned integer between 0
and TRANSACTIONS -1, inclusive.

Additional Information: You should only need to use the -x
option in the unlikely case that an error is generated during
a rollforward. When this situation occurs, the database
server sends a message to the message log that includes the
transaction ID of the offending transaction. You can use this
transaction ID with the -x option of onlog to investigate the
cause of the error.

Log-Record
Display Filters

- l
1

-t tblspace_num
1

-u username
1

-x transaction_id
1

35-26 Administrator’s Guide for Informix Dynamic Server

onlog: Display Logical-Log Contents
If you do not specify any options, onlog displays a short listing of all the
records in the log. You can combine options with any other options to
produce more selective filters. For example, if you use both the -u and -x
options, onlog displays only the activities initiated by the specified user
during the specified transaction. If you use both the -u and -t options, onlog
displays only the activities initiated by the specified user and associated with
the specified tblspace.
Utilities 35-27

35-28 Administrator’s Guide for Informix Dynamic Server

onmode: Mode and Shared-Memory Changes
onmode: Mode and Shared-Memory Changes
The onmode flags determine which of the following operations onmode
performs:

■ Change the database server operating mode

■ Force a checkpoint

■ Change residency of the resident and virtual portions of shared
memory

■ Switch the logical-log file

■ Kill a database server session

■ Kill a database server transaction

■ Set data-replication types

■ Add a shared-memory segment to the virtual shared-memory
portion

■ Add or remove virtual processors

■ Change data to the Version 7.2 database server format (to revert to
that product release). For information about migrating from or
reverting to earlier versions of the database server, see the Informix
Migration Guide.

■ Regenerate a .infos file

■ Set decision-support parameters

■ Free unused memory segments

■ Override the WAIT mode of the ONDBSPDOWN configuration
parameter

You must be user root or user informix to execute onmode.

This chapter refers to ON-Monitor in many places. ON-Monitor is available
only on UNIX. ♦

UNIX

onmode: Mode and Shared-Memory Changes
Syntax

Change Database Server Modes, p. 35-30

Force a Checkpoint, p. 35-32

Change Shared-Memory Residency, p. 35-32

Switch the Logical-Log File, p. 35-33

Kill a Database Server Session, p. 35-33

Kill a Database Server Transaction, p. 35-34

Set Data-Replication Types, p. 35-35

Add a Shared-Memory Segment, p. 35-36

Add or Remove Virtual Processors, p. 35-37

onmode

-y

Regenerate .infos File, p. 35-38

Change Decision-Support Parameters, p. 35-39

Free Unused Memory Segments, p. 35-40

Override ONDBSPDOWN WAIT Mode, p. 35-41

Change Database Format with
onmode -b

See Informix Migration Guide.
Utilities 35-29

onmode: Mode and Shared-Memory Changes
If you do not use any options, the database server returns a usage statement.

Change Database Server Modes

Element Purpose Key Considerations
-y Causes the database server to

automatically respond yes to all
prompts.

None.

Element Purpose Key Considerations
-k Takes the database server to off-line

mode and removes shared memory.
See “Taking the Database Server to
Off-Line Mode with the -k Option”
on page 35-31.

Additional Information: The -k option is equivalent to
the ON-Monitor Take-Offline option. You might want to
use this option to reinitialize shared memory.b

-m Takes the database server from
quiescent to on-line mode.

Additional Information: The -m option is equivalent to
the ON-Monitor On-Line option.

-s Shuts down the database server
gracefully. See “Shutting Down the
Database Server Gracefully with the
-s Option” on page 35-31.

Additional Information: The -s option is equivalent to the
ON-Monitor Graceful-Shutdown option. Users who are
using the database server are allowed to finish before the
database server comes to quiescent mode, but no new
connections are allowed. When all processing is finished,
-s takes the database server to quiescent mode. The -s
option leaves shared memory intact.

-u Shuts down the database server
immediately. See “Shutting the
Database Server Down Immediately
with the -u Option” on page 35-31.

Additional Information: The -u option is equivalent to
the ON-Monitor Immediate-Shutdown option. This option
brings the database server to quiescent mode without
waiting for users to finish their sessions. Their current
transactions are rolled back, and their sessions are
terminated.

Change Database
Server Modes

-k

-m

-s

-u
35-30 Administrator’s Guide for Informix Dynamic Server

onmode: Mode and Shared-Memory Changes
The options described in this section take the database server from one mode
to another mode.

Taking the Database Server to Off-Line Mode with the -k Option

This option takes the database server to off-line mode and removes database-
server shared memory. The -k option is equivalent to the ON-Monitor Take-
Offline option. You might want to use this option to reinitialize shared
memory.

A prompt asks for confirmation. Another prompt asks for confirmation to kill
user threads before the database server comes off-line. If you want to
eliminate these prompts, execute the -y option with the -s option.

Shutting Down the Database Server Gracefully with the -s Option

The -s option is equivalent to the ON-Monitor Graceful-Shutdown option.
Users who are using the database server are allowed to finish before the
database server comes to quiescent mode, but no new connections are
allowed. When all processing is finished, -s takes the database server to
quiescent mode. The -s option leaves shared memory intact.

A prompt asks for confirmation. If you want to eliminate this prompt,
execute the -y option with the -s option.

Shutting the Database Server Down Immediately with the -u Option

The -u option is equivalent to the ON-Monitor Immediate-Shutdown option.
This option brings the database server to quiescent mode without waiting for
users to finish their sessions. Their current transactions are rolled back, and
their sessions are terminated.

A prompt asks for confirmation. Another prompt asks for confirmation to kill
user threads before the database server comes to quiescent mode. If you want
to eliminate these prompts, execute the -y option with the -s option.
Utilities 35-31

onmode: Mode and Shared-Memory Changes
Force a Checkpoint

Change Shared-Memory Residency

To change the forced-residency setting in the ONCONFIG configuration file,
see “Turning Residency On or Off for the Next Time You Reinitialize Shared
Memory” on page 12-15.

Element Purpose Key Considerations
-c Forces a checkpoint. Additional Information: The -c option is equivalent to the

ON-Monitor Force-Ckpt option. You can use the -c option to
force a checkpoint if the most-recent checkpoint record in
the logical log was preventing the logical-log file from being
freed (status U-B-L).

Force a
Checkpoint

-c

Element Purpose Key Considerations
-n Ends forced residency of the

resident portion of shared
memory.

Additional Information: This command does not affect the
value of RESIDENT, the forced-residency parameter in the
ONCONFIG file.

-r Starts forced residency of the
resident portion of shared
memory.

Additional Information: This command does not affect the
value of RESIDENT, the forced-memory parameter in the
ONCONFIG file.

Change Shared-
Memory Residency

-n

-r
35-32 Administrator’s Guide for Informix Dynamic Server

onmode: Mode and Shared-Memory Changes
Switch the Logical-Log File

Kill a Database Server Session

To use the -z option, first obtain the session identification (sessid) with
onstat -u, then execute onmode -z, substituting the session identification
number for sid.

When you use onmode -z, the database server attempts to kill the specified
session. If the database server is successful, it frees any resources held by the
session. If the database server cannot free the resources, it does not kill the
session.

Element Purpose Key Considerations
-l Switches the current

logical-log file to the
next logical-log file.ow

Additional Information: You must use onmode to switch to the
next logical-log file. ON-Monitor has no equivalent option.

References: For more information, see “Switching to the Next
Logical-Log File” on page 19-15.

Switch the Logical-
Log File

-l

Element Purpose Key Considerations
-z sid Kills the session that

you specify in sid.
Restrictions: This value must be an unsigned integer greater than
0 and must be the session identification number of a currently
running session.

-z sid

Kill a Database
Server Session
Utilities 35-33

onmode: Mode and Shared-Memory Changes
If the session does not exit the section or release the latch, user informix or
root can take the database server off-line, as described in “Taking the
Database Server to Off-Line Mode with the -k Option” on page 35-31, to close
all sessions.

Kill a Database Server Transaction

Warning: If applications are performing distributed transactions, killing one of the
distributed transactions can leave your client/server database system in an
inconsistent state. Try to avoid this situation.

Element Purpose Key Considerations
-Z address Kills a distributed transaction

associated with the shared-
memory address address.

Restrictions: This argument must be the address of an
ongoing distributed transaction that has exceeded the
amount of time specified by TXTIMEOUT. The address must
conform to the operating-system-specific rules for
addressing shared-memory. (The address is available from
onstat -x output.)

Additional Information: This option is not valid until the
amount of time specified by the ONCONFIG parameter
TXTIMEOUT has been exceeded. The -Z option should rarely
be used and only by an administrator of a database server
involved in distributed transactions.

References: For more information, see “Independent
Actions” on page 30-18.

-Z address

Kill a Database
Server
35-34 Administrator’s Guide for Informix Dynamic Server

onmode: Mode and Shared-Memory Changes
Set Data-Replication Types

-d standard

This option drops the connection between database servers in a data repli-
cation pair (if one exists) and sets the database server type of the current
database server to standard. This option does not change the mode or type of
the other database server in the pair.

Element Purpose Key Considerations
-d Used to set the data

replication type, either
standard, primary, or
secondary, as described
in the following sections.

Restrictions: You can use the -d primary and -d secondary
options only when the database server is in quiescent mode.
You can use the -d standard option when the database server
is in quiescent, on-line, or read-only mode.

dbservername Identifies the database
server name of the
primary or secondary
database server.

Restrictions: The dbservername argument must correspond to
the DBSERVERNAME parameter in the ONCONFIG file of the
intended secondary database server. It should not correspond
to one of the servers specified by the DBSERVERALIASES
parameter.

Additional Information: The dbservername argument of the
other database server in the data-replication pair and the type
of a database server (standard, primary, or secondary) is
preserved across reinitializations of shared memory.

References: For more information, see range of values for the
DBSERVERNAME configuration parameter on page 33-18.

- d standard

primary

secondary

dbservername

Set Data-Replication
Types
Utilities 35-35

onmode: Mode and Shared-Memory Changes
-d primary dbservername

This option sets the database server type to primary and attempts to connect
with the database server specified by dbservername. If the connection is
successful, data replication is turned on (the primary database server goes
into on-line mode, and the secondary database server goes into read-only
mode). If the connection is not successful, the database server comes to
on-line mode, but data replication is not turned on.

-d secondary dbservername

This option sets the database server type to secondary and attempts to
connect with the database server specified by dbservername. If the connection
is successful, data replication is turned on (the primary database server goes
into on-line mode, and the secondary database server goes into read-only
mode). If the connection is not successful, the database server comes to
read-only mode, but data replication is not turned on.

Add a Shared-Memory Segment

Element Purpose Key Considerations
-a seg_size Allows you to add a new virtual

shared-memory segment. Size
is specified in kilobytes.

Restrictions: The value of seg_size must be a positive
integer. It must not exceed the operating-system limit on
the number of shared-memory segments.

Add a Shared-
Memory Segment

- a seg_size
35-36 Administrator’s Guide for Informix Dynamic Server

onmode: Mode and Shared-Memory Changes
Ordinarily, you do not need to add segments to the virtual portion of shared
memory because the database server automatically adds segments as they
are needed. However, as segments are added, the database server might
reach the operating-system limit for the maximum number of segments
before it acquires the memory it needs. This situation typically occurs when
SHMADD is set so small that the database server exhausts the number of
available segments before it acquires the memory that it needs for some
operation.

If you manually add a segment that is larger than the segment specified by
SHMADD, you can avoid exhausting the operating-system limit for segments
but still meet the need that the database server has for additional memory.

Add or Remove Virtual Processors

number

Add or Remove
Virtual Processors

- p

-

number

AIO

CPU

CPU

SOC

TLI

SHM

+

vpclass+/-
Utilities 35-37

onmode: Mode and Shared-Memory Changes
Regenerate .infos File

When the database server accesses utilities, it uses information from the
.infos.dbservername file in the etc directory. The database server creates and
manages this file, and you should never need to do anything to the file.
However, if .infos.dbservername is accidentally deleted, you must either
re-create the file or reinitialize shared memory.

Element Purpose Key Considerations
-p number Add or remove virtual

processors. The number of
virtual processors to add or
remove is specified by number.

Restrictions: This value must be an unsigned integer
greater than 0. You can use the -p option only when the
database server is in on-line mode, and you can add to
only one class of virtual processors at a time.

Additional Information: If you are removing virtual
processors, maximum cannot be greater than the actual
number of processors of the specified type. If you are
adding virtual processors, the maximum is less than 64
kilobytes, although Informix recommends that the
number of CPU VPs not be greater than the number of
physical processors.

Element Purpose Key Considerations
-R Re-creates the

.infos.dbservername file.
Restrictions: Before you use the -R option, set the
INFORMIXSERVER environment variable to match the
DBSERVERNAME configuration parameter. Do not use the
-R option if INFORMIXSERVER is one of the
DBSERVERALIAS names.

Regenerate
.infos File

-R
35-38 Administrator’s Guide for Informix Dynamic Server

onmode: Mode and Shared-Memory Changes
Change Decision-Support Parameters

Element Purpose Key Considerations
-D max_priority Changes the value of

MAX_PDQPRIORITY.
Restrictions: This value must be an unsigned integer
between 0 and 100.

Additional Information: Specify max_priority as a factor to
temper the user’s request for PDQ resources.

References: For more information, see “Parameters Used
for Controlling PDQ” on page 15-16 and
“MAX_PDQPRIORITY” on page 33-52.

-M kilobytes Changes the value of
DS_TOTAL_MEMORY.

Restrictions: This value must be an unsigned integer
between 128 * DS_MAX_QUERIES and 1,048,576.

Additional Information: Specify kilobytes for the maximum
amount of memory available for parallel queries.

References: For more information, see
“DS_TOTAL_MEMORY” on page 33-28 and your
Performance Guide.

 (1 of 2)

Change Decision-
Support Parameters

-M kilobytes

-Q queries

-S scans

-D max_priority
Utilities 35-39

onmode: Mode and Shared-Memory Changes
These options let you change configuration parameters while the database
server is on-line. The new values affect only the current instance of the
database server; the values are not recorded in the ONCONFIG file. If you
reinitialize shared memory, the values of the parameters revert to the values
in the ONCONFIG file.

To check the values stored in the ONCONFIG file for these parameters, use
onstat -g mgm. For more information about these configuration parameters,
see Chapter 33, “Configuration Parameters.”

Free Unused Memory Segments

-Q queries Changes the value of
DS_MAX_QUERIES.

Restrictions: This value must be an unsigned integer
between 1 and 8,388,608.

Additional Information: Specify queries for the maximum
number of concurrently executing parallel queries.

References: For more information, see “Parameters Used
for Controlling PDQ” on page 15-16 and
“DS_MAX_QUERIES” on page 33-26.

-S scans Changes the value of
DS_MAX_SCANS. w

Restrictions: This value must be an unsigned integer
between 10 and 1,048,576.

Additional Information: Specify scans for the maximum
number of concurrently executing parallel scans.

References: For more information, see “Parameters Used
for Controlling PDQ” on page 15-16 and
“DS_MAX_SCANS” on page 33-27.

Element Purpose Key Considerations

 (2 of 2)

Element Purpose Key Considerations
-F Frees unused memory

segments.
None.

Free Unused
Memory Segments

-F
35-40 Administrator’s Guide for Informix Dynamic Server

onmode: Mode and Shared-Memory Changes
When you execute onmode -F, the memory manager examines each memory
pool for unused memory. When the memory manager locates 8 kilobytes of
contiguous unused memory, it is immediately freed. After the memory
manager checks each memory pool, it begins checking memory segments
and frees any that the database server no longer needs.

Informix recommends that you run onmode -F on a regular basis and after
you direct the database server to perform any function that creates additional
memory segments such as large index builds, sorts, or backups.

Running onmode -F causes a significant degradation of performance for any
users that are active when you execute the utility. Although the execution
time is brief (1 to 2 seconds), degradation for a single-user database server
can reach 100 percent. Systems with multiple CPU virtual processors will
experience proportionately less degradation.

To confirm that onmode freed unused memory, check your message log. If
the memory manager frees one or more segments, it displays a message that
indicates how many segments and bytes of memory were freed.

Override ONDBSPDOWN WAIT Mode

Element Purpose Key Considerations
-O Overrides the WAIT mode of the ONDBSPDOWN

configuration parameter.
None.

Override
ONDBSPDOWN WAIT

Mode

-O
Utilities 35-41

onmode: Mode and Shared-Memory Changes
Use the onmode -O option only in the following circumstances:

■ ONDBSPDOWN is set to WAIT.

■ A disabling I/O error occurs that causes the database server to block
all updating threads.

■ You cannot or do not want to correct the problem that caused the
disabling I/O error.

■ You want the database server to mark the disabled dbspace as down
and continue processing.

When you execute this option, the database server marks the dbspace
responsible for the disabling I/O error as down, completes a checkpoint, and
releases blocked threads. Then onmode prompts you with the following
message:

This will render any dbspaces which have incurred disabling
I/O errors unusable and require them to be restored from an
archive.
Do you wish to continue?(y/n)

If onmode does not encounter any disabling I/O errors on noncritical
dbspaces when you run the -O option, it notifies you with the following
message:

There have been no disabling I/O errors on any non-critical
dbspaces.
35-42 Administrator’s Guide for Informix Dynamic Server

onparams: Modify Log-C
onfiguration Parameters
onparams: Modify Log-Configuration Parameters
The onparams flags determine which of the following operations onparams
performs:

■ Add a logical-log file

■ Drop a logical-log file

■ Change the size or location of the physical log

The database server must be in quiescent mode, and you must be logged in
as user root or user informix to execute onparams.

Syntax

An onparams command fails if a dbspace backup is in progress.

If you do not use any options, onparams returns a usage statement.

onparams

Drop a Logical-Log File
p. 35-45

Change Physical-Log
Parameters

p. 35-46

Add a Logical-Log File
p. 35-44
Utilities 35-43

onparams: Modify Log-Configuration Parameters
Add a Logical-Log File

Adding a logical-log file is one of the steps in the procedure for moving
logical-log files to another dbspace. See “Moving a Logical-Log File to
Another Dbspace” on page 19-8.

Element Purpose Key Considerations
-a -d dbspace Adds a logical-log file in

the location specified by
dbspace.

Additional Information: The space allocated for a logical-log
file must be contiguous. The database server does not allow you
to add a log file to a dbspace without adequate contiguous
space. You cannot add a log file during an archive (quiescent or
on-line). The newly added log file or files retain a status of A and
do not become available until you create a level-0 backup. If you
are using ON-Bar or ON-Archive, you only need to create a
level-0 backup of the root dbspace for the log file to become
available.

References: Syntax must conform to the Identifier segment; see
Informix Guide to SQL: Syntax.

-s size Specifies a size in
kilobytes for the new
logical-log file.

Restrictions: This value must be an unsigned integer greater
than or equal to 200 kilobytes.

Additional Information: If you do not specify a size with the -s
option, the size of the log file is taken from the value of the
LOGSIZE parameter in the ONCONFIG file when database server
disk space was initialized.

References: For more information, see “Changing LOGSIZE or
LOGFILES” on page 19-10.

Add a Logical-
Log File

-a -d dbspace

-s size
35-44 Administrator’s Guide for Informix Dynamic Server

onparams: Modify Log-Configuration Parameters
Drop a Logical-Log File

Dropping a logical-log file is one of the steps in the procedure for moving
logical-log files to another dbspace. See “Moving a Logical-Log File to
Another Dbspace” on page 19-8.

Element Purpose Key Considerations
-d -l logid Allows you to drop a

logical-log file specified
by logid.

Restrictions: This value must be an unsigned integer greater
than or equal to 0.

Additional Information: You can obtain the logid from the
number field of onstat -l. The database server requires a
minimum of three logical-log files at all times. You cannot drop a
log file if the database server is configured for three logical-log
files. The database server must be in quiescent mode before you
drop a logical log. Drop log files one at a time. You can only drop
a log file that has a a status of Free (F) or newly Added (A).

After your configuration reflects the desired number of log files,
create a level-0 backup. If you are using ON-Bar or ON-Archive,
you only need to create a level-0 backup of the root dbspace. Use
onstat -l to view the status of your logical-log files.

-y Causes the database
server to automatically
respond yes to all
prompts.

None.

Drop a Logical-
Log File

-d -l logid

-y
Utilities 35-45

onparams: Modify Log-Configuration Parameters
Change Physical-Log Size or Location

Element Purpose Key Considerations
-d dbspace Changes the location of the

physical log to the specified
dbspace.

Additional Information: The space allocated for the
physical log must be contiguous.

References: Syntax must conform to the Identifier
segment; see the Informix Guide to SQL: Syntax.

-p Changes the location or size of
the physical log.

None.

-s size Changes the size (in kilobytes) of
the physical log.

Restrictions: This value must be an unsigned integer
greater than or equal to 200 kilobytes.

Additional Information: If you move the log to a dbspace
without adequate contiguous space or increase the log
size beyond the available contiguous space, a fatal shared-
memory error occurs when you attempt to reinitialize
shared memory with the new value.

-y Causes the database server to
automatically respond yes to all
prompts.

None.

Change Physical-Log Parameters

-d dbspace

-p 1

1
-s size

-y
35-46 Administrator’s Guide for Informix Dynamic Server

onparams: Modify Log-Configuration Parameters
After You Change the Physical-Log Size or Location

Changes to the physical log do not take effect until you reinitialize shared
memory. To reinitialize shared memory immediately, execute the command
with the -y option.

Create a level-0 dbspace backup immediately after you reinitialize shared
memory. This dbspace backup is critical for proper recovery of the database
server. If you are using ON-Bar or ON-Archive, you only need to create a
level-0 dbspace backup of the root dbspace.

If you move the log to a dbspace without adequate contiguous space, a fatal
shared-memory error occurs when you attempt to reinitialize shared
memory with the new value.

For more information, see “Changing the Physical-Log Location and Size” on
page 21-3.
Utilities 35-47

35-48 Administrator’s Guide for Informix Dynamic Server

onspaces: Manage Database Spaces
onspaces: Manage Database Spaces
The onspaces utility lets you perform the following tasks:

■ Create a blobspace, dbspace, or temporary dbspace

■ Drop a blobspace or dbspace

■ Add a chunk

■ Drop a chunk

■ Start mirroring

■ End mirroring

■ Change chunk status

■ Set the DATASKIP parameter

You must be logged in as user root or user informix to execute onspaces.

onspaces: Manage Database Spaces
Syntax

Create a Blobspace, Dbspace, or Temporary Dbspace

♦

Drop an Empty Chunk,
p. 35-55

onspacesonspaces

Drop a Blobspace
or Dbspace,

p. 35-52

Add a Chunk,
p. 35-53

Create a Blobspace, Dbspace,
or Temporary Dbspace,

p. 35-49

Specify DATASKIP
p. 35-61

Change Chunk Status
p. 35-59

Start Mirroring
p. 35-57

End Mirroring
p. 35-59

UNIX

Create a Blobspace, Dbspace, or
Temporary Dbspace

-b blobspace

-d dbspace

-g pageunit -o offset -s size

-m pathname offset

-c -p pathname

-t
Utilities 35-49

onspaces: Manage Database Spaces
♦

WIN NT

Create a Blobspace, Dbspace, or
Temporary Dbspace

-b blobspace

-d dbspace

-g pageunit -o offset -s size

-m pathname offset

-c

-t

-p pathname

-p \\.\drive

-m \\.\drive offset

Element Purpose Key Considerations
-b blobspace Names the blobspace to be

created.
Restrictions: See the restrictions in “Creating a
Blobspace” on page 14-16.

References: The syntax must conform to the
Identifier segment. For more information, see the
Informix Guide to SQL: Syntax.

-c Creates a blobspace or dbspace. References: For more information, see “Creating a
Dbspace” on page 14-11, or “Creating a Blobspace”
on page 14-16.

drive
(Windows NT only)

Specifies the Windows NT drive
to allocate as unbuffered disk
space. The format can be either
\\.\<drive>, where drive is the
drive letter assigned to a disk
partition, or
\\.\PhysicalDrive<number>,
where PhysicalDrive is a
constant value and number is the
physical drive number.

References: For information on allocating unbuf-
fered disk space on Windows NT platforms, see
“Allocating Raw Disk Space on Windows NT” on
page 14-9.

-d dbspace Names the dbspace to be
created.

Restrictions: See the restrictions in “Creating a
Dbspace” on page 14-11.

References: The syntax must conform to the
Identifier segment. For more information, see the
Informix Guide to SQL: Syntax.

 (1 of 2)
35-50 Administrator’s Guide for Informix Dynamic Server

onspaces: Manage Database Spaces
-g pageunit Specifies the blobspace
blobpage size in terms of
page_unit, the number of disk
pages per blobpage.

Restrictions: Unsigned integer. Value must be
greater than 0.

References: For more information, see “Deter-
mining Database Server Page Size” on page 14-17.

-m pathname offset Specifies an optional pathname
and offset to the chunk that will
mirror the initial chunk of the
new blobspace or dbspace. Also
see the entries for -p pathname
and -o offset in this table.

References: For more information, see “Creating a
Dbspace” on page 14-11 and “Creating a Blobspace”
on page 14-16.

-o offset Indicates, in kilobytes, the offset
into the disk partition or into the
device to reach the initial chunk
of the new blobspace or
dbspace.

Restrictions: Unsigned integer. Value must be
greater than 0.

References: For more information, see “Allocating
Raw Disk Space on UNIX” on page 14-8.

-p pathname Indicates the disk partition or
device of the initial chunk of the
blobspace or dbspace that you
are creating.

Additional Information: The chunk must be an
existing unbuffered device or buffered file. When
you specify a pathname, you can use either a full
pathname or a relative pathname. However, if you
use a relative pathname, it must be relative to the
directory that was the current directory when you
initialized the database server.
References: For pathname syntax, see your
operating-system documentation.

-s size Indicates, in kilobytes, the size
of the initial chunk of the new
blobspace or dbspace.

Restrictions: Unsigned integer. Value must be
greater than 0. Size must not exceed 2 gigabytes.

-t Creates a temporary dbspace. References: For more information, see “Creating a
Temporary Dbspace with the -t Option” on
page 35-52 and “What Is a Temporary Dbspace?” on
page 13-20.

Element Purpose Key Considerations

 (2 of 2)
Utilities 35-51

onspaces: Manage Database Spaces
Creating a Temporary Dbspace with the -t Option
When you create a temporary dbspace with ON-Monitor (UNIX only) or
onspaces, the database server does not use the newly created temporary
dbspace until you perform the following steps:

■ Add the name of the new temporary dbspace to your list of
temporary dbspaces in the DBSPACETEMP configuration parameter,
the DBSPACETEMP environment variable, or both.

■ Reinitialize the database server.

Drop a Blobspace or Dbspace

Important: Do not specify a pathname when you are dropping a dbspace or
blobspace.

Element Purpose Key Considerations
-d Indicates that a blobspace or

dbspace is to be dropped.
Restriction: Execute oncheck -pe to verify that no table is
currently storing data in the blobspace or dbspace.

References: For more information, see “Dropping a
Dbspace or Blobspace” on page 14-19.

-y Causes the database server to
automatically respond yes to
all prompts.

None.

blobspace Names the blobspace to be
dropped.

Additional Information: Before you drop a blobspace,
drop all tables that include a TEXT or BYTE column that
references the blobspace.

dbspace Names the dbspace to be
dropped.

Additional Information: Before you drop a dbspace, drop
all databases and tables that you previously created in the
dbspace.

Drop a Blobspace
or Dbspace

blobspace

dbspace

-d

-y
35-52 Administrator’s Guide for Informix Dynamic Server

onspaces: Manage Database Spaces
Add a Chunk to a Blobspace or Dbspace

♦

♦

UNIX

blobspace

dbspace

-o offset -s size

-m pathname offset

-a -p pathname

Add a Chunk to a
Blobspace or a Dbspace

WIN NT

-m pathname offset

blobspace

dbspace

-s size-a -p pathname

Add a Chunk to a
Blobspace or a Dbspace

-p \\.\drive

-o offset

-m \\.\drive offset
Utilities 35-53

onspaces: Manage Database Spaces
Element Purpose Key Considerations
-a Indicates that a chunk is to be

added.
None.

drive
(Windows NT
only)

Specifies the Windows NT drive
to allocate as unbuffered disk
space. The format can be either
\\.\<drive>, where drive is the
drive letter assigned to a disk
partition, or
\\.\PhysicalDrive<number>,
where PhysicalDrive is a
constant value and number is the
physical drive number.

References: For more information on allocating unbuf-
fered disk space on Windows NT platforms, see
“Allocating Raw Disk Space on Windows NT” on
page 14-9.

-m pathname
offset

Specifies an optional pathname
and offset to the chunk that will
mirror the new chunk. Also see
the entries for pathname and
offset in this table.

References: For more information, see “Adding a Chunk
to a Dbspace” on page 14-14 and “Adding a Chunk to a
Blobspace” on page 14-18.

-o offset After the -a option, offset
indicates, in kilobytes, the offset
into the disk partition or into the
device to reach the initial chunk
of the new blobspace or
dbspace.

Restrictions: Unsigned integer. Value must be greater
than 0.

References: Syntax must conform to the Identifier
segment; see Informix Guide to SQL: Syntax. For more
information, see “Allocating Raw Disk Space on UNIX”
on page 14-8.

-p pathname Indicates the disk partition or
device of the initial chunk of the
blobspace or dbspace that you
are adding.

Additional Information: The chunk must be an existing
unbuffered device or buffered file. When you specify a
pathname, you can use either a full pathname or a relative
pathname. However, if you use a relative pathname, it
must be relative to the directory that was the current
directory when you initialized the database server.
References: For pathname syntax, see your operating-
system documentation.

 (1 of 2)
35-54 Administrator’s Guide for Informix Dynamic Server

onspaces: Manage Database Spaces
Drop a Chunk

-s size Indicates, in kilobytes, the size
of the initial chunk of the new
blobspace or dbspace.

Restrictions: Unsigned integer. Value must be greater
than 0. Size must not exceed 2 gigabytes.

blobspace Names the blobspace to which
you are adding a chunk.

Restrictions: See “Adding a Chunk to a Blobspace” on
page 14-18.

References: Syntax must conform to the Identifier
segment; see the Informix Guide to SQL: Syntax.

dbspace Names the dbspace to which
you are adding a chunk.

Restrictions: See “Adding a Chunk to a Dbspace” on
page 14-14.

References: Syntax must conform to the Identifier
segment; see the Informix Guide to SQL: Syntax.

Element Purpose Key Considerations

 (2 of 2)

Element Purpose Key Considerations
-d Drops a chunk. Restrictions: See “Dropping a Chunk from a Dbspace

with onspaces” on page 14-18 or “Dropping a Chunk
from a Blobspace” on page 14-19.

-o offset Indicates, in kilobytes, the offset
into the disk partition or into the
device to reach the initial chunk
of the blobspace or dbspace that
you are dropping.

Restrictions: Unsigned integer. Value must be greater
than or equal to 0.

References: For more information, see “Allocating Raw
Disk Space on UNIX” on page 14-8.

 (1 of 2)

blobspace

dbspace

-d

Drop a Chunk

-p pathname -o offset

-y
Utilities 35-55

onspaces: Manage Database Spaces
Important: You must specify a pathname to indicate to the database server that you
are dropping a chunk.

-p pathname Indicates the disk partition or
device of the initial chunk of the
blobspace or dbspace that you
are dropping.

Additional Information: The chunk must be an existing
unbuffered device or buffered file. When you specify a
pathname, you can use either a full pathname or a relative
pathname. However, if you use a relative pathname, it
must be relative to the directory that was the current
directory when you initialized the database server.
References: For pathname syntax, see your operating-
system documentation.

-y Causes the database server to
automatically respond yes to all
prompts.

None.

blobspace Names the blobspace from
which the chunk will be
dropped.

References: Syntax must conform to the Identifier
segment; see the Informix Guide to SQL: Syntax. For more
information, see “Dropping a Chunk from a Blobspace”
on page 14-19.

dbspace Names the dbspace from which
the chunk will be dropped.

References: Syntax must conform to the Identifier
segment; see the Informix Guide to SQL: Syntax. For more
information, see “Dropping a Chunk from a Dbspace with
onspaces” on page 14-18.

Element Purpose Key Considerations

 (2 of 2)
35-56 Administrator’s Guide for Informix Dynamic Server

onspaces: Manage Database Spaces
Start Mirroring

Element Purpose Key Considerations
-f filename Indicates that chunk-location

information is in a file named
filename.

Additional Information: The file must be a buffered
file that already exists. The pathname must conform
to the operating-system-specific rules for
pathnames.

References: For more information, see “Using a File
to Specify Chunk-Location Information with the
-f Option” on page 35-58.

-m Adds mirroring for an existing
dbspace or blobspace.

None.

-m pathname offset The second time pathname
occurs in the syntax diagram, it
indicates the disk partition or
device of the initial chunk of the
dbspace or blobspace that
performs the mirroring. The
second time offset appears in the
syntax diagram, it indicates the
offset to reach the mirrored
chunk of the newly mirrored
dbspace or blobspace. Also see
the entries for pathname and
offset in this table.

None.

-o offset The first time offset occurs in the
syntax diagram, it indicates, in
kilobytes, the offset into the disk
partition or into the device to
reach the initial chunk of the
newly mirrored dbspace or
blobspace.

Restrictions: Unsigned integer. Value must be
greater than 0.

References: For more information, see “Allocating
Raw Disk Space on UNIX” on page 14-8.

 (1 of 2)

blobspace

dbspace

-m

Start Mirroring

-o offset-p pathname -m pathname offset

-f filename -y
Utilities 35-57

onspaces: Manage Database Spaces
Using a File to Specify Chunk-Location Information with the -f Option

You can create a file that contains the chunk-location information. Then,
when you execute onspaces, use the -f option to indicate to the database
server that this information is contained in a file whose name you specify in
filename.

If the dbspace that you are mirroring contains multiple chunks, you must
specify a mirrored chunk for each of the primary chunks in the dbspace that
you want to mirror. For an example that enables mirroring for a multichunk
dbspace, see “Starting Mirroring for Unmirrored Dbspaces with onspaces”
on page 24-8.

-p pathname The first time pathname occurs in
the syntax diagram, it indicates
the disk partition or device of
the initial chunk of the dbspace
or blobspace that you want to
mirror.

Additional Information: The chunk must be an
existing unbuffered device or buffered file. When
you specify a pathname, you can use either a full
pathname or a relative pathname. However, if you
use a relative pathname, it must be relative to the
directory that was the current directory when you
initialized the database server.
References: For pathname syntax, see your
operating-system documentation.

-y Causes the database server to
automatically respond yes to all
prompts.

None.

blobspace Names the blobspace that you
want to mirror.

References: Syntax must conform to the Identifier
segment; see Informix Guide to SQL: Syntax. For more
information, see “Starting Mirroring” on page 24-6.

dbspace Names the dbspace that you
want to mirror.

References: Syntax must conform to the Identifier
segment; see Informix Guide to SQL: Syntax. For
background information, see “Starting Mirroring”
on page 24-6.

Element Purpose Key Considerations

 (2 of 2)
35-58 Administrator’s Guide for Informix Dynamic Server

onspaces: Manage Database Spaces
End Mirroring

Change Status of a Mirrored Chunk

Element Purpose Key Considerations
-r Indicates to the database server

that mirroring should be ended
for an existing dbspace or
blobspace.

References: For more information, see “Ending
Mirroring” on page 24-12.

-y Causes the database server to
respond yes to all prompts
automatically.

None.

blobspace Names the blobspace for which
you want to end mirroring.

References: Syntax must conform to the Identifier
segment; see the Informix Guide to SQL: Syntax. For more
information, see “Ending Mirroring” on page 24-12.

dbspace Names the dbspace for which
you want to end mirroring.

References: Syntax must conform to the Identifier
segment; see the Informix Guide to SQL: Syntax. For more
information, see “Ending Mirroring” on page 24-12.

blobspace

dbspace

-r

End Mirroring

-y

blobspace

dbspace

-o offset-s -p pathname

-O

-D

Change Chunk
Status

-y
Utilities 35-59

onspaces: Manage Database Spaces
Element Purpose Key Considerations
-D Indicates that you want to take

the chunk down.
None.

-o offset Indicates, in kilobytes, the offset
into the disk partition or into the
device to reach the chunk.

Restrictions: Unsigned integer. Value must be greater
than or equal to 0.

References: For more information, see “Allocating Raw
Disk Space on UNIX” on page 14-8.

-O Indicates that you want to
restore the chunk and bring it
on-line.

None.

-p pathname Indicates the disk partition or
device of the chunk.

Additional Information: The chunk can be an unbuf-
fered device or a buffered file. When you specify a
pathname, you can use either a full pathname or a
relative pathname. However, if you use a relative
pathname, it must be relative to the directory that was
the current directory when you initialized the database
server.

References: For pathname syntax, see your operating-
system documentation.

-s Indicates that you want to
change the status of a chunk.

Restrictions: You can only change the status of a chunk
in a mirrored pair.

References: For more information, see “Changing the
Mirror Status” on page 24-10.

-y Causes the database server to
respond yes to all prompts
automatically.

None.

blobspace Names the blobspace whose
status you want to change.

References: Syntax must conform to the Identifier
segment; see the Informix Guide to SQL: Syntax. For more
information, see “Changing the Mirror Status” on
page 24-10.

dbspace Names the dbspace whose
status you want to change.

References: Syntax must conform to the Identifier
segment; see the Informix Guide to SQL: Syntax. For more
information, see “Changing the Mirror Status” on
page 24-10.
35-60 Administrator’s Guide for Informix Dynamic Server

onspaces: Manage Database Spaces
Specify DATASKIP Parameter

The onspaces utility lets you specify DATASKIP on a dbspace level or across
all dbspaces.

Element Purpose Key Considerations
-f Indicates to the database server

that you want to change the
DATASKIP default for specified
dbspaces or all dbspaces.

Additional Information: All changes in the system-wide
DATASKIP status are recorded in the message log.

-y Causes the database server to
automatically respond yes to all
prompts.

None.

dbspace-list Specifies the name of one or
more dbspaces for which
DATASKIP will be turned ON or
OFF.

References: Syntax must conform to the Identifier
segment; see the Informix Guide to SQL: Syntax. For more
information, see “DATASKIP” on page 33-16 and your
Performance Guide.

OFF Turns off DATASKIP. Additional Information: If OFF is used without dbspace-
list, DATASKIP is turned off for all fragments. If OFF is used
with dbspace-list, only the specified fragments are set with
DATASKIP off.

ON Turns on DATASKIP. Additional Information: If ON is used without dbspace-
list, DATASKIP is turned on for all fragments. If ON is used
with dbspace-list, only the specified fragments are set with
DATASKIP on.

OFF

ON

-f

dbspace-list

Specify DATASKIP

-y
Utilities 35-61

35-62 Administrator’s Guide for Informix Dynamic Server

onstat: Monitor Database Server Operation
onstat: Monitor Database Server Operation
The onstat utility reads shared-memory structures and provides statistics
about the database server that are accurate at the instant that the command
executes. The system-monitoring interface also provides information about the
database server. For information on the system-monitoring interface, see
Chapter 34, “The sysmaster Database.”

The contents of shared memory might change as the onstat output displays.
The onstat utility does not place any locks on shared memory, so running the
utility does not affect performance. For information about disk usage and
data storage, see “oncheck: Check, Repair, or Display” on page 35-5.

The following table lists each onstat option flag and its function.

Topic or Function Option Flag

All onstat options --

Btree cleaner requests -C

Buffers, all (in use or not) -B

Buffers in use -b

Buffers, includes addresses of waiting threads -X

Buffer hash chain info -h

Configuration-file information (ONCONFIG file) -c

DATASKIP information -f

Dbspace chunks, general information -d

Dbspace chunks, page reads/writes -D

Interactive mode -i

Latches -s

Locks held -k

Logging information (logical and physical logs, including page
addresses)

-l

 (1 of 2)

onstat: Monitor Database Server Operation
LRU queues -R

Monitoring information -g

Dynamic Server message log -m

Dynamic Server profile of activity -p

Optical Subsystem memory cache and staging-area blobspace
information

-O

Repeat this onstat command periodically -r

Shared-memory segment (save it to a file) -o

Summary of user-oriented (lowercase) options -a

Tblspaces, active -t

Transaction information -x

User threads and transactions -u

Write type statistics (gathered when pages are flushed) -F

Zero out all statistic counts -z

Topic or Function Option Flag

 (2 of 2)
Utilities 35-63

onstat: Monitor Database Server Operation
Syntax

seconds

-a

- -

onstat

1

-b1

-B1

-c1

-d1

-D1

-F1

-k1

-l1

-m1

-p1

-r1

-R1

-s1

-t1

-u1

-X1

-z1

-g1

-h1

-x1

filename_dest

1

filename_source

-o

-f1

-j1

-O1

filename_dest

-i1

-P1
35-64 Administrator’s Guide for Informix Dynamic Server

onstat: Monitor Database Server Operation
Element Purpose Key Considerations
-- Displays a listing of all onstat

options and their functions. See
“-- Option” on page 35-70.

Additional Information: This option is the only
option flag that you cannot combine with any other
flag.

-a Interpreted as onstat -cuskbtdlp
(all lowercase option flags).
Displays output in that order. See
“-a Option” on page 35-70.

None.

-b Displays information about buffers
currently in use, including number
of resident pages in the buffer pool.
See “-b Option” on page 35-70.

None.

-B Obtains information about all
Dynamic Server buffers, not just
buffers currently in use. See the
entry for -b in this table.

Additional Information: The -B output display
fields are the same as the fields that appear in the -b
output.

-c Displays the ONCONFIG file. Additional Information: Dynamic Server first
checks if you have assigned a value to the
environment variable ONCONFIG. If so, Dynamic
Server displays the contents of the specified by the
ONCONFIG environment variable. If not, Dynamic
Server displays, by default, the contents of
$INFORMIXDIR/etc/onconfig on UNIX or
%INFORMIXDIR%\etc\onconfig on Windows NT.

-C Prints B-tree cleaner information. None.
-d Displays information for chunks in

each space. See “-d Option” on
page 35-72.

None.

-D Displays page-read and page-write
information for the first 50 chunks
in each dbspace. See “-D Option”
on page 35-74.

None.

-f Lists the dbspaces currently
affected by the DATASKIP feature.
See “-f Option” on page 35-74.

None.

-F Displays a count for each type of
write that flushes pages to disk. See
“-F Option” on page 35-75.

None.

-g Monitoring options. See
“-g Monitoring Options” on
page 35-76.

None.

 (1 of 3)
Utilities 35-65

onstat: Monitor Database Server Operation
-h Prints buffer hash chain
information.

None.

-i Puts the onstat utility into inter-
active mode. See “-i Option” on
page 35-79.

None.

-k Displays information about active
locks. See “-k Option” on
page 35-79.

None.

-l Displays information about
physical and logical logs. See
“-l Option” on page 35-80.

None.

-m Displays the 20 most-recent lines
of the system message log. See
“-m Option” on page 35-82.

Additional Information: Output from this option
lists the full pathname of the message-log file and
the 20 file entries. A date-and-time header separates
the entries for each day. A time stamp prefaces
single entries within each day. The name of the
message log is specified as MSGPATH in the
ONCONFIG file.

-o Saves a copy of the shared-memory
segment to filename.

Additional Information: If you omit a filename in
the onstat command, the copy of shared memory is
saved to onstat.out in the current directory.

-O Displays information about the
Optical Subsystem memory cache
and staging-area blobspace. See
“-O Option” on page 35-82.

None.

-p Displays profile counts. See
“-p Option” on page 35-84.

None.

-P Displays for all partitions the
partition number and the break
up of pages in the buffer pool
belonging to the partition.

None.

-r Causes the accompanying onstat
options to execute repeatedly after
they wait the specified seconds
between each execution. The
default value of seconds is 5.

Additional Information: To end execution, press
DEL or CTRL-C.

-R Displays detailed information
about the LRU queues, FLRU
queues, and MLRU queues. See
“-R Option” on page 35-87.

None.

Element Purpose Key Considerations

 (2 of 3)
35-66 Administrator’s Guide for Informix Dynamic Server

onstat: Monitor Database Server Operation
Statistics Culled from Source File

Use the filename_source parameter with other option flags to derive the
requested onstat statistics from the shared-memory segment contained in
filename_source. You must first use the onstat -o command to create a file that
contains a shared-memory segment.

-s Displays general latch information.
See “-s Option” on page 35-88.

None.

-t Displays tblspace information for
active tblspaces, including
residency state. See “-t Option” on
page 35-89.

None.

-u Prints a profile of user activity. See
“-u Option” on page 35-90.

None.

-x Displays information about trans-
actions. See “-x Option” on
page 35-92.

None.

-X Obtains precise information about
the threads that are sharing and
waiting for buffers. See “-X Option”
on page 35-94.

None.

-z Sets the profile counts to zero. See
“-z Option” on page 35-94.

None.

filename_dest Specifies destination file that
will contain the copy of the
shared-memory segment.

Restrictions: Name must not match the name of any
existing file.

References: For pathname syntax, see your
operating-system documentation.

filename_source Specifies file that onstat will read
as source for the requested
information.

Restrictions: This file must include a previously
stored shared-memory segment that you created
using the -o option of onstat.

References: For specific details on this option, see
“Statistics Culled from Source File.” For pathname
syntax, see your operating-system documentation.

seconds Specifies number of seconds
between each execution of the
onstat -r command.

Restrictions: This value must be an unsigned
integer greater than 0.

Element Purpose Key Considerations

 (3 of 3)
Utilities 35-67

onstat: Monitor Database Server Operation
Interactive Execution

You can put the onstat utility in interactive mode with the -i option. Inter-
active mode allows you to enter multiple options, one after the other, without
exiting the program. For information on using interactive mode, see “-i
Option” on page 35-79.

Continuous onstat Execution

Use the seconds parameter with the -r option flag to cause all other flags to
execute repeatedly after they wait the specified seconds between each
execution.

Output Header
All onstat output includes a header. The header takes the following form:

Version--Mode (Type)--(Checkpnt)--Up Uptime--Sh_mem Kbytes

Version is the product version number.

Mode is the current operating mode.

(Type) is the data-replication type of the database server. If the
database server is not involved in data replication, this field
does not appear. If the type is primary, the value P appears. If
the type is secondary, the value S appears.

(Checkpnt) is a checkpoint flag. If it is set, the header might display two
other fields after the mode if the timing is appropriate:

(CKPT REQ) indicates that some Dynamic Server user thread
has requested a checkpoint.

(CKPT INP) indicates that a checkpoint is in progress.
During the checkpoint, access is limited to read
only. Dynamic Server cannot write or update
data until the checkpoint ends.

Uptime indicates how long the database server has been running.

Sh_mem is the size of Dynamic Server shared memory, expressed in
kilobytes.
35-68 Administrator’s Guide for Informix Dynamic Server

onstat: Monitor Database Server Operation
A sample header follows:

Informix Dynamic Server Version 7.30.UC1--On-Line--Up
15:11:41--368 KBytes

Logs Full Sub-Header

If the database server is blocked, the onstat header output includes an extra
line that reads as follows:

Blocked: reason(s)

The reason can be one or more of the following.

Option Descriptions
You can combine multiple onstat option flags in a single command.

No Options

If you invoke onstat without any options, the command is interpreted as
onstat -pu (-p option and -u option).

Reason Explanation

CKPT Checkpoint

LONGTX Long transaction

ARCHIVE Ongoing dbspace backup

MEDIA_FAILURE Media failure

HANG_SYSTEM Dynamic Server failure

DBS_DROP Dropping a dbspace

DDR Discrete data replication

LBU Logs full high-water mark
Utilities 35-69

onstat: Monitor Database Server Operation
-- Option

The -- option displays a listing of all onstat options and their functions. This
option is the only option flag that you cannot combine with any other flag.

-a Option

The -a option is interpreted as onstat -cuskbtdlp (all lowercase option flags),
and output is displayed in that order. For an explanation of each option, refer
to the appropriate flag in the paragraphs that follow.

-b Option

The -b option displays information about buffers currently in use, including
the total number of resident pages in the buffer pool. (Refer to onstat -B for
information about all buffers, not just those in use. Refer to onstat -g iob for
information about the use of big buffers.) You can interpret output from the
-b option as follows:

address is the address of the buffer header in the buffer table.
userthread is the address of the most-recent user thread to access the

buffer table. Many user threads might be reading the same
buffer concurrently.

flgs describes the buffer using the following flag bits:
0x01 Modified data
0x02 Data
0x04 LRU

0x08 Error
pagenum is the physical page number on the disk.
memaddr is the buffer memory address.
nslots is the number of slot-table entries in the page. This field

indicates the number of rows (or portions of a row) that are
stored on the page.

pgflags describes the page type using the following values, alone or in
combination:

1 data page
2 tblspace page
4 free-list page
35-70 Administrator’s Guide for Informix Dynamic Server

onstat: Monitor Database Server Operation
The number of modified buffers, the number of total buffers available, the
number of hash buckets available, and the size of the buffer in bytes (the page
size) are also listed. The maximum number of buffers available is specified as
BUFFERS in the ONCONFIG file

The -b and -B options also provides summary information as shown in the
following example:

123 modified, 23 resident, 2000 total, 2048 hash buckets, 2048 buffer size.

8 chunk free-list page
9 remainder data page
b partition resident blobpage
c blobspace resident blobpage
d blob chunk free-list bit page
e blob chunk blob map page
10 B-tree node page
20 B-tree root-node page
40 B-tree branch-node page
80 B-tree leaf-node page
100 logical-log page
200 last page of logical log
400 sync page of logical log
800 physical log
1000 reserved root page
2000 no physical log required
8000 B-tree leaf with default flags

xflgs describes buffer access using the following flag bits:
0x10 share lock
0x80 exclusive lock

owner is the user thread that set the xflgs buffer flag.
waitlist is the address of the first user thread waiting for access to this

buffer. For a complete list of all threads waiting for the buffer,
refer to “-X Option” on page 35-94.
Utilities 35-71

onstat: Monitor Database Server Operation
-d Option

Use the -d option to display information for chunks in each space. You can
interpret output from this option as follows. The first section of the display
describes the dbspaces:

The line immediately following the space list includes the number of active
spaces (the current number of dbspaces in the database server instance
including the rootdbs) and the number of total spaces.

Active spaces refers to the current number of spaces in the database server
instance including the rootdbs. Total refers to total allowable spaces for this
database server instance.

address is the address of the space in the shared-memory space table.
number is the unique ID number of the space assigned at creation.
flags describes each space using the following hexadecimal values:

0x0001 No mirror
0x0002 Mirror
0x0004 Down
0x0008 Newly mirrored
0x0010 Blobspace

fchunk is the ID number of the first chunk.
nchunks is the number of chunks in the space.
flags describes each space using the following letter codes:

Position 1: M -- Mirrored
N -- Not Mirrored

Position 2: X -- Newly mirrored
P -- Physically recovered, waiting for
P -- logical recovery
L -- Being logically recovered
R-- Being recovered

Position 3: B -- Blobspace
owner is the owner of the space.
name is the name of the space.
35-72 Administrator’s Guide for Informix Dynamic Server

onstat: Monitor Database Server Operation
The second section of the onstat -d output describes the chunks:

The line immediately following the chunk list includes the number of active
chunks (the number of chunks in the database server instance including the
root chunk) and the number of total chunks.

Timing Affects onstat -d Output

Occasionally, the timing of the onstat -d command can affect the utility
output. Timing becomes a factor in two cases. The first case occurs immedi-
ately after blobspace blobpages are allocated. The onstat -d routine looks
directly at the disk to obtain blobpage statistics from the blobspace free-map
page. If blobpages were recently allocated, onstat -d might not reflect the new
allocation. This situation could arise if you execute onstat -d while the
newest version of the blobspace free-map page remains in a memory buffer
and is not yet flushed to disk.

address is the address of the chunk.
chk/dbs is the chunk number and the associated space number.
offset is the offset into the device in pages.
size is the size of the chunk in pages.
free is the number of free blobpages in the chunk. (A tilde indicates

an approximate value for blobspaces.)
bpages is the size of the chunk in blobpages. Blobpages can be larger

than disk pages; therefore, the bpages value can be less than the
size value.

flags gives the chunk status information as follows:
Position 1: P -- Primary

M -- Mirror
Position 2: O -- On-line

D -- Down
X -- Newly mirrored
I -- Inconsistent

Position 3: B -- Blobspace
 - -- Dbspace
T - Temporary dbspace

pathname is the pathname of the physical device.
Utilities 35-73

onstat: Monitor Database Server Operation
Blobspace Page Types

The second case in which timing affects output occurs after blobspace
blobpages are freed. The onstat -d output does not show a blobpage as free
until the logical log in which the page or pages were deallocated is freed. That
is, if you modify TEXT or BYTE data, onstat -d shows that the pages where the
obsolete TEXT or BYTE data are stored are still in use until you back up and
free the logical log that contains the modifying statement.

The oncheck -pB command, which examines the disk pages, does not reflect
this timing nuance. If you delete TEXT or BYTE data from a blobspace,
oncheck -pB output reflects the freed space immediately. For this reason,
output from onstat -d and oncheck -pB could appear to be inconsistent.

For information about page reads and page writes, refer to onstat -D.

-D Option

Use the -D option to display page-read and page-write information for the
first 50 chunks in each space. All but two of the fields that appear in the -D
output also appear in the onstat -d output. You can interpret the two fields
that are unique to the -D output as follows:

-f Option

Use the -f option to list the dbspaces currently affected by the dataskip
feature. The -f option lists both the dbspaces that were set with the DATASKIP
configuration parameter and the -f option of onspaces. When you execute
onstat -f, the database server displays one of the following three outputs:

■ Dataskip is OFF for all dbspaces.

■ Dataskip is ON for all dbspaces.

■ Dataskip is ON for dbspaces:

dbspace1 dbspace2...

page Rd is the number of pages read.
page Wr is the number of pages written.
35-74 Administrator’s Guide for Informix Dynamic Server

onstat: Monitor Database Server Operation
-F Option

Use the -F option to display a count for each type of write that flushes pages
to disk. You can interpret output from this option as follows:

Fg Writes is the number of times that a foreground write occurred.
LRU Writes is the number of times that an LRU write occurred.
Chunk Writes is the number of times that a chunk write occurred.
address is the address of the user structure assigned to this

page-cleaner thread.
flusher is the page-cleaner number.
state indicates the current page-cleaner activity using the following

codes:
C chunk write
E exit
I cleaner is idle
L LRU queue

The exit code indicates either that the database server is
performing a shutdown or that a page cleaner did not return
from its write in a specific amount of time. This is also known
as a time-out condition. Dynamic Server does not know what
happened to the cleaner, so it is marked as exit. In either case,
the cleaner thread eventually exits.

data provides additional information in concert with the state field.
If state is C, data is the chunk number to which the page
cleaner is writing buffers. If state is L, data is the LRU queue
from which the page cleaner is writing. The data value is
displayed as a decimal, followed by an equal sign, and
repeated as a hexadecimal.
Utilities 35-75

onstat: Monitor Database Server Operation
-g Monitoring Options

The following onstat -g options are provided for support and debugging
only. You can include only one of these options per onstat -g command:

act Prints active threads.
afr pool name |
session id

Prints allocated memory fragments for a specified session
or shared-memory pool. Each session is allocated a pool
of shared memory.
See -mem option for pool name.

all Prints all multithreading information.
ath Prints all threads. The sqlmain threads represent client

sessions, and the rstcb value corresponds to the user field
of the onstat -u command.

con Prints conditions with waiters.
dic table Without any parameters, this option will print one line of

information for each table cached in the shared-memory
dictionary. If given a specific table name as a parameter, it
will print internal SQL information for that table.

dll Prints a list of dynamic libraries that have been loaded.
dri Prints data-replication information. (See “Monitoring

High-Availability Data-Replication Status” on page 29-71
for a description of the information that is displayed.)

dsc Prints data-distribution cache information.
ffr pool name |
session id

Prints free fragments for a pool of shared memory.

glo Prints global multithreading information. This infor-
mation includes CPU use information about the virtual
processors, the total number of sessions, and other multi-
threading global counters.

iob Prints big-buffer use by I/O virtual processor class.
iof Prints asynchronous I/O statistics by chunk/file. This

option is similar to -d option, except that information on
nonchunk files is also displayed. It includes information
about temporary files and sort-work files.

iog Prints asynchronous I/O global information.
ioq Prints asynchronous I/O queuing statistics.
iov Prints asynchronous I/O statistics by virtual processor.
35-76 Administrator’s Guide for Informix Dynamic Server

onstat: Monitor Database Server Operation
Tip: This command prints the same status data as the nss command.

Tip: This command prints the same status data as the nsc command.

lmx Prints all locked mutexes.
mem pool name |
session id

Prints memory statistics for a pool. Session pools are
named with the session number. If no argument is
provided, information about all pools is displayed.

mgm Print MGM resource information.
nbm Prints block bit map for the nonresident segments, one bit

per 8-kilobyte block. Bit set indicates block free.
nsc client id Prints shared-memory status by client id. If client id is

omitted, all client status areas are displayed.

nsd Prints network shared-memory data for poll threads.
nss session id Prints network shared- memory status by session id. If

session id is omitted, all session status areas are displayed.

ntd Prints network statistics by service.
ntm Prints network mail statistics.
ntt Prints network user times.
ntu Prints network user statistics.
pos Prints .infos.DBSERVERNAME file.
ppf partition
number | 0

Prints partition profile for partition number; 0 prints
profiles for all partitions.

prc Prints stored procedure cache information.
qst Prints queue statistics.
rbm Prints block bit map for the resident segment

(communication message area).
rea Prints ready threads.
sch For each virtual processor, this command prints the

number of semaphore operations, spins, and busy waits.
Utilities 35-77

onstat: Monitor Database Server Operation
seg Prints shared-memory-segment statistics. This option
shows how many segments are attached and their sizes.

ses session id Prints session information by session id. If it is missing, a
one-line summary of each session is printed.

sle Prints all sleeping threads.
spi Prints spin locks that virtual processors have spun more

than 10,000 times to acquire. These spin locks are called
longspins. The total number of longspins is printed in the
heading of the glo command. Excessive longspins might
indicate an overloaded system, too many virtual
processors for a given computer, or an internal problem.
To reduce longspins, reduce the number of (generally
class CPU) virtual processors, reduce the load on the
computer, or use the no-age or processor affinity features.

sql session id Prints SQL information by session id. If session id is omitted,
a one-line summary for each session is printed.

stk tid Dumps stack of specified thread specified by thread ID.
This option is not supported on all platforms and is not
always accurate.

sts Prints maximum and current stack use per thread.
tpf tid Prints thread profile for tid; 0 prints profiles for all

threads.
ufr pool name |
session id

Prints allocated fragments by use.

wai Prints waiting threads; all threads waiting on mutex or
condition, or yielding.

wmx Prints all mutexes with waiters.
wst Prints wait statistics.
35-78 Administrator’s Guide for Informix Dynamic Server

onstat: Monitor Database Server Operation
-i Option

Use the -i option to put onstat in interactive mode. In interactive mode, you
can enter multiple onstat options per session, but only one at a time. An
onstat prompt appears, allowing you to enter an option.

In interactive mode, do not precede the option with a dash.

Two additional options, r seconds and rz seconds, are available in interactive
mode. The r seconds option is similar to the current onstat -r seconds option,
which repeatedly generates a display. If an administrator executes r seconds
at the interactive-mode prompt, the prompt changes to reflect the specified
interval in seconds and reappears, waiting for the next command. In the
following example, the display generated by the next command repeats
every three seconds:

Informix Dynamic Server Version 7.30.UC1 -- On-Line -- Up 3
days 20:55:15 -- 4868 Kbytes

onstat> r 3
onstat[3]>

The rz seconds option enables you to repeat the next command as specified
and to zero all profile counters between each execution.

Enter CTRL-D to terminate interactive mode.

Enter CTRL-C to terminate a repeating sequence.

-k Option

Use the -k option to display information about active locks. You can interpret
output from this option as follows:

address is the address of the lock in the lock table. If a user thread is
waiting for this lock, the address of the lock appears in the
wait field of the onstat -u (users) output.

wtlist is the first entry in the list of user threads waiting for the lock,
if there is one.

owner is the shared-memory address of the thread holding the lock.
This address corresponds to the address in the address field of
onstat -u (users) output.
Utilities 35-79

onstat: Monitor Database Server Operation
The maximum number of locks available is specified as LOCKS in the
ONCONFIG file.

-l Option

Use the -l option to display information about physical and logical logs. You
can interpret output from this option as follows. The first section of the
display describes the physical-log configuration:

lklist is the next lock in a linked list of locks held by the owner just
listed.

type uses the following codes to indicate the type of lock:
HDR header
B bytes lock
S shared
X exclusive
I intent
U update
IX intent-exclusive
IS intent-shared
SIX shared, intent-exclusive

tblsnum is the tblspace number of the locked resource.
rowid is the row identification number. The rowid provides the

following lock information:
■ If the rowid equals zero, the lock is a table lock.
■ If the rowid ends in two zeros, the lock is a page lock.
■ If the rowid is six digits or less and does not end in

zero, the lock is probably a row lock.
■ If the rowid is more than six digits, the lock is probably

an index key value lock.
key#/bsiz is the index key number, or the number of bytes locked for a

VARCHAR lock.

buffer is the number of the physical-log buffer.
bufused is the number of pages of the physical-log buffer that are used.
bufsize is the size of each physical-log buffer in pages.
numpages is the number of pages written to the physical log.
35-80 Administrator’s Guide for Informix Dynamic Server

onstat: Monitor Database Server Operation
The second section of the onstat -l display describes the logical-log
configuration:

The following fields are repeated for each logical-log file:

numwrits is the number of writes to disk.
pages/io is calculated as (numpages)/(numwrits). This value indicates

how effectively physical-log writes are being buffered.
phybegin is the physical page number of the beginning of the log.
physize is the size of the physical log in pages.
phypos is the current position in the log where the next log record

write will occur.
phyused is the number of pages used in the log.
%used is the percent of pages used.

buffer is the number of the logical-log buffer.
bufused is the number of pages used in the logical-log buffer.
bufsize is the size of each logical-log buffer in pages.
numrecs is the number of records written.
numpages is the number of pages written.
numwrits is the number of writes to the logical log.
recs/pages is calculated as (numrecs/numpages). You cannot affect this

value. Different types of operations generate different types
(and sizes) of records.

pages/io is calculated as (numpages/numwrits). You can affect this
value by changing the size of the logical-log buffer (specified
as LOGBUFF in the ONCONFIG file) or by changing the logging
mode of the database (from buffered to unbuffered, or vice
versa).

address is the address of the log-file descriptor.
number is the logical-log file logid number.
flags gives the status of each log as follows:

A newly added
B backed up
C current logical-log file
Utilities 35-81

onstat: Monitor Database Server Operation
-m Option

Use the -m option to display the 20 most-recent lines of the system message
log.

Output from this option lists the full pathname of the message-log file and
the 20 file entries. A date-and-time header separates the entries for each day.
A time stamp prefaces single entries within each day. The name of the
message log is specified as MSGPATH in the ONCONFIG file.

-O Option

Use the -O option of the onstat utility to display information about the
Optical Subsystem memory cache and staging-area blobspace. You can
interpret output from this option as follows. The totals shown in the display
accumulate from session to session. The database server resets the totals to 0
only when you execute onstat -z.

The first section of the display describes the following system-cache totals
information:

F free, available for use
L contains the most-recent checkpoint record
U used

uniqid is the unique ID number of the log.
begin is the beginning page of the log file.
size is the size of the log in pages.
used is the number of pages used.
%used is the percent of pages used.

size is the size specified in the OPCACHEMAX configuration parameter.
alloc is the number of 1-kilobyte pieces that the database server

allocated to the cache.
avail describes how much of alloc (in kilobytes) is not used.
number is the number of TEXT or BYTE objects that the database server

successfully put into the cache without overflowing.
35-82 Administrator’s Guide for Informix Dynamic Server

onstat: Monitor Database Server Operation
Although the size output indicates the amount of memory that is specified in
the configuration parameter OPCACHEMAX, the database server does not
allocate memory to OPCACHEMAX until necessary. Therefore, the alloc
output reflects only the number of 1-kilobyte pieces of the largest TEXT or
BYTE object that has been processed. When the values in the alloc and avail
output are equal to each other, the cache is empty.

The second section of the display describes the following user-cache totals
information:

kbytes is the number of kilobytes of TEXT or BYTE data that the database
server put into the cache without overflowing.

number is the number of TEXT or BYTE objects that the database server
wrote to the staging-area blobspace.

kbytes is the number of kilobytes of the simple large objects that the
database server wrote to the staging-area blobspace.

SID is the session ID for the user.
use is the user ID of the client.
size is the size specified in the INFORMIXOPCACHE environment

variable, if it is set. If you do not set the INFORMIXOPCACHE
environment variable, the database server uses the size that you
specify in the configuration parameter OPCACHEMAX.

number is the number of TEXT or BYTE objects that the database server put
into cache without overflowing.

kbytes is the number of kilobytes of TEXT or BYTE data that the database
server put into the cache without overflowing.

number is the number of TEXT or BYTE objects that the database server
wrote to the staging-area blobspace.

kbytes is the number of kilobytes of TEXT or BYTE data that the database
server wrote to the staging-area blobspace.
Utilities 35-83

onstat: Monitor Database Server Operation
-p Option

Use the -p option to display profile counts. The -p option displays profile
counts either since you started the database server or since you ran onstat
with the -z option.

The first portion of the display describes reads and writes.

Reads and writes are tabulated in three categories: from disk, from buffers,
and number of pages (read or written).

The first %cached field is a measure of the number of reads from buffers
compared to reads from disk. The second %cached field is a measure of the
number of writes to buffers compared to writes to disk.

The database server buffers information and writes to the disk in pages. For
this reason, the number of disk writes displayed as dskwrits is usually less
than the number of writes executed by an individual user:

dskreads is the number of actual reads from disk.
pagreads is the number of pages read.
bufreads is the number of reads from shared memory.
%cached is the percent of reads cached, calculated as 100 * (bufreads -

dskreads) / bufreads. (If dskreads exceeds bufreads, the value
is displayed as 0.0).

dskwrits is the actual number of physical writes to disk. This number
includes the writes for the physical and logical logs reported in
onstat -l.

pagwrits is the number of pages written.
bufwrits is the number of writes to shared memory.
%cached is the percent of writes cached, calculated as 100 *(bufwrits -

dskwrits) / dskwrits). (If dskwrits exceeds bufwrits, the value
is displayed as 0.0).
35-84 Administrator’s Guide for Informix Dynamic Server

onstat: Monitor Database Server Operation
The next portion of the -p display tabulates the number of times different
ISAM calls were executed. The calls occur at the lowest level of operation and
do not necessarily correspond one-to-one with SQL statement execution. A
single query might generate multiple ISAM calls. These statistics are gathered
across the database server and cannot be used to monitor activity on a single
database unless only one database is active or only one database exists:

The third portion of the -p display tracks the number of times that a resource
was requested when none was available:

isamtot is the total number of calls.
open increments when a tblspace is opened.
start increments when positioning within an index.
read increments when the read function is called.
write increments with each write call.
rewrite increments when an update occurs.
delete increments when a row is deleted.
commit increments each time an iscommit() call is made. No one-to-

one correspondence exists between this value and the number
of explicit COMMIT WORK statements that are executed.

rollbk increments when a transaction is rolled back.

ovlock is the number of times that the database server attempted to
exceed the maximum number of locks (specified as LOCKS in
the ONCONFIG file).

ovuser-
threads

is the number of times that a user attempted to exceed the
maximum number of user threads.

ovbuff is the number of times that the database server could not find
a free shared-memory buffers (specified as BUFFERS in the
ONCONFIG file). When there are no free buffers, the database
server writes out a dirty buffer to disk and then tries to find a
free buffer.

usercpu is the total user CPU time used by all user threads, expressed
in seconds. This entry is updated once every 15 seconds.

syscpu is the total system CPU time used by all user threads, expressed
in seconds. This entry is updated once every 15 seconds.

numckpts is the number of checkpoints since the boot time.
flushes is the number of times that the buffer pool has been flushed to

the disk.
Utilities 35-85

onstat: Monitor Database Server Operation
The next portion of the -p display contains miscellaneous information, as
follows:

The last portion of the -p display contains the following information:

-P Option

Use the -P option to display for all partitions the partition number and the
break up of pages in the buffer pool that belong to the partition.

bufwaits increments each time that a user thread must wait for a buffer.
lokwaits increments each time that a user thread must wait for a lock.
lockreqs increments each time that a lock is requested.
deadlks increments each time that a potential deadlock is detected and

prevented.
dltouts increments each time that the distributed deadlock time-out

value is exceeded while a user thread is waiting for a lock.
ckpwaits is the number of checkpoint waits.
compress increments each time that a data page is compressed. (Refer to

page compression.)
seqscans increments for each sequential scan.

ixda-RA is the count of read-aheads going from index leaves to data
pages.

idx-RA is the count of read-aheads traversing index leaves.
da-RA is the count of data-path-only scans.
RA-pgsused indicates the number of pages used that the database server

read ahead. If this number is significantly less than the total
number of pages read ahead, your read-ahead parameters
might be set too high.

lchwaits increments when a thread waits to gain access to a
shared-memory resource.
35-86 Administrator’s Guide for Informix Dynamic Server

onstat: Monitor Database Server Operation
-R Option

Use the -R option to display detailed information about the LRU queues,
FLRU queues, and MLRU queues. For an in-depth discussion of the three
types of queues, see “LRU Queues” on page 11-37.

For each queue, the onstat -R lists the number of buffers in the queue and the
number and percentage of buffers that have been modified. You can interpret
output from this option as follows:

Queue number. Each LRU queue is composed of two
subqueues: an FLRU queue and a MLRU queue. (See “LRU
Queues” on page 11-37 for a definition of MLRU and FLRU
queues.) Thus, queues 0 and 1 belong to the first LRU queue,
queues 2 and 3 belong to the second LRU queue, and so on.

f/m Identifies queue type. This field has four possible values:
f free LRU queue. Free in this context means not

modified. Although nearly all the buffers in an LRU
queue are available for use, Dynamic Server
attempts to use buffers from the FLRU queue rather
than MLRU queue. (A modified buffer must be
written to disk before Dynamic Server can use the
buffer.)

F free LRU with fewest elements. Dynamic Server uses
this estimate to determine where to put unmodified
(free) buffers next.

m MLRU queue.
M MLRU queue that is being cleaned by a flusher.

length length of queue measured in buffers.
% of percent of LRU queue that this subqueue composes. For

example, suppose that an LRU queue has 50 buffers, with 30 of
those buffers in the MLRU queue and 20 in the FLRU queue.
The % of column would list percents of 60.00 and 40.00,
respectively.

pair total total number of buffers in this LRU queue.
Utilities 35-87

onstat: Monitor Database Server Operation
Summary information follows the individual LRU queue information. You
can interpret the summary information as follows:

-s Option

Use the -s option to display general latch information. You can interpret
output from this option as follows:

dirty is the total number of buffers that have been modified in all
LRU queues.

queued is the total number of buffers in LRU queues.
total is the total number of buffers.
hash
buckets

is the number of hash buckets.

buffer size is the size of each buffer.
start clean is the value of LRU_MAX_DIRTY.
stop at is the value of LRU_MIN_DIRTY.

name identifies the resource that the latch controls with the
following abbreviations:

archive dbspace backup
bf buffers
bh hash buffers
chunks chunk table
ckpt checkpoints
dbspace dbspace table
flushctl page-flusher control
flushr page cleaners
locks lock table
loglog logical log
LRU LRU queues
physb1 first physical-log buffer
physb2 second physical-log buffer
physlog physical log
pt tblspace tblspace
tblsps tblspace table
users user table
35-88 Administrator’s Guide for Informix Dynamic Server

onstat: Monitor Database Server Operation
-t Option

Use the -t option to display tblspace information for active tblspaces,
including whether tblspaces are memory-resident. You can interpret output
from this option as follows:

address is the address of the latch. This address appears in the -u
(users) output wait field if a thread is waiting for the latch.

lock indicates if the latch is locked and set. The codes that indicate
the lock status (1 or 0) are computer dependent.

wait indicates if any user thread is waiting for the latch.
userthread is the shared-memory address of the owner of the latch. In

contrast to the user fields of other onstat options, this field
does not contain the rstcb (RSAM task-control block) address
because not all threads that own latches are user threads.
Instead this field contains the thread-control block address,
which all threads have. To obtain the rstcb address from the tcb
address, examine the output of the onstat -g ath option, which
lists both addresses for each user thread.

n is a counter of open tblspaces.
address is the address of the tblspace in the shared-memory tblspace

table.
flgs describes the flag using the following flag bits:

0x01 Busy
0x02 Dirty (modified pages that have not been flushed

to disk)
ucnt is the usage count, which indicates the number of user threads

currently accessing the tblspace.
tblnum is the tblspace number expressed as a hexadecimal value. The

integer equivalent appears as the partnum value in the
systables system catalog table.

physaddr is the physical address (on disk) of the tblspace.
npages is the number of pages allocated to the tblspace.
nused is the number of used pages in the tblspace.
npdata is the number of data pages used.
Utilities 35-89

onstat: Monitor Database Server Operation
The number of active tblspaces, the number of available tblspaces, and the
number of available hash buckets are also listed.

-u Option

Use the -u option to print a profile of user activity. The output described here
is provided for each user thread.

You can interpret output from onstat -u as follows:

nrows is the number of data rows used.
nextns is the number of (noncontiguous) extents allocated. This

number is not the same as the number of times that a next
extent has been allocated.

resident indicates whether tblspace is memory-resident; 1 = yes, 0= no.

address is the shared-memory address of the user thread (in the user
table). Compare this address with the addresses displayed in
the -s output (latches); the -b, -B, and -X output (buffers); and
the -k output (locks) to learn what resources this thread is
holding or waiting for.

flags gives the status of the session.
The flag codes for position 1:

B waiting on a buffer
C waiting on a checkpoint
G waiting on a write of the logical-log buffer
L waiting on a lock
S waiting on mutex
T waiting on a transaction
Y waiting on condition
X waiting on a transaction cleanup (rollback)

The flag codes for position 2:
* transaction active during an I/O failure

The flag codes for position 3:
A dbspace backup thread

See the third position of flag codes for -x option for other
values that appear here.
35-90 Administrator’s Guide for Informix Dynamic Server

onstat: Monitor Database Server Operation
The flag codes for position 4:
P primary thread for a session

The flag codes for position 5:
R Reading (RSAM call)
X Thread in critical section.

The flag codes for position 7:
B btree cleaner thread
C terminated user thread waiting for cleanup
D a daemon thread
F a page-cleaner thread
M special ON-Monitor (monitor) thread

sessid is the session identification number. During operations such as
parallel sorting and parallel index building, a session might
have many user threads associated with it. For this reason, the
session ID identifies each unique session.

user is the user login name (derived from UNIX).
tty indicates the tty that the user is using (derived from UNIX).
wait if the user thread is waiting for a specific latch or lock, this field

displays the address of the resource. Use this address to map
to information provided in the -s (latch) or -k (lock) output.

tout is the number of seconds left in the current wait. If the value is
0, the user thread is not waiting for a latch or lock. If the value
is -1, the user thread is in an indefinite wait.

locks is the number of locks that the user thread is holding. (The -k
output should include a listing for each lock held.)

nreads is the number of disk reads that the user thread has executed.
nwrites is the number of write calls that the user thread has executed.

All write calls are writes to the shared-memory buffer cache.
Utilities 35-91

onstat: Monitor Database Server Operation
Figure 35-2 shows output from onstat -u. The last line of onstat -u output
displays the maximum number of concurrent user threads that were
allocated since you initialized the database server. For example, the last line
of a sample onstat -u output is as follows:

4 active, 128 total, 17 maximum concurrent

The last part of the line, 17 maximum concurrent, indicates that the
maximum number of user threads that were running concurrently since you
initialized the database server was 17.

The number of active users and the maximum number of users allowed are
also indicated.

-x Option

The transaction information is required only for an X/Open environment or
in some situations in which the database server is participating in queries
managed by INFORMIX-STAR.

You can interpret output from onstat -x as follows:

Informix Dynamic Server Version 7.30.UC1 -- On-Line -- Up 00:50:22 -- 8896 Kbytes

Userthreads
address flags sessid user tty wait tout locks nreads nwrites
80eb8c ---P--D 0 informix - 0 0 0 33 19
80ef18 ---P--F 0 informix - 0 0 0 0 0
80f2a4 ---P--B 3 informix - 0 0 0 0 0
80f630 ---P--D 0 informix - 0 0 0 0 0
4 active, 128 total, 17 maximum concurrent

Figure 35-2
Output from

onstat -u

address is the shared-memory address of the transaction structure.
flags The flag codes for position 1:

A User thread attached to the transaction
S INFORMIX-TP/XA suspended transaction
C INFORMIX-TP/XA waiting for rollback

The flag codes for position 3:
B Begin work
P INFORMIX-STAR prepared for commit
X INFORMIX-TP/XA prepared for commit
C Committing or committed
35-92 Administrator’s Guide for Informix Dynamic Server

onstat: Monitor Database Server Operation
Figure 35-3 shows output from onstat -x. The last line of the onstat -x output
displays the maximum number of concurrent transactions since you
initialized the database server. For example, the last line of a onstat -u output
is as follows:

11 active, 128 total, 6 maximum concurrent

The last part of the line, 6 maximum concurrent, indicates that the maximum
number of transactions that were running concurrently since you initialized
the database server was 6.

R Rolling back or rolled back
H Heuristically rolling back or rolled back

The flag codes for position 5:
G Global transaction
C INFORMIX-STAR coordinator
S INFORMIX-STAR subordinate
B Both INFORMIX-STAR coordinator and

INFORMIX-STAR subordinate
userthread is the user that owns the transaction (rstcb address).
locks is the number of locks held by transaction.
log begin is the log in which begin work was logged.
isolation is the isolation level.
retrys is the attempts to start an INFORMIX-STAR recovery thread.
coordinator is the transaction coordinator when this transaction is a

subordinate.

Informix Dynamic Server Version 7.30.UC1-- On-Line -- Up 00:50:22 -- 8896 Kbytes

Transactions
address flags userthread locks log begin isolation retrys coordinator
40a7e4 A---- 406464 0 0 COMMIT 0
40a938 A---- 4067c4 0 0 COMMIT 0
40aa8c A---- 406b24 0 0 COMMIT 0
40abe0 A---- 40a124 0 0 COMMIT 0
11 active, 128 total, 6 maximum concurrent

Figure 35-3
Output from

onstat -x
Utilities 35-93

onstat: Monitor Database Server Operation
-X Option

Use the -X option to obtain precise information about the threads that are
sharing and waiting for buffers.

For each buffer in use, the -X option displays general buffer information that
is also available with either the -b or -B option. For an explanation of these
fields, refer to onstat -b.

Unique to the -X option are the sharers and waiters fields. More than one
thread can share data in a buffer. For each buffer, the sharers field lists the
addresses of all user threads sharing that buffer. During an update operation,
a thread places an exclusive lock on a buffer, and no sharing occurs. In this
situation, the waiters field lists the addresses of all user threads that are
waiting for the buffer.

The onstat -b and -B options contain a waitlist field that displays the address
of the first user thread that is waiting for the buffer. The -X option provides a
complete list of addresses for all waiting threads.

The maximum number of shared buffers is specified as BUFFERS in the
ONCONFIG file.

-z Option

Use the -z option to set the profile counts to zero.

If you use the -z option to reset and monitor the count of some fields, be
aware that profile counts are incremented for all activity that occurs in any
database that Dynamic Server manages. Any user can reset the profile counts
and thus interfere with monitoring that another user is conducting.
35-94 Administrator’s Guide for Informix Dynamic Server

ontape: Loggin
g, Archives, and Restore
ontape: Logging, Archives, and Restore
The ontape utility lets you perform several different tasks. Alternatively, you
can use ON-Bar or ON-Archive to perform these tasks. For information about
ON-Bar, see the Backup and Restore Guide. For information about ON-Archive,
see the Archive and Backup Guide.

The ontape utility lets you perform the following tasks:

■ Archive data that the database server manages

■ Change database-logging status

■ Back up logical-log files

■ Start continuous logical-log file backups

■ Restore data from an archive tape

■ Use data replication

You must be logged in as user root or user informix to execute ontape.
Utilities 35-95

ontape: Logging, Archives, and Restore
Syntax

ABG refers to your Archive and Backup Guide. Syntax for ontape options other
than -t and -l appear in that manual.

Things to Consider

If more than one tape is needed during data replication, ontape prompts for
each additional tape. Do not run ontape in background mode because you
might need to provide input from the terminal or window.

ontape Archive Dynamic Server
see ABG

Back Up Logical-Log
Files

see ABG

Start Continuous
Logical-Log Backups

see ABG

Restore Data
from Archive

see ABG

Prepare for
Data Replication

p. 35-97

Change Database-
Logging Status

see ABG
35-96 Administrator’s Guide for Informix Dynamic Server

ontape: Logging, Archives, and Restore
Exit Codes

The ontape utility has two exit codes:

Prepare for Data Replication

Use the -p and -l options to replicate data initially in a pair of database
servers that use data replication. See “Starting High-Availability Data
Replication for the First Time” on page 26-11.

0 indicates a normal exit from ontape.
1 indicates an exceptional condition.

Element Purpose Key Considerations
-l Directs ontape to perform a logical restore

on all the dbspaces that have just been
physically restored on the database server
in a data-replication pair.

Additional Information: This option rolls forward
logical-log records from the last checkpoint up to
the last available logical-log record on disk.

-p Directs ontape to perform a physical
restore of a database server.

Additional Information: This option is used
expressly for replicating data prior to initiating
the data-replication feature.

Prepare for Data
Replication

-p

-l
Utilities 35-97

36
Chapter
Message-Log Messages
How the Messages Are Ordered in This Chapter 36-3

Message Categories 36-4

Messages: A-B . 36-4

Messages: C . 36-6

Messages: D-E-F . 36-14

Messages: G-H-I . 36-19

Messages: J-K-L-M 36-20

Messages: N-O-P 36-26

Messages: Q-R-S . 36-33

Messages: T-U-V. 36-38

Messages: W-X-Y-Z 36-42

Messages: Symbols 36-43

36-2 Ad
ministrator’s Guide for Informix Dynamic Server

This chapter contains nonnumbered messages that are printed in the
Informix Dynamic Server message log. It lists the nonnumbered messages
that can appear in the message log and provides explanatory notes for the
messages. If numbered messages appear, see Informix Error Messages in
Answers OnLine to look up their explanations and corrective actions.

Of the messages included here, a few might require you to contact Informix
Technical Support staff. Such messages are rarely, if ever, seen at customer
locations.

For information on what the message log is, the location of the file where
Dynamic Server sends the messages, and some guidance on how and when
you might want to read it, see “What Is the Message Log?” on page 29-7.

For error messages that pertain to ON-Bar, see your Backup and Restore Guide.
For error messages that pertain to ON-Archive, see your Archive and Backup
Guide.

How the Messages Are Ordered in This Chapter
Database server message-log messages are arranged in this chapter in
alphabetical order, sorted with the following additional rules:

■ The time stamp that precedes each message is ignored.

■ Letter case is ignored in alphabetization.

■ Spaces are ignored.

■ Quotation marks are ignored.

■ The word the is ignored if it is the first word in the message.

■ Messages that begin with numbers or punctuation symbols appear
toward the end of the list in a special section labeled “Messages:
Symbols” on page 36-43.
Message-Log Messages 36-3

Message Categories
A cause and suggested corrective action for a message or group of messages
follows the message text.

Message Categories
Four general categories of messages can be defined, although some messages
fall into more than one category:

■ Routine information

■ Assertion-failed messages

■ Administrative action needed

■ Fatal error detected

The assertion-failed messages reflect their traditional use by Informix
technical staff to assist in troubleshooting and diagnostics. The information
that they report often falls into the category of unexpected events that might or
might not develop into problems caught by other error codes. Moreover, the
messages are terse and often extremely technical. They might report on one
or two isolated statistics without providing an overall picture of what is
happening.

When technical staff are investigating a problem, this information can
suggest to them possible research paths. However, you might find that the
information has little or no application when it is taken out of this context or
when processing is proceeding normally.

Messages: A-B
Aborting Long Transaction: tx 0xn

Cause: The transaction spans the log space specified by trans-
action high-water mark (LTXHWM), and the offending
long transaction is rolling back.

Action: No additional action is needed. The address of the
transaction structure in shared memory is displayed
as a hexadecimal value.
36-4 Administrator’s Guide for Informix Dynamic Server

Messages: A-B
Affinitied VP mm to phys proc nn

Affinity not enabled for this server

Assert Failed: Short description of what failed
Who: Description of user/session/thread running at the time
Result: State of the affected database server entity
Action: What action the database administrator should take
See Also: DUMPDIR/af.uniqid containing more diagnostics.

Begin re-creating indexes deferred during recovery.

Cause: The database server successfully bound a CPU virtual
processor to a physical processor.

Action: None required.

Cause: You tried to bind your CPU virtual processors to
physical processors, but the database server that you
are running does not support process affinity.

Action: Set AFF_NPROCS to zero, or remove the affinity setting
from VPCLASS.

Cause: This message indicates an internal error.
Action: The af.uniqid file in the directory specified by the

ONCONFIG parameter DUMPDIR contains a copy of
the assertion-failure message that was sent to the
message log, as well as the contents of the current,
relevant structures and/or data buffers. The infor-
mation included in this message is intended for
Informix Technical Support.

Contact Informix Technical Support.

Cause: During recovery, indexes to be created are deferred
until after recovery completes. This message indicates
that the database server deferred re-creating indexes
and that it is now creating the indexes. During the
time that the database server re-creates the indexes, it
locks the affected tables with a shared lock.

Action: None required.
Message-Log Messages 36-5

Messages: C
Beginning process of reverting to 5.0 disk structure...

Building ‘sysmaster’ database requires ~mm pages of logical log.
Currently there are nn pages available.
Prepare to back up your logs soon.

Building ’sysmaster’ database...

Messages: C
Cannot Allocate Physical-log File, mm wanted, nn available

Cause: The database server started reverting your disk space
to Version 5.0 format.

Action: None required.

Cause: You do not currently have the approximate amount of
free log space necessary to complete a build of the
sysmaster database.

Action: Back up your logs.

Cause: The database server is building the sysmaster
database.

Action: None required.

Cause: The database server attempted to initialize shared
memory with a physical-log size that exceeds the
amount of contiguous space available in the dbspace
(specified as PHYSDBS in ONCONFIG). Both quantities
of space, wanted and available, are expressed as
kilobytes.

Action: You must either reduce the size of the physical log
(specified as PHYSFILE in ONCONFIG) or change the
location of the physical log to a dbspace that contains
adequate contiguous space to accommodate the
physical log.
36-6 Administrator’s Guide for Informix Dynamic Server

Messages: C
Cannot change to mode.

Cannot Commit Partially Complete Transactions

Cannot create a user defined VP class with 'SINGLE_CPU_VP' non-
zero

Cause: Some error during fast or full recovery has prevented
the system from changing to on-line or quiescent
mode.

Action: See previous messages in the log file for information,
or contact Informix Technical Support.

Cause: Transactions that drop tables or indexes do not
perform the drop until a COMMIT statement is
processed (with a few exceptions). In these cases, a
beginning commit log record is written, followed by the
usual commit log record. If the database server fails in
between the two, the fast recovery process will
attempt to complete the commit the next time that you
initialize the database server.
If this completion of the commit fails, the database
server generates the preceding message.

Action: Examine the logical log as described in Chapter 37,
“Interpreting Logical-Log Records,” to determine if
you need to take action.

Cause: SINGLE_CPU_VP is set to nonzero, and onmode was
used to create a user-defined VP class.

Action: If user-defined VP classes are necessary, stop the
database server, change SINGLE_CPU_VP to zero, and
restart the database server.
Message-Log Messages 36-7

Messages: C
Cannot Open Dbspace nnn

Cannot Open Logical Log

Cannot Open Mirror Chunk pathname, errorno = nn

Cannot Open Primary Chunk pathname, errorno = nnn

Cause: The database server is unable to access the specified
dbspace. This message indicates a problem opening
the tblspace tblspace or corruption in the initial chunk
of the dbspace.

Action: Verify that the device or devices that make up the
chunks of this dbspace are functioning properly and
that you assigned them the correct operating-system
permissions (rw-rw----). You might be required to
perform a data restore.

Cause: The database server is unable to access the logical-log
files. Because the database server cannot operate
without access to the logical log, you must resolve this
problem.

Action: Verify that the chunk device where the logical-log files
reside is functioning and has the correct operating-
system permissions (rw-rw----).

Cause: The database server cannot open the mirrored chunk
of a mirrored pair. The chunk pathname and the
operating-system error are returned.

Action: See your operating-system documentation for more
information about corrective actions.

Cause: The primary chunk of a mirrored pair cannot be
opened. The chunk pathname and the operating-
system error are returned.

Action: See your operating-system documentation for more
information about corrective actions.
36-8 Administrator’s Guide for Informix Dynamic Server

Messages: C
Cannot Open Primary Chunk chunkname

Cannot Perform Checkpoint, shut system down.

Cannot Restore to Checkpoint

Cannot Rollback Incomplete Transactions

Cannot update pagezero

Cause: The initial chunk of the dbspace cannot be opened.
Action: Verify that the chunk device is running properly and

has the correct operating-system permissions
(rw-rw----).

Cause: A thread that is attempting to restore a mirrored
chunk has requested a checkpoint, but the checkpoint
cannot be performed.

Action: Shut down the database server.

Cause: The database server is unable to recover the physical
log and thus unable to perform fast recovery.

Action: If the database server does not come on-line, perform
a data restore from dbspace backup.

Cause: Within the fast-recovery or data-restore procedure, the
logical-log records are first rolled forward. Then, open
transactions that have not committed are rolled back.
An open transaction could fail during the rollback,
leaving some of the modifications from the open
transaction in place. This error does not prevent the
database server from moving to quiescent or on-line
mode, but it might indicate an inconsistent database.

Action: Examine the logical log using the onlog utility to
determine if any action is needed.

Cause: A failure occurred while the database server was
trying to rewrite a reserved page during the reversion
process.

Action: See previous messages in the log file for information,
or call Informix Technical Support.
Message-Log Messages 36-9

Messages: C
Can’t affinity VP mm to phys proc nn

shutdown

Checkpoint Completed: duration was n seconds

Checkpoint Page Write Error

Checkpoint Record Not Found in Logical Log

Cause: The database server supports process affinity, but the
system call to bind the virtual processor to a physical
processor failed.

Action: See your operating-system documentation.

Cause: A dbspace has gone down during a checkpoint
interval. The database server is configured to wait for
an override when this situation occurs.

Action: Either shutdown the database server or issue an
onmode -O command to override the down dbspace.
For more information on the onmode utility, see
“onmode: Mode and Shared-Memory Changes” on
page 35-28

Cause: A checkpoint completed successfully.
Action: None required.

Cause: The database server detected an error in an attempt to
write checkpoint information to disk.

Action: Please contact Informix Technical Support for
additional assistance in resolving this situation.

Cause: The logical log or the chunk that contains the logical
log is corrupted. The database server cannot initialize.

Action: Perform a data restore from dbspace backup.
36-10 Administrator’s Guide for Informix Dynamic Server

Messages: C
Chunk number nn pathname -- Offline

Chunk number nn pathname -- Online

Completed automatic conversion of system catalog indexes.
Run UPDATE STATISTICS to automatically convert other indexes or
drop and recreate them manually.

The chunk pathname must have READ/WRITE permissions for owner
and group.

The chunk pathname must have owner-ID and group-ID set to
informix.

Cause: The indicated chunk in a mirrored pair has been
marked with status D and taken off-line. The other
chunk in the mirrored pair is operating successfully.

Action: Take steps now to repair the chunk device and restore
the chunk. The chunk number and chunk device
pathname are displayed.

Cause: The indicated chunk in a mirrored pair has been
recovered and is on-line (marked with status O). The
chunk number and chunk device pathname are
displayed.

Action: None required.

Cause: The index-conversion process was completed success-
fully from a Version 5.0 database.

Action: Run UPDATE STATISTICS to convert other indexes
automatically, or drop and re-create them manually.

Cause: The chunk pathname does not have the correct owner
and group permissions.

Action: Make sure that you assigned the correct permissions
(-rw-rw---) to the device on which the chunk is
located.

Cause: The chunk chunkname does not have the correct owner
and group ID.

Action: Make sure the device on which the chunk is located
has the owner ID and group ID set to informix.
Message-Log Messages 36-11

Messages: C
The chunk pathname will not fit in the space specified.

The current number of primary/mirror chunks, nn, exceeds the
Version 5.0 limit.

Completed recreating indexes.

Completed partnum conversion

Continuing Long Transaction (for COMMIT): tx 0xn

Cause: The chunk pathname will not fit in the space that you
specified.

Action: Choose a smaller size for the chunk, or free space
where the chunk is to be created.

Cause: When you revert to Version 5.0, the number of chunks
in existence must be within the Version 5.0 limit.
Chunk number nn exceeds the Version 5.0 limit. This
conflict will cancel the reversion process.

Action: Meet the preceding Version 5.0 limit. Use onspaces or
ON-Monitor to drop enough chunks to meet the
Version 5.0 limit.

Cause: The database server finished recreating the deferred
indexes.

Action: None required.

Cause: The database server successfully completed the
partnum conversion process from a Version 5.0
database.

Action: None required.

Cause: The logical log has filled beyond the long-transaction
high-water mark (LTXHWM), but the offending long
transaction is in the process of committing. In this
case, the transaction is permitted to continue writing
to the logical log and is not rolled back. The address of
the transaction structure in shared memory is
displayed as hexadecimal value tx 0xn.

Action: None required.
36-12 Administrator’s Guide for Informix Dynamic Server

Messages: C
Converting indexes to 6.0 format...

Converting partnums to 6.0 format...

Could not disable priority aging: errno = nn

Could not fork a virtual processor: errno = nn

Create_vp: cannot allocate memory

Cause: The database server started converting indexes to
Version 6.0 format.

Action: None required.

Cause: The database server started converting partnums to
Version 6.0 format.

Action: None required.

Cause: While trying to disable priority aging for the CPU
virtual processor, a UNIX system call failed. The
system error number associated with the failure is
returned.

Action: See your operating-system documentation.

Cause: The fork of a virtual processor failed. The database
server returns the UNIX system error number
associated with the failure.

Action: See your operating-system documentation. Check
your operating-system kernel for the maximum
number of processes available per user and for the
system.

Cause: The database server cannot allocate new shared
memory.

Action: The database-server administrator must make more
shared memory available. This situation might require
increasing SHMTOTAL or reconfiguring the operating
system. This message is usually accompanied by other
messages that give additional information.
Message-Log Messages 36-13

Messages: D-E-F
Messages: D-E-F
dataskip is OFF for all dbspaces

dataskip is ON for all dbspaces

dataskip is ON for dbspaces: <dbspacelist>.

dataskip will be turned {ON|OFF} for <dbspacename>.

DBSPACETEMP internal list not initialized, using default

The DBspace/BLOBspace spacename is now mirrored.

Cause: Informational.
Action: None Required.

Cause: Informational.
Action: None required.

Cause: Informational; DATASKIP is ON for the specified
dbspaces.

Action: None required.

Cause: Informational; DATASKIP is ON or OFF for the
specified dbspace.

Action: None required.

Cause: An error occurred while initializing a user-specified
DBSPACETEMP list. Typically this condition is due to a
memory-allocation failure.

Action: Check for accompanying error messages.

Cause: You successfully added mirroring to the indicated
dbspace or blobspace.

Action: None required.
36-14 Administrator’s Guide for Informix Dynamic Server

Messages: D-E-F
The DBspace/BLOBspace spacename is no longer mirrored.

Dbspace dbspacename for Physical-log File not found

Dbspace dbspacename, number mm, exceeds the Version 5.0 limit
of nn.

devname: write failed, file system is full.

Cause: You have ended mirroring for the indicated dbspace
or blobspace.

Action: None required.

Cause: The dbspace dbspacename specified by the PHYSDBS
configuration parameter does not exist. As a conse-
quence, the database server cannot complete
initialization.

Action: Use a dbspace known to exist.

Cause: When you revert to Version 5.0, the number of
dbspaces in existence must be within the Version 5.0
limit. The dbspace named, with dbspace number mm,
exceeds the Version 5.0 limit of nn. This conflict will
cancel the reversion process.

Action: Drop dbspaces until the number meets the Version 5.0
limit.

Cause: The file system devname being full causes write to fail.
Action: Free some space in devname.
Message-Log Messages 36-15

Messages: D-E-F
Dropping temporary tblspace 0xn, recovering nn pages.

dynamically allocated new shared memory segment (size nnnn)

ERROR: NO "waitfor" locks in Critical Section.

Error building sysmaster database See outfile

Cause: During shared-memory initialization, the database
server routinely searches for temporary tables that are
left without proper cleanup or following an uncon-
trolled shutdown. If a temporary table is found, the
database server drops the table and recovers the
space. The database server located the specified
temporary tblspace and dropped it. The value 0xn is
the hexadecimal representation of the tblspace
number.

Action: None required.

Cause: This status message informs you that the database
server successfully allocated a new shared-memory
segment of size nnnn.

Action: None required.

Cause: The database server does not permit a thread to own
locks that might have to wait while that thread is
within a critical section. Any such lock request is
denied, and an ISAM error message is returned to the
user.

Action: The error reported is an internal error. Contact
Informix Technical Support.

Cause: Errors were encountered in building the sysmaster
database. The file outfile contains the result of running
the script buildsmi.

Action: See the file outfile.
36-16 Administrator’s Guide for Informix Dynamic Server

Messages: D-E-F
Error writing pathname errno = nn

Error writing shmem to file filename (error)
Unable to create output file filename errno=mm
Error writing filename errno=nn

Existing sysmaster database renamed to sysmaster_pre60

Cause: Cannot write to pathname. The number nn is the
number of the UNIX error returned.

Action: Investigate the cause of the UNIX error. Usually it
means that no space is available for the file. It might
also mean that the directory does not exist or that no
write permissions exist.

Cause: The database server detected an error in an attempt to
write shared memory to filename. The first message is
followed by one of the next two. Either the attempt
failed because the output file could not be created or
because the contents of shared memory could not be
written. The error refers to the UNIX operating-system
error that prompted the attempted write of shared
memory to a file. The value of nn is the operating-
system error.

Action: See your operating-system documentation.

Cause: When the database server was building the sysmaster
database, it found that a database with the name of
sysmaster already exists. The database server
renamed the database sysmaster_pre60.

Action: None required.
Message-Log Messages 36-17

Messages: D-E-F
Fatal error initializing CWD string.
Check permissions on current working directory. Group groupname
must have at least execute permission on ‘.’.

Fragments dbspacename1 dbspacename2 of table tablename set to
non-resident.

forced-resident shared memory not available

Freed mm shared-memory segment(s) nn bytes

Cause: Group groupname does not have execute permission
for the current working directory.

Action: Check permissions on the current working directory.
You or the system administrator must give your group
execute permission on the current working directory.
Retry the operation that generated this message, after
your group has been given permission.

Cause: The specified fragments of tablename either have been
set to nonresident by the SET TABLE command.

Action: None required.

Cause: The database server port for your computer does not
support forced-resident shared memory.

Action: None required.

Cause: The database server sends this message to the message
log after you run the -F option of the onmode utility to
free unused memory. The message informs you of the
number of segments and bytes that the database
server successfully freed.

Action: None required.
36-18 Administrator’s Guide for Informix Dynamic Server

Messages: G-H-I
Messages: G-H-I
gcore pid; mv core.pid dir/core.pid.ABORT

I/O function chunk mm, pagenum nn, pagecnt aa --> errno = bb

I/O error, primary/mirror Chunk pathname -- Offline (sanity)

Indexes idx1 and idx2 set to non-resident

Cause: This status message during a database server failure
provides the name and place of each core file
associated with the virtual processors.

Action: None required.

Cause: An operating-system error occurred during an
attempt to access data from disk space. The operating-
system function that failed is defined by function. The
chunk number and physical address of the page
where the error occurred are displayed as integers.The
pagecnt value refers to the number of pages that the
thread was attempting to read or write. If an errno
value is displayed, it is the number of the operating-
system error and might explain the failure. If function
is specified as bad request, some unexpected event
caused the I/O attempt on an invalid chunk or page.

Action: If the chunk status changes to D, or down, restore the
chunk from its mirror, or repair the chunk. Otherwise,
perform a data restore.

Cause: The database server detected an I/O error on a
primary or mirrored chunk with pathname. The chunk
was taken off-line.

Action: Check that the device on which the chunk was stored
is functioning as intended.

Cause: The specified indexes have been set to nonresident
through the SET TABLE statement.

Action: None required.
Message-Log Messages 36-19

Messages: J-K-L-M
Informix Dynamic Server Initialized - Complete Disk Initialized

Informix Dynamic Server Initialized - Shared Memory Initialized

Informix Dynamic Server Stopped

Internal overflow of shmid’s, increase system max shared memory
segment size.

Messages: J-K-L-M
Listener-thread err = error_number: error_message

Cause: Disk space and shared memory have been initialized.
Any databases that existed on the disk before the
initialization are now inaccessible.

Action: None required.

Cause: Shared memory has been initialized.
Action: None required.

Cause: The database server has moved from quiescent mode
to off-line mode. The database server is off-line.

Action: None required.

Cause: The database server was initializing shared memory
when it ran out of internal storage for the shmids
associated with this segment.

Action: Increase the value of your maximum kernel shared-
memory segment size, usually SHMMAX. See your
operating-system documentation for more
information.

Cause: A listener thread has encountered an error. This
message displays the error number and message text.

Action: See the Informix Error Messages manual for the cause
and corrective action.
36-20 Administrator’s Guide for Informix Dynamic Server

Messages: J-K-L-M
Lock table overflow - user id mm session id nn

Logical-log File not found

Logical Log nn Complete

Logical logging error for type:subtype in (????)

Log number nn, exceeds the Version 5.0 limit of mm.

Cause: A thread attempted to acquire a lock when no locks
were available. The user ID and session ID are
displayed.

Action: Increase the LOCKS configuration parameter, and
initialize shared memory.

Cause: The checkpoint record in the root dbspace reserved
page is corrupted.

Action: Perform a data restore from dbspace backup.

Cause: The logical-log file identified by log-ID number nn is
full. The database server automatically switches to the
next logical-log file in the sequence.

Action: None required.

Description: The log record that caused the error is identified as
follows:

type is the logical-log record type.
subtype is the logging subsystem (OLDRSAM,

RSAM).
???? is the name of an internal function that

indicates what system failed to log.
Cause: Logging failure.
Action: Contact Informix Technical Support.

Cause: When you revert to Version 5.0, the number of logs in
existence must be within the Version 5.0 limit. Log
number nn exceeds the Version 5.0 limit of mm. This
conflict will cancel the reversion process.

Action: Meet the Version 5.0 limit.
Message-Log Messages 36-21

Messages: J-K-L-M
Log Record: log = ll, pos = 0xn, type = type:subtype(snum),
trans = xx

Log record (type:subtype) at log nn, 0xn was not undone

Description: The log record that caused the error is identified as
follows:

ll is the logical-log log ID where the
record is stored.

0xn is the hexadecimal address position
within the log.

type is the logical-log record type.
subtype is the logging subsystem (OLDRSAM,

RSAM).
snum is the subsystem number.
xx is the transaction number that appears

in the logical log.
Cause: The database server detected an error during the

rollforward portion of fast recovery or logical-log
restore.

Action: Contact Informix Technical Support.

Description: The log record that caused the error is identified as
follows:

type is the logical-log record type.
subtype is the logging subsystem (OLDRSAM,

RSAM).
nn is the logical-log log ID where the

record is stored.
0xn is the hexadecimal address position

within the log.
Cause: A log undo failed because a log is corrupt.
Action: Examine the logical log using the onlog utility to

determine if any action is needed. Contact Informix
Technical Support.
36-22 Administrator’s Guide for Informix Dynamic Server

Messages: J-K-L-M
Log record (type:subtype) failed, partnum pnum row rid iserrno
num

Log record (type:subtype) in log nn, offset 0xn was not rolled
back

Description: The log record that caused the error is identified as
follows:

type is the logical-log record type.
subtype is the logging subsystem (OLDRSAM,

RSAM).
pnum is the part number.
rid is the row id.
num is the iserror number.

Cause: A logging failure occurred.
Action: Contact Informix Technical Support.

Description: The log record that caused the error is identified as
follows:

type is the logical-log record type.
subtype is the logging subsystem (OLDRSAM,

RSAM).
log is the logical-log log ID where the

record is stored.
offset is the hexadecimal address position

within the log.
Cause: A log undo failed because a log is corrupt.
Action: Examine the logical log using the onlog utility to

determine if any action is needed. Contact Informix
Technical Support.
Message-Log Messages 36-23

Messages: J-K-L-M
Logical Recovery allocating nn worker threads thread_type.

Logical Recovery Started

Memory allocation error.

Mirror Chunk chunkname added to space spacename. Perform manual
recovery.

Cause: The database server determined the number of
worker threads that will be used for parallel recovery.
The variable thread_type can assume the values
ON_RECVRY_THREADS or OFF_RECVRY_THREADS.

Action: This message is a status message. No action is
required. If you want a different number of worker
threads allocated for parallel recovery, change the
value of the ONCONFIG configuration parameter
ON_RECVRY_THREADS or OFF_RECVRY_THREADS.

Cause: Logical recovery began.
Action: This message is a status message. No action is

required.

Cause: This error could be caused by either not enough main
(OS) memory or not enough internal (database server)
memory.

Action: See your operating-system documentation for infor-
mation on how to increase OS memory. Alternatively,
increase the virtual-memory size (SHMVIRTSIZE), the
size of the added segments, (SHMADD) or your total
shared-memory size (SHMTOTAL).

Cause: Fast recovery, full recovery, or an HDR secondary has
recovered the add of a mirror chunk. It does not
perform automatic mirror recovery, however. The
administrator must do this.

Action: Attempt to recover the mirror chunks using either the
onspaces utility or ON-Monitor.
36-24 Administrator’s Guide for Informix Dynamic Server

Messages: J-K-L-M
Mixed transaction result. (pid=nn user=userid)

mt_shm_free_pool: pool 0xn has blocks still used (id nn)

mt_shm_init: can’t create resident/virtual segment

Cause: You receive this message only when more than one
database server is involved in a transaction. This
message indicates that a database server, after
preparing a transaction for commit, heuristically
rolled back the transaction, and the global transaction
completed inconsistently. The pid value is the user-
process identification number of the coordinator
process. The value of user is the user ID associated
with the coordinator process.

Action: See Chapter 31, “Recovering Manually from Failed
Two-Phase Commit.”

Cause: An internal error occurred during a pool deallocation
because blocks are still associated with the pool.

Action: Contact Informix Technical Support.

Cause: The causes for the failure to create the resident or
virtual segment are as follows: (1) the segment size is
less than the minimum segment size; (2) the segment
size is larger than the maximum segment size; (3)
allocating another segment would exceed the
allowable total shared-memory size; or (4) a failure
occurred while trying to allocate the segment.

Action: If you suspect that this error was generated because of
item 1 or 2 in the preceding paragraph, contact
Informix Technical Support. To correct item 3, increase
the SHMTOTAL value in your ONCONFIG configu-
ration file. See your logical-log file for additional
information about errors generated because of item 4.
Message-Log Messages 36-25

Messages: N-O-P
mt_shm_remove: WARNING: may not have removed all/correct
segments

Messages: N-O-P
Not enough main memory

Not enough Logical-log files, Increase LOGFILES

The number of configured CPU poll threads exceeds NUMCPUVPS.

Cause: While removing the shared-memory segments
associated with the database server, the last segment
removed does not equal the last segment registered
internally. This situation is probably due to the
unexpected failure of the database server.

Action: Remove any segments that were not cleaned up.

Cause: The database server detected an error in an attempt to
acquire more memory space from the operating
system.

Action: See your operating-system documentation for more
information about shmget().

Cause: During a data restore, the value of the LOGFILES
configuration must always be greater than or equal to
the total number of logical-log files. At some point
during the restore, the number of logical-log files
exceeded the value of LOGFILES.

Action: Increase the value of LOGFILES in ONCONFIG.

Cause: The number of in-line poll threads that you specified
in the ONCONFIG configuration file exceeds the
number of CPU virtual processors.

Action: Reduce the number of in-line poll threads to be less
than or equal to the number of CPU virtual processors.
36-26 Administrator’s Guide for Informix Dynamic Server

Messages: N-O-P
onconfig parameter parameter modified from old_value to
new_value

oninit: Cannot have SINGLE_CPU_VP non-zero and number of CPU VPs
greater than 1.

oninit: Cannot have SINGLE_CPU_VP non-zero and user-defined VP
classes.

oninit: Cannot mix VPCLASS cpu and NUMCPUVPS, AFF_SPROC,
AFF_NPROCS, or NOAGE parameters

Cause: When the database server shared memory is reini-
tialized, this message documents any changes that
occurred since the last initialization.

Action: None required.

Cause: The ONCONFIG file contains VPCLASS cpu with a num=
value greater than 1, and a nonzero value for
SINGLE_CPU_VP. SINGLE_CPU_VP must be 0 (or
omitted) when there are more than 1 CPU VPs.

Action: Correct the ONCONFIG file and restart the database
server.

Cause: The ONCONFIG file contains a user-defined VPCLASS
as well as a nonzero value for SINGLE_CPU_VP.
SINGLE_CPU_VP must be 0 (or omitted) when the
ONCONFIG file contains a user-defined VPCLASS.

Action: Correct the ONCONFIG file and restart the database
server.

Cause: The ONCONFIG file contains both VPCLASS cpu and
one or more of the other listed parameters. It cannot
contain both.

Action: Correct the ONCONFIG file and restart the database
server.
Message-Log Messages 36-27

Messages: N-O-P
oninit: Cannot mix VPCLASS aio and NUMAIOVPS parameters.

oninit: Fatal error in initializing ASF with ‘ASF_INIT_DATA’
flags asfcode = ‘25507’

oninit: invalid or missing name for Subsystem Staging Blobspace.

oninit: Too many VPCLASS parameters specified.

Cause: The ONCONFIG file contains both VPCLASS aio and
NUMAIOVPS. It cannot contain both.

Action: Correct the ONCONFIG file and restart the database
server.

Cause: The nettype specified in the sqlhosts file for the
database server is invalid or unsupported, or the
servicename specified in the sqlhosts file for the
database server is invalid.

Action: Check the nettype and servicename values in the
sqlhosts file for each DBSERVERNAME and for the
DBSERVERALIASES. Check the nettype value in each
NETTYPE parameter in the ONCONFIG file.

Cause: You set the configuration parameter STAGEBLOB to a
blobspace that does not exist.

Action: Use the -d option of onspaces to create the blobspace
specified in STAGEBLOB, and restart the database
server.

Cause: Too many VPCLASS parameter lines have been
specified in the ONCONFIG file.

Action: Reduce the number of VPCLASS lines, if possible. If not
possible, contact technical support.
36-28 Administrator’s Guide for Informix Dynamic Server

Messages: N-O-P
oninit: VPCLASS classname bad affinity specification

oninit: VPCLASS classname duplicate class name.

oninit: VPCLASS classname illegal option

oninit: VPCLASS classname maximum number of VPs is out of the
range 0-10000.

oninit: VPCLASS classname name is too long. Maximum length is
maxlength.

Cause: The affinity specification for the VPCLASS line is
incorrect. Affinity is specified as a range:

m use processor m.
m-n use processors in the range m to n inclusive,
where m <= n, m >= 0, and n >= 0.

Action: Correct the VPCLASS parameter in the ONCONFIG file
and restart the database server.

Cause: The VPCLASS classname in the ONCONFIG file has a
duplicate name. VP class names must be unique.

Action: Correct the duplicate name and restart the database
server.

Cause: One of the fields in the VPCLASS classname parameter
is illegal.

Action: Correct the parameter in the ONCONFIG file and
restart the database server.

Cause: The maximum number of VPs specified by a VPCLASS
parameter line must be in the range 1 to 10,000.

Action: Correct the value and restart the database server.

Cause: The length of the name field in VPCLASS classname is
too long.

Action: Choose a shorter class name, correct the ONCONFIG
file, and restart the database server.
Message-Log Messages 36-29

Messages: N-O-P
oninit: VPCLASS classname number of VPs is greater than the
maximum specified

oninit: VPCLASS classname number of VPs is out of the range
0-10000.

onmode: VPCLASS classname name is too long. Maximum length is
maxlength.

Optical Subsystem is running.

Optical Subsystem is not running.

Cause: The initial number of VPs specified by a VPCLASS
parameter is greater than the maximum specified by
the same VPCLASS parameter.

Action: Correct the VPCLASS parameter and restart the database
server.

Cause: The initial number of VPs specified by a VPCLASS
parameter line must be in the range 1 to 10,000.

Action: Correct the value and restart the database server.

Cause: The name of a dynamically added VP class specified
by onmode -p is too long.

Action: Pick a shorter name, and retry the onmode -p
command.

Cause: You have set the value of the STAGEBLOB parameter in
the configuration file, and the database server is
communicating properly with the optical-storage
subsystem.

Action: None required.

Cause: You have set the value of the STAGEBLOB parameter in
the configuration file, but the database server cannot
detect the existence of the optical-storage subsystem.

Action: Check that the optical subsystem is on-line.
36-30 Administrator’s Guide for Informix Dynamic Server

Messages: N-O-P
Optical Subsystem STARTUP Error.

On-Line Mode.

onspaces: unable to reset dataskip

Open transaction detected when changing log versions.

out of message shared memory

Cause: The database server detects that the optical-storage
subsystem is running, but the database server cannot
communicate with it properly.

Action: Check your optical subsystem for errors.

Cause: The database server is in on-line mode. Users can
access all databases

Action: This is a status message. No action is required.

Cause: This error message comes from the onspaces utility.
For some reason, the utility cannot change the specifi-
cation of DATASKIP (ON or OFF) across all dbspaces in
the database server instance.

Action: You are unlikely to receive this message. If the error
persists after you restart the database server, contact
Informix Technical Support.

Cause: The database server detected an open transaction
while it was trying to convert the data from a previous
version of the database server.

Action: Conversion is not allowed unless the last record in the
log is a checkpoint. You must restore the previous
version of the database server, force a checkpoint, and
then retry conversion.

Cause: Could not allocate more memory for the specified
segment.

Action: See the log file for additional information.
Message-Log Messages 36-31

Messages: N-O-P
out of resident shared memory

out of virtual shared memory

PANIC: Attempting to bring system down

Participant site database_server heuristically rolled back

Possible mixed transaction result.

Cause: Could not allocate more memory for the specified
segment.

Action: See the log file for additional information.

Cause: Could not allocate more memory for the specified
segment.

Action: See the log file for additional information.

Cause: A fatal database server error occurred.
Action: See the error that caused the panic and attempt the

corrective action suggested by the error message.
Refer also to other messages in the message-log file for
additional information that might explain the failure.

Cause: A remote site rolled back a transaction after it reached
the prepared-for-commit phase.

Action: You might need to roll back the transaction on other
sites and then restart it.

Cause: This message indicates that error -716 has been
returned. Associated with this message is a list of the
database servers where the result of a transaction is
unknown.

Action: See “Determine If a Transaction Was Implemented
Inconsistently” on page 31-4.
36-32 Administrator’s Guide for Informix Dynamic Server

Messages: Q-R-S
Prepared participant site server_name did not respond

Prepared participant site server_name not responding

Messages: Q-R-S
Quiescent Mode

Recovery Mode

Reversion cancelled

Cause: Too many attempts were made to contact remote site
server_name. After several timeout intervals were met,
the site was determined to be down.

Action: Verify that the remote site is on-line and that it is
correctly configured for distributed transactions. Once
the remote site is ready, reinitiate the transaction.

Cause: The database server is attempting to contact remote
site server_name. For some unknown reason, the
database server cannot contact the remote site.

Action: Verify that the remote site is on-line and that it is
correctly configured for distributed transactions.

Cause: The database server has entered quiescent mode from
some other state. Only users logged in as informix or
as root can interact with the database server. No user
can access a database.

Action: None required.

Cause: The database server entered the recovery mode. No
user can access a database until recovery is complete.

Action: None required.

Cause: Errors encountered caused the reversion process to be
cancelled.

Action: Correct the cause of the errors, and restart reversion.
Message-Log Messages 36-33

Messages: Q-R-S
Reversion complete

Recreating index: 'dbsname:"owner".tabname-idxname'

Rollforward of log record failed, iserrno = nn

scan_logundo: subsys ss, type tt, iserrno ee

Cause: The reversion process was completed successfully.
Action: None required.

Cause: This message indicates which index is currently being
re-created.

Action: None required.

Cause: The message appears if, during fast recovery or a data
restore, the database server cannot roll forward a
specific logical-log record.The database server might
be able to change to quiescent or on-line mode, but
some inconsistency could result. See the message that
immediately precedes this one for further infor-
mation. The iserrno value is the RSAM error number.

Action: Contact Informix Technical Support.

Description: The variables in this message have the following
values:

ss is the logical-log record type.
tt is the logical-log record type.
ee is the iserror number.

Cause: A log undo failed because log type tt is corrupt.
Action: Examine the logical log using the onlog utility to

determine if any action is needed. Contact Informix
Technical Support.
36-34 Administrator’s Guide for Informix Dynamic Server

Messages: Q-R-S
Session completed abnormally. Committing tx id 0xm, flags 0xn

Session completed abnormally. Rolling back tx id 0xm, flags 0xn

semctl: errno = nn

semget: errno = nn

Cause: Abnormal session completion occurs only when the
database server is attempting to commit a transaction
that has no current owner, and the transaction
develops into a long transaction.The database server
forked a thread to complete the commit.

Action: None required.

Cause: Abnormal session completion occurs only when the
database server is attempting to commit a distributed
transaction that has no current owner, and the trans-
action develops into a long transaction.The database
server forked a thread that rolled back the transaction.

Action: None required.

Cause: While initializing a semaphore, an error occurred. The
UNIX operating-system error is returned.

Action: See your operating-system documentation.

Cause: An allocation of a semaphore set failed. The UNIX
operating-system error is returned.

Action: See your operating-system documentation.
Message-Log Messages 36-35

Messages: Q-R-S
shmat: some_string os_errno: os_err_text

shmctl: errno = nn

shmdt: errno = nn

shmem sent to filename

shmget: some_str os_errno: key shmkey: some_string

Cause: An attempt to attach to a shared-memory segment
failed. The system error number and the suggested
corrective action are returned.

Action: Review the corrective action (if given), and determine
if it is reasonable to try. Also consult your operating-
system documentation for more information.

Cause: An error occurred while the database server tried to
remove or lock a shared-memory segment. The UNIX
operating-system error number is returned.

Action: See your operating-system documentation.

Cause: An error occurred while the database server was
trying to detach from a shared-memory segment. The
UNIX operating-system error number is returned.

Action: See your operating-system documentation.

Cause: The database server wrote a copy of shared memory to
the specified file as a consequence of an assertion
failure.

Action: None.

Cause: Either the creation of a shared-memory segment failed
or an attempt to get the shmid associated with a
certain key failed. The system error number and the
suggested corrective action are returned.

Action: Consult your operating-system documentation.
36-36 Administrator’s Guide for Informix Dynamic Server

Messages: Q-R-S
Shutdown Mode

Space spacename -- Recovery Begins(addr)

Space spacename -- Recovery Complete(addr)

Cause: The database server is in the process of moving from
on-line mode to quiescent mode.

Action: None required.

Description: The variables in this message have the following
values:

spacename is the name of the dbspace or
blobspace that the database server is
recovering.

addr is the address of the RSAM control
block.

Cause: This informational message indicates that the
database server is attempting to recover the space.

Action: None required.

Description: The variables in this message have the following
values:

spacename is the name of the dbspace or
blobspace that the database server
has recovered.

addr is the address of the RSAM control
block.

Cause: This informational message indicates that the
database server recovered the space.

Action: None required.
Message-Log Messages 36-37

Messages: T-U-V
Space spacename -- Recovery Failed(addr)

sysmaster database built successfully

Messages: T-U-V
Table tablename set to resident

Table tablename and all its indexes set to resident

Description: The variables in this message have the following
values:

spacename is the name of the dbspace or
blobspace that the database server
failed to recover.

addr is the address of the RSAM control
block.

Cause: This informational message indicates that the
database server was unable to recover the space.

Action: None required.

Cause: The database server successfully built the sysmaster
database.

Action: None required.

Cause: The indicated table has been made resident by the SET
TABLE statement.

Action: None required.

Cause: The indicated table and all its indexes have been made
resident by the SET TABLE statement.

Action: None required.
36-38 Administrator’s Guide for Informix Dynamic Server

Messages: T-U-V
The following tables have outstanding old version data
pages due to an In-Place Alter Table. Perform
UPDATE table-name SET column = column WHERE 1=1;
to clear these pages from the following tables.

TIMER VP: Could not redirect I/O in initialization, errno = nn

Too Many Active Transactions.

Transaction Not Found

Cause: Reversion to a previous version of the database server
has been attempted while an in-place ALTER TABLE is
in progress. The previous versions of the database
server are unable to handle tables that have multiple
schemas of rows in them.

Action: Force any in-place alters to complete by updating the
rows in the affected tables before you attempt to revert
to a previous version of the database server. To do this,
create a dummy update in which a column in the table
is set to its own value, forcing the row to be updated
to the latest schema in the process without actually
changing column values. Rows are always altered to
the latest schema, so a single pass through the table
that updates all rows will complete all outstanding in-
place alters.

Cause: Could not open /dev/null or duplicate the file
descriptor associated with the opening of /dev/null.
The system error number is returned.

Action: See your operating-system documentation.

Cause: During a data restore, there were too many active
transactions. At some point during the restore, the
number of active transactions exceeded 32 kilobytes.

Action: None.

Cause: The logical log is corrupt. This situation can occur
when a new transaction is started, but the first logical-
log record for the transaction is not a BEGWORK
record.

Action: Contact Informix Technical Support.
Message-Log Messages 36-39

Messages: T-U-V
Transaction heuristically rolled back

Transaction table overflow - user id nn, process id nn

Unable to create output file filename errno = nn

Unable to extend nn reserved pages for purpose in root chunk.

Unable to initiate communications with the Optical Subsystem.

Cause: A heuristic decision occurred to roll back a transaction
after it completed the first phase of a two-phase
commit.

Action: None required.

Cause: A thread attempted to allocate an entry in the trans-
action table when no entries in the shared-memory
table were available. The user ID and process ID of the
requesting thread are displayed.

Action: Try again later.

Cause: Cannot create output file filename. The errno value is
the number of the UNIX error returned.

Action: Verify that the directory exists and has write
permissions.

Cause: Cannot extend to nn reserved pages for purpose in root
chunk. (The value purpose can be either Check-
point/Log, DBSpace, Chunk, or Mirror Chunk).

Action: Reduce the ONCONFIG parameter for the resource
cited; bring the database server up and free some
space in the primary root chunk. Then reattempt the
same operation.

Cause: The optical driver supplied by the optical-drive
vendor has indicated that drive is not accessible.

Action: Check driver installation and cabling between the
computer and the drive.
36-40 Administrator’s Guide for Informix Dynamic Server

Messages: T-U-V
Unable to start SQL engine

Unable to open tblspace nn, iserrno = nn

Virtual processor limit exceeded

VPCLASS classname name is too long. Maximum length is maxlength.

VPCLASS classname duplicate class name.

Cause: The database server encountered an out-of-memory
condition.

Action: No action is necessary.

Cause: The database server cannot open the specified
tblspace. (The value nn is the hexadecimal represen-
tation of the tblspace number.)

Action: See the ISAM error message number nn, which should
explain why the tblspace cannot be accessed. The error
message is contained in Informix Error Messages in
Answers OnLine.

Cause: You configured the database server with more than
the maximum number of virtual processors allowed
(1000).

Action: To reduce the number of virtual processors, decrease
the values of VPCLASS, NUMCPUVPS, NUMAIOVPS, or
NETTYPE in your ONCONFIG file.

Cause: Indicates an internal error.
Action: Contact Informix Technical Support.

Cause: Indicates an internal error.
Action: Contact Informix Technical Support.
Message-Log Messages 36-41

Messages: W-X-Y-Z
VPCLASS classname Not enough physical procs for affinity

Messages: W-X-Y-Z
WARNING: aio_wait: errno = nn

WARNING: Buffer pool size may cause Dynamic Server to get into
a locked state. Recommended minimum buffer pool size is num
times maximum concurrent user threads.

warning: chunk timestamps are invalid.

Cause: The physical processors in the affinity specification for
the VP class classname do not exist or are off-line. The
problem might be with the VPCLASS parameter for
cpu class VPs or with the AFF_SPROC and
AFF_NPROCS parameters.

Action: Make sure the named processors are on-line. Correct
the affinity specification for the named VP class.
Restart the database server.

Cause: While the database server was waiting for an I/O
request to complete, it generated error number nn on
an operation that it was attempting to execute.

Action: Contact Informix Technical Support for assistance.

Cause: There are not enough buffers in the buffer pool.The
database server could use all available buffers and
cause a deadlock to occur.

Action: Change the BUFFERS parameter in the ONCONFIG file
to the number that this message recommends. For
more information on the BUFFERS parameter, see
“BUFFERS” on page 33-12.

Cause: A sanity check is performed on chunks when they are
first opened at system initialization. The chunk
specified did not pass the check and will be brought
off-line.

Action: Restore the chunk from a dbspace backup or its mirror.
36-42 Administrator’s Guide for Informix Dynamic Server

Messages: Symbols
Warning: unable to allocate requested big buffer of size nn

You must drop the database before reversion can complete.

You must turn off data replication before reversion can
complete.

Messages: Symbols
... dropping sysmaster database

... reverting indexes

... reverting reserved pages

Cause: The internal memory allocation for a big buffer failed.
Action: Increase either virtual memory size (SHMVIRTSIZE),

the size of the added segments (SHMADD), or your
total shared-memory size (SHMTOTAL).

Cause: NLS or GLS enabled databases are not supported by
Version 5.0.

Action: Drop the NLS or GLS databases, and start reversion.

Cause: Data replication is not supported in Version 5.0. Also,
the operations that occur during reversion do not
work with data replication.

Action: Turn off data replication, and restart reversion.

Cause: Dropping sysmaster database during the reversion
process.

Action: None.

Cause: Reverting indexes back to pre-6.0 format.
Action: None.

Cause: Reverting reserved pages.
Action: None.
Message-Log Messages 36-43

Messages: Symbols
... reverting tables that underwent In-Place Alter

HH:MM:SS Informix Dynamic Server Version R.VV.PPPPP Software
Serial Number RDS#XYYYYYY

argument: invalid argument

function_name: cannot allocate memory

Cause: Reverting tables that underwent in-place alter.
Action: None.

Cause: Startup of the database server, after the initialization
of shared memory.

Action: None.

Cause: This internal error indicates that an invalid argument
was passed to an internal Informix routine.

Action: Contact Informix Technical Support.

Cause: Could not allocate memory from internal shared-
memory pool.

Action: Increase either virtual-memory size (SHMVIRTSIZE),
the size of the added segments (SHMADD), or your
total shared-memory size (SHMTOTAL).
36-44 Administrator’s Guide for Informix Dynamic Server

37
Chapter
Interpreting Logical-Log
Records
Reading Logical-Log Records 37-3
Transactions That Drop a Table or Index 37-4
Transactions That Are Rolled Back 37-4
Checkpoints with Active Transactions 37-5
Distributed Transactions 37-5

Logical-Log Record Structure 37-6
Logical-Log Record Header 37-6
Logical-Log Record Types and Additional Columns 37-7

37-2 Ad
ministrator’s Guide for Informix Dynamic Server

The onlog utility and the ON-Archive command LIST/LOGRECORDS
display the logical-log records that the logical-log files contain. For infor-
mation about onlog, see “onlog: Display Logical-Log Contents” on
page 35-23. For information about ON-Archive, see your Archive and Backup
Guide.

This chapter provides the following information:

■ Brief guidance on reading logical-log records

■ A listing of the different logical-log record types

In general, you do not need to read and interpret your logical-log files.
However, onlog output is useful in debugging situations. For example, you
might want to use onlog to track a specific transaction or to see what changes
the database server made to a specific tblspace. You can also use onlog to
investigate the cause of an error that occurs during a rollforward. For more
information about the specific instances in which you can use onlog, see
Chapter 35, “Utilities.”

Reading Logical-Log Records
Most SQL statements generate multiple logical-log records. Interpreting
logical-log records is more complicated when the database server records the
following events in the logical log:

■ A transaction that drops a table or index

■ A transaction that rolls back

■ A checkpoint in which transactions are still active

■ A distributed transaction

The logical-log records for these events are discussed briefly in the following
sections.
Interpreting Logical-Log Records 37-3

Transactions That Drop a Table or Index
Transactions That Drop a Table or Index
Once the database server drops a table or index from a database, it cannot roll
back that drop operation. If a transaction contains a DROP TABLE or DROP
INDEX statement, the database server handles this transaction as follows:

1. The database server completes all the other parts of the transaction
and writes the relevant logical-log records.

2. The database server writes a BEGCOM record to the logical log and
the records associated with the DROP TABLE or DROP INDEX
(DINDEX, for example).

3. The database server writes a COMMIT record.

If the transaction is terminated unexpectedly after the database server writes
the BEGCOM record to the logical log, the database server rolls forward this
transaction during recovery because the drop operation cannot be rolled
back.

Transactions That Are Rolled Back
When a rollback occurs, the database server generates a compensation-log
record (CLR) for each record in the logical log that is rolled back. The database
server uses the CLRs if a system failure takes place during a rollback. The CLRs
provide the database server with information on how far the rollback
progressed before the failure occurred. In other words, the database server
uses the CLRs to log the rollback.

If the phrase includes next record is contained in a CLR, the next log
record that is printed is included within the CLR log record as the compen-
sating operation. Otherwise, you must assume that the compensating
operation is the logical undo of the log record to which the link field of the
CLR points.
37-4 Administrator’s Guide for Informix Dynamic Server

Checkpoints with Active Transactions
Checkpoints with Active Transactions
If any transactions are active at the time of a checkpoint, checkpoint records
include subentries that describe each of the active transactions using the
following columns:

■ Log begin (decimal format)

■ Transaction ID (decimal format)

■ Unique log number (decimal format)

■ Log position (hexadecimal format)

■ User name

Distributed Transactions
When distributed transactions (transactions that span multiple database
servers) generate log records, they are slightly different than nondistributed
transactions. You might need to read and interpret them to determine the
state of the transaction on both database servers if a failure occurs as a
transaction was committing.

The following log records are involved in distributed transactions:

■ BEGPREP

■ PREPARE

■ TABLOCKS

■ HEURTX

■ ENDTRANS

For more information about this type of logical-log record, see “Two-Phase
Commit and Logical-Log Records” on page 30-30.

If you are performing distributed transactions with INFORMIX-TP/XA, the
database server uses a XAPREPARE record instead of a PREPARE record.
Interpreting Logical-Log Records 37-5

Logical-Log Record Structure
Logical-Log Record Structure
Each logical-log record has header information. Depending on the record
type, additional columns of information also appear in the output, as
explained in “Logical-Log Record Types and Additional Columns” on
page 37-7.

Logical-Log Record Header
Figure 37-1 contains sample output that illustrates the header columns that
display for a logical-log record.

Figure 37-1
Sample Output from onlog

addr len type xid id link

2c018 32 BEGIN 6 3 0

2c038 140 HDELETE 6 0 2c018

2c0c4 64 DELITEM 6 0 2c038

2c104 40 DELITEM 6 0 2c0c4

2c12c 72 HDELETE 6 0 2c104

2c174 44 DELITEM 6 0 2c12c

2c1a0 72 HDELETE 6 0 2c174

2c1e8 44 DELITEM 6 0 2c1a0

2c214 64 HDELETE 6 0 2c1e8

2c254 56 DELITEM 6 0 2c214

2c28c 48 DELITEM 6 0 2c254

2c2bc 24 PERASE 6 0 2c28c

2c2d4 20 BEGCOM 6 0 2c2bc

 (1 of 2)
37-6 Administrator’s Guide for Informix Dynamic Server

Logical-Log Record Types and Additional Columns
Figure 37-2 defines the contents of each header column.

Figure 37-2
Definition of onlog Header Columns

Logical-Log Record Types and Additional Columns
In addition to the six header columns that display for every record, some
record types display additional columns of information. The information that
is displayed varies, depending on record type. Figure 37-3 on page 37-8 lists
all the record types and their additional columns.

The Action column indicates the type of database server action that
generated the log entry. The Additional Columns and Format columns
describe what is displayed for each record type in addition to the header
described in “Logical-Log Record Header” on page 37-6.

2c2e8 24 ERASE 6 0 2c2d4

2c300 28 CHFREE 6 0 2c2e8

2c31c 24 COMMIT 6 0 2c300

Header Field Contents Format

addr Log-record address Hexadecimal

len Record length Decimal

type Record-type name ASCII

xid Transaction number Decimal

id Logical-log number Decimal

link Link to the previous record in the transaction Hexadecimal

addr len type xid id link

 (2 of 2)
Interpreting Logical-Log Records 37-7

Logical-Log Record Types and Additional Columns
Figure 37-3
Logical-Log Record Types

Record Type Action Additional Columns Format

ADDCHK Add chunk. chunk number

chunk name

decimal

ASCII

ADDDBS Add dbspace. dbspace name ASCII

ADDITEM Add item to index. tblspace ID

rowid

logical page

key number

key length

hexadecimal

hexadecimal

decimal

decimal

decimal

ADDLOG Add log. log number

log size (pages)

pageno

decimal

decimal

hexadecimal

ALTERDONE Alter of fragment complete tblspace ID

physical page
number previous
page

logical page number

version of alter

hexadecimal

hexadecimal

decimal

decimal

BADIDX Bad index. tblspace ID hexadecimal

BEGCOM Begin commit. (none) (none)

BEGIN Begin work. date

time

PID

user

decimal

decimal

decimal

ASCII

BEGPREP Written by the coordinator
database server to record
the start of the two-phase
commit protocol.

flags

no. of participants

decimal
(value is 0 in
a distributed
transaction)

decimal

 (1 of 13)
37-8 Administrator’s Guide for Informix Dynamic Server

Logical-Log Record Types and Additional Columns
BFRMAP Blob free-map change. tblspace ID

bpageno

status

log ID

prev page

hexadecimal

hexadecimal

USED/FREE

decimal

hexadecimal

BLDCL Build tblspace. tblspace ID

fextsize

nextsize

row size

ncolumns

table name

hexadecimal

decimal

decimal

decimal

decimal

ASCII

BMAPFULL Bitmap modified to
prepare for alter.

tblspace ID

bitmap page num

hexadecimal

decimal

BMAP2TO4 2-bit bitmap altered to two
4-bit bitmaps.

tblspace ID

2-bit bitmap page
number

flags

hexadecimal

decimal

decimal

BSPADD Add blobspace. blobspace name ASCII

BTCPYBCK Copy back child key to
parent.

tblspace ID

parent logical page

child logical page

slot

rowoff

key number

hexadecimal

decimal

decimal

decimal

decimal

decimal

Record Type Action Additional Columns Format

 (2 of 13)
Interpreting Logical-Log Records 37-9

Logical-Log Record Types and Additional Columns
BTMERGE Merge B-tree nodes. tblspace ID

parent logical page

left logical page

right logical page

left slot

left rowoff

right slot

right rowoff

key number

hexadecimal

decimal

decimal

decimal

decimal

decimal

decimal

decimal

decimal

BTSHUFFL Shuffle B-tree nodes. tblspace ID

parent logical page

left logical page

right logical page

left slot

left rowoff

key number

flags

hexadecimal

decimal

decimal

decimal

decimal

decimal

decimal

hexadecimal

BTSPLIT Split B-tree node. tblspace ID

rowid

parent logical page

left logical page

right logical page

infinity logical page

rootleft logical page

midsplit

key number

key length

hexadecimal

hexadecimal

decimal

decimal

decimal

decimal

decimal

decimal

decimal

decimal

CHALLOC Chunk extent allocation. pageno

size

hexadecimal

hexadecimal

CHCOMBINE Chunk extent combine. pageno hexadecimal

Record Type Action Additional Columns Format

 (3 of 13)
37-10 Administrator’s Guide for Informix Dynamic Server

Logical-Log Record Types and Additional Columns
CHFREE Chunk extent free. pageno

size

hexadecimal

hexadecimal

CHPHYLOG Change physical-log
location.

pageno

size in kilobytes

dbspace name

hexadecimal

hexadecimal

ASCII

CHSPLIT Chunk extent split. pageno hexadecimal

CINDEX Create index. tblspace ID

low rowid

high rowid

index descriptor

hexadecimal

decimal

decimal

CKPOINT Checkpoint. max users

number of
active transactions

decimal

decimal

CLR Compensation-log record;
part of a rollback.

(none) (none)

CLUSIDX Create clustered index. tblspace ID

key number

hexadecimal

decimal

COLREPAI Adjustment of BYTE, TEXT,
or VARCHAR column.

tblspace ID

no. of columns
adjusted

hexadecimal

decimal

COMMIT Commit work. date

time

decimal

decimal

CREATE Creation of smart large
object.

smart large object ID,

number of extents in
lomaphdr

hexadecimal

decimal

DELETE Delete before-image. tblspace ID

rowid

hexadecimal

hexadecimal

Record Type Action Additional Columns Format

 (4 of 13)
Interpreting Logical-Log Records 37-11

Logical-Log Record Types and Additional Columns
DELITEM Delete item from index. tblspace ID

rowid

logical page

key number

key length

hexadecimal

hexadecimal

decimal

decimal

decimal

DERASE Drop partition in down
dbspace.

tblspace ID

lockid

hexadecimal

hexadecimal

DINDEX Drop index. tblspace ID

key number

hexadecimal

decimal

DRPBSP Drop blobspace. blobspace name ASCII

DRPCHK Drop chunk. chunk number

chunk name

decimal

ASCII

DRPDBS Drop dbspace. dbspace name ASCII

DRPLOG Drop log. log number

log size (pages)

pageno

decimal

decimal

hexadecimal

Record Type Action Additional Columns Format

 (5 of 13)
37-12 Administrator’s Guide for Informix Dynamic Server

Logical-Log Record Types and Additional Columns
ENDTRANS Written by both the
coordinator and partici-
pant database servers to
record the end of the
transaction. ENDTRANS
instructs the database
server to remove the trans-
action entry from its
shared-memory transac-
tion table and close the
transaction.

In the coordinator logical
log, each BEGPREP that
results in a committed
transaction is paired with
an ENDTRANS record. If the
final decision of the coordi-
nator is to roll back the
transaction, no ENDTRANS
record is written.

In the participant logical
log, each ENDTRANS
record is paired with a
corresponding HEURTX
record.

(none) (none)

ERASE Drop tblspace. tblspace ID hexadecimal

HDELETE Home row delete. tblspace ID

rowid

slotlen

hexadecimal

hexadecimal

decimal

HEURTX Written by a participant
database server to record a
heuristic decision to roll
back the transaction. It
should be associated with a
standard ROLLBACK
record indicating that the
transaction was rolled
back.

flag hexadecimal
(value is
always 1)

Record Type Action Additional Columns Format

 (6 of 13)
Interpreting Logical-Log Records 37-13

Logical-Log Record Types and Additional Columns
HINSERT Home row insert. tblspace ID

rowid

slotlen

hexadecimal

hexadecimal

decimal

HUPAFT Home row update,
after-image.

tblspace ID

rowid

slotlen

hexadecimal

hexadecimal

decimal

HUPBEF Home row update,
before-image.

tblspace ID

rowid

slotlen

hexadecimal

hexadecimal

decimal

HUPDATE If the home row update
before-images and
after-images can both fit
into a single page, the data-
base server writes a single
HUPDATE record.

tblspace ID

rowid

forward ptr rowid

old slotlen

new slotlen

no. of pieces

hexadecimal

hexadecimal

hexadecimal

decimal

decimal

decimal

IDXFLAGS Index flags. tblspace ID

key number

hexadecimal

hexadecimal

INSERT Insert after-image. tblspace ID

rowid

hexadecimal

hexadecimal

LCKLVL Locking mode. tblspace ID

old lockmode

new lockmode

hexadecimal

hexadecimal

hexadecimal

LG_CDINDEX Create detached index. database name

owner

table name

index name

ASCII

ASCII

ASCII

ASCII

LG_DERASE Drop partition in disabled
dbspace.

partition number

table lock number

hexadecimal

decimal

Record Type Action Additional Columns Format

 (7 of 13)
37-14 Administrator’s Guide for Informix Dynamic Server

Logical-Log Record Types and Additional Columns
MVIDXND Index node moved to allow
for 2-bit to 4-bit bitmap
conversion.

tblspace ID

old page number

new page number

parent page number

parent slot number

parent slot offset

key number

hexadecimal

decimal

decimal

decimal

decimal

decimal

decimal

PBDELETE Tblspace blobpage delete. bpageno

status

unique ID

hexadecimal

USED/FREE

decimal

PBINSERT Tblspace blobpage insert. bpageno

tblspace ID

rowid

slotlen

pbrowid

hexadecimal

hexadecimal

hexadecimal

decimal

hexadecimal

PDINDEX Predrop index. tblspace ID hexadecimal

PGALTER Page altered in-place. tblspace ID

physical page
number

hexadecimal

hexadecimal

Record Type Action Additional Columns Format

 (8 of 13)
Interpreting Logical-Log Records 37-15

Logical-Log Record Types and Additional Columns
PGMODE Page mode modified in
bitmap.

tblspace ID

logical page number

old mode

new mode

hexadecimal

decimal

hexadecimal

hexadecimal

PERASE Preerase old file. tblspace ID hexadecimal

PNLOCKID Change partitions lockid. tblspace ID

old lock ID

new lock ID

hexadecimal

hexadecimal

hexadecimal

PNSIZES Set tblspace extent sizes. tblspace ID

fextsize

nextsize

hexadecimal

decimal

decimal

PREPARE Written by a participant
database server to record
the ability of the partici-
pant to commit the
transaction, if so
instructed.

DBSERVERNAME of
coordinator

ASCII

PTADESC Add of alter description
information.

tblspace ID

physical page
number of previous
page

logical page number

number of columns
added

hexadecimal

hexadecimal

decimal

decimal

Record Type Action Additional Columns Format

 (9 of 13)
37-16 Administrator’s Guide for Informix Dynamic Server

Logical-Log Record Types and Additional Columns
PTALTER Alter of fragment begun. tblspace ID

physical page
number previous
page

logical page number

alter desc page
number

num columns added

version of alter

added rowsize

hexadecimal

hexadecimal

decimal

decimal

decimal

decimal

decimal

PTCOLUMN Add of special columns to
fragment.

tblspace ID

number of columns

hexadecimal

decimal

PTEXTEND Partition extend. tblspace ID

last logical page

first physical page

hexadecimal

decimal

hexadecimal

PTRENAME Rename table. tblspace ID

old table name

new table name

hexadecimal

ASCII

ASCII

RDELETE Remainder page delete. tblspace ID

rowid

slotlen

hexadecimal

hexadecimal

decimal

REVERT Logs the reversion of a
database space to a data-
base space of an earlier
version.

type of reversion
event

arg1

arg2

arg3

decimal

decimal

decimal

decimal

RINSERT Remainder page insert. tblspace ID

rowid

slotlen

hexadecimal

hexadecimal

decimal

Record Type Action Additional Columns Format

 (10 of 13)
Interpreting Logical-Log Records 37-17

Logical-Log Record Types and Additional Columns
ROLLBACK Rollback work. date

time

decimal

decimal

RSVEXTEN Logs the extension to the
reserved pages.

no. of pages

physical page
number of extent

decimal

hexadecimal

RUPAFT Remainder page update,
after-image.

tblspace ID

rowid

slotlen

hexadecimal

hexadecimal

decimal

RUPBEF Remainder page update,
before-image.

tblspace ID

rowid

slotlen

hexadecimal

hexadecimal

decimal

RUPDATE If the remainder page
update before-images and
after-images can both fit
into a single page, the data-
base server writes a single
RUPDATE record.

tblspace ID

rowid

forward ptr rowid

old slotlen

new slotlen

no. of pieces

hexadecimal

hexadecimal

hexadecimal

decimal

decimal

decimal

SYNC Written to a logical-log file
if that log file is empty and
administrator instructs the
database server to switch to
next log file.

(none) (none)

Record Type Action Additional Columns Format

 (11 of 13)
37-18 Administrator’s Guide for Informix Dynamic Server

Logical-Log Record Types and Additional Columns
TABLOCKS Written by either a coordi-
nator or a participant
database server. It is associ-
ated with either a BEGPREP
or a PREPARE record and
contains a list of the locked
tblspaces (by tblspace
number) held by the trans-
action. (In a distributed
transaction, transactions
are shown as the owners of
locks.)

no. of locks

tblspace number

decimal

hexadecimal

UDINSERT Append of new user data chunk

page within chunk

offset within page

data length

decimal

hexadecimal

hexadecimal

hexadecimal

UDUPAFT Update of user data after
image if a UDWRITE is too
expensive.

chunk

page within chunk

offset within page

data length

decimal

hexadecimal

hexadecimal

hexadecimal

UDUPBEF Update of user data before
image if a UDWRITE is too
expensive.

chunk

page within chunk

offset within page

data length

decimal

hexadecimal

hexadecimal

hexadecimal

UDWRITE Update of user data (differ-
ence image).

chunk

page within chunk

offset within chunk

length before write

length after write

decimal

hexadecimal

hexadecimal

hexadecimal

hexadecimal

UNDO Header record to a series of
transactions to be rolled
back.

count decimal

Record Type Action Additional Columns Format

 (12 of 13)
Interpreting Logical-Log Records 37-19

Logical-Log Record Types and Additional Columns
UNDOBLDC This record is written if a
CREATE TABLE statement
should be rolled back but
cannot be because the rele-
vant chunk is down. When
the log file is replayed, the
table will be dropped.

tblspace number hexadecimal

UNIQID Logged when a new serial
value is assigned to a row.

tblspace ID

unique ID

hexadecimal

decimal

UPDAFT Update after-image. tblspace ID

rowid

hexadecimal

hexadecimal

UPDBEF Update before-image. tblspace ID

rowid

hexadecimal

hexadecimal

XAPREPARE Participant can commit this
XA transaction.

 (none) (none)

Record Type Action Additional Columns Format

 (13 of 13)
37-20 Administrator’s Guide for Informix Dynamic Server

38
Chapter
Disk Structures and Storage
Dbspace Structure and Storage 38-4
Structure of the Root Dbspace 38-4

Reserved Pages 38-6
Structure of a Regular Dbspace 38-15

Structure of an Additional Dbspace Chunk 38-16
Structure of a Mirrored Chunk 38-17
Structure of the Chunk Free-List Page 38-18

Chunk Free-List Page Entries 38-18
Creation of Free-List Pages 38-19

Structure of the Tblspace Tblspace 38-19
Tblspace Tblspace Entries 38-20
What Is the Tblspace Number? 38-21
Tblspace Number Elements 38-22
Tblspace Tblspace Size 38-23
Tblspace Tblspace Bit-Map Page 38-23

Structure of the Database Tblspace 38-24
What Is the Database Tblspace Number? 38-24
Database Tblspace Entries. 38-24

Structure of a Dbspace Bit-Map Page 38-25
Types of Bit-Map Entries 38-25
Two-Bit Bit-Map Pages 38-26
Four-Bit Bit-Map Pages. 38-26

Structure and Allocation of an Extent 38-27
Extent Structure 38-28
Next-Extent Allocation 38-31

Structure and Storage of a Dbspace Page 38-34
Structure of a Dbspace Page 38-34
Rowid in Nonfragmented Tables 38-37
Rowid in Fragmented Tables 38-39
Informix Recommendations on Use of Rowid 38-40
Data-Row Format and Storage 38-40

38-2 Ad
Structure of B-Tree Index Pages 38-48
Definition of Terms in B-Tree Indexing 38-48
Logical Storage of Indexes 38-50
Physical Storage Format of Index Pages 38-55

Blobspace Structure and Storage 38-59
Structure of a Blobspace 38-59
TEXT and BYTE Data Storage and the Descriptor 38-61

When Are TEXT or BYTE Objects Created? 38-61
Are TEXT and BYTE Objects Modified? 38-62
What Limits the Size of TEXT and BYTE Objects? 38-62

Structure of a Dbspace Blobpage 38-62
Blobspace Page Types. 38-64

What Is the Blobspace Free-Map Page? 38-64
What Is the Blobspace Bit-Map Page? 38-64
What Is the Blobpage? 38-65

Structure of a Blobspace Blobpage 38-65
Blobpage Structure 38-65
What Is in the Blobpage Header? 38-66

Database and Table Creation: What Happens on Disk 38-68
Creating a Database 38-68

Disk-Space Allocation for System Catalog Tables 38-68
System Catalog Tables Are Tracked. 38-69

Creating a Table. 38-69
Disk-Space Allocation 38-70
Entry Is Added to Tblspace Tblspace 38-70
Entries Are Added to the System Catalog Tables 38-70
What Happens on Disk When a Temporary

Table Is Created? 38-72
ministrator’s Guide for Informix Dynamic Server

The database server achieves its high performance by managing its
own I/O. The database server manages storage, search, and retrieval. As the
database server stores data, it creates the structures it needs to search for and
retrieve the data later. The database server disk structures also store and track
control information needed to manage logging and backups. Database-
server structures contain all the information needed to ensure data consis-
tency, both physical and logical.

Before you read this chapter, familiarize yourself with the disk-space terms
and definitions in Chapter 13, “Where Is Data Stored?”

This chapter discusses the following topics related to disk data structures:

■ TEXT and BYTE storage and descriptors

■ Blobspace blobpages

■ Blobspace page types

■ Blobspace structure

■ Chunk free-list page structure

■ Data row storage

■ Database tblspace structure

■ Dbspace bit-map page structure

■ Dbspace blobpage structure

■ Dbspace chunk structure

■ Dbspace page structure

■ Extent structure

■ Index page structure
Disk Structures and Storage 38-3

Dbspace Structure and Storage
■ Mirrored chunk structure

■ Next-extent allocation

■ Reserved pages

■ Root dbspace structure

■ Rowid structure

■ Tblspace tblspace structure

■ What happens when you create a database

■ What happens when you create a table

■ What happens when you create a temporary table

Dbspace Structure and Storage
This section explores the disk structures and storage techniques that the
database server uses to store data in a dbspace.

Structure of the Root Dbspace
The ROOTNAME, ROOTOFFSET, ROOTPATH, and ROOTSIZE configuration
parameters specify the size and location of the initial chunk of the root
dbspace. If the root dbspace is mirrored, the MIRROROFFSET and
MIRRORPATH configuration parameters specify the mirror-chunk location.
For more information about these parameters, see Chapter 33, “Configu-
ration Parameters.”
38-4 Administrator’s Guide for Informix Dynamic Server

Structure of the Root Dbspace
As part of disk-space initialization, the database server initializes the
following structures in the initial chunk of the root dbspace:

■ Twelve reserved pages

■ The first chunk free-list page

■ The tblspace tblspace

■ The database tblspace

■ The physical log

■ The logical-log files

Figure 38-1 illustrates the structures that reside in the root dbspace following
disk-space initialization. Each of these structures is described in the
paragraphs that follow. To see that your root dbspace follows this organi-
zation, execute the command oncheck -pe, which produces a dbspace usage
report, by chunk.

Figure 38-1
Initial Chunk in the

Root Dbspace

Chunk free-list
page

Tblspace tblspace

Physical log

Logical-log files

Database

Reserved pages
Disk Structures and Storage 38-5

Structure of the Root Dbspace
Reserved Pages

The first 12 pages of the initial chunk of the root dbspace are reserved pages.
Each reserved page contains specific control and tracking information used
by the database server. Figure 38-2 provides the name and a brief description
of each of the reserved pages.

Figure 38-2
 Reserved Pages and Their Use

Order Page Name Page Usage

1 PAGE_PZERO System identification

2 PAGE_CONFIG Copy of the ONCONFIG file

3 PAGE_1CKPT Checkpoint/logical-log tracking

4 PAGE_2CKPT Alternate CKPT page

5 PAGE_1DBSP Dbspace descriptions

6 PAGE_2DBSP Alternate DBSP page

7 PAGE_1PCHUNK Primary chunk descriptions

8 PAGE_2PCHUNK Alternate PCHUNK page

9 PAGE_1MCHUNK Mirrored-chunk descriptions

10 PAGE_2MCHUNK Alternate MCHUNK page

11 PAGE_1ARCH Dbspace backup tracking

12 PAGE_2ARCH Alternate ARCH page
38-6 Administrator’s Guide for Informix Dynamic Server

Structure of the Root Dbspace
Reserved-Page Pairs

Beginning with the third reserved page, PAGE_1CKPT, the pages are
organized into pairs. These pairs come into play when the database server
begins to update the reserved pages as part of the checkpoint procedure.

The database server writes to PAGE_PZERO on the following three occasions:

■ At boot time

■ When you convert to Version 7.3 of the database server from
Version 7.2x

■ When you convert from Version 7.2x to a previous version of the
database server

The reserved-page checkpoint information is stored in a two-page pair,
PAGE_1CKPT and PAGE_2CKPT. This information changes for each check-
point. During each checkpoint, the database server writes the latest
checkpoint information to one of the pages in the pair. During the next check-
point, the database server writes the information to the other page in the pair.
At any point, one page in the checkpoint reserved-page pair contains a copy
of information written at the most-recent checkpoint, and the other page in
the pair contains a copy of information written at the second-most-recent
checkpoint.

The database server follows a different procedure for updating information
in the next three reserved-page pairs. The database server updates the
dbspace, primary chunk, or mirror-chunk reserved pages only when a
change occurs. The database server learns of a change from flags that are set
on the dbspace, primary chunk, and mirror descriptor tables in shared
memory. During the checkpoint, the database server checks each shared-
memory descriptor table for a change flag.

If the flag is set, the database server prepares to write the modified descriptor
information to the appropriate page in the reserved-page pair. First, the
database server switches from the current page (which is the page that
received the last write) to the other page in the pair. Second, the database
server writes the information to the reserved page. Third, the database server
updates the fields that contain the numbers of the current pages for the
dbspace, primary chunk, or mirror-chunk information. These fields are
located on the PAGE_1CKPT and PAGE_2CKPT pages.
Disk Structures and Storage 38-7

Structure of the Root Dbspace
The last pair of reserved pages contains dbspace backup and data-replication
information. The database server updates PAGE_ARCH after a dbspace
backup or a change in data-replication status.

To obtain a listing of the contents of your reserved pages, execute the
command oncheck -pr.

PAGE_PZERO

The first reserved page in the root dbspace is PAGE_PZERO. The following
table lists the PAGE_PZERO fields and definitions.

PAGE_CONFIG

The second reserved page in the root dbspace is PAGE_CONFIG. This page
contains a copy of the ONCONFIG file. For information about this file, see
Chapter 33, “Configuration Parameters.”

Field Name Description

Identity Database server copyright

Database system state Unused

Database system flags Unused

Page size Page size for this computer, in bytes

Date/Time created Date and time of disk-space initialization

Version number of creator Reserved for internal use

Last modified time stamp Unused
38-8 Administrator’s Guide for Informix Dynamic Server

Structure of the Root Dbspace
PAGE_CKPT

The third reserved page in the root dbspace is PAGE_1CKPT. The fourth
reserved page, PAGE_2CKPT, is the second page in the pair.

The database server uses the checkpoint and logical-log file information for
checkpoint processing. The date and time of the last checkpoint, available, is
obtained from this reserved page.

On UNIX, you can also get the date and time of the last checkpoint from the
Force-Ckpt menu of ON-Monitor. ♦

The following table lists the checkpoint and logical-log file tracking fields
and definitions.

Field Name Description

Time stamp of checkpoint Time stamp of the last checkpoint, displayed as
decimal value

Time of checkpoint Time that the last checkpoint occurred

Physical-log begin address Beginning address of the physical log

Physical-log size Number of pages in the physical log

Physical-log position at
Ckpt

Physical location for the start of the next set of
before-images

Logical-log unique
identifier

ID number of the logical-log file that stores the
most-recent checkpoint record

Logical-log position at Ckpt Physical location of this checkpoint record in the
logical-log file

Dbspace descriptor page Address of the current dbspace reserved page

Chunk descriptor page Address of the current primary-chunk reserved page

Mirrored-chunk descriptor
page

Address of the current mirrored-chunk reserved
page

UNIX
Disk Structures and Storage 38-9

Structure of the Root Dbspace
The following table lists the fields that display for each logical-log file.

Field Name Description

Log file number Number of this logical-log file

Log file flags Logical-log file flags (see next five entries)

0x01 Log file in use

0x02 Log file is the current log.

0x04 Log file has been backed up.

0x08 Log file is newly added.

0x10 Log file has been written to dbspace backup tape.

0x100 Blobspace is the optical staging blobspace.

0x200 Dbspace/blobspace is being physically recovered.

0x400 Is physically recovered

0x800 Is being logically recovered

0x1000 Dbspace has had a tblspace dropped since last
checkpoint.

0x2000 Dbspace has had a tblspace dropped since last
checkpoint.

0x4000 Dbspace is being backed up.

Time stamp Time stamp when log filled (decimal)

Date/time file filled Date and time that this log filled

Unique identifier ID number of this logical-log file

Physical location Address of this logical-log file on disk

Log size Number of pages in this logical-log file

Number pages used Number of pages used in this logical-log file
38-10 Administrator’s Guide for Informix Dynamic Server

Structure of the Root Dbspace
PAGE_DBSP

The fifth reserved page in the root dbspace is PAGE_1DBSP. The sixth reserved
page, PAGE_2DBSP, is the second page in the pair.

The database server uses the dbspace page to describe each dbspace and its
current status.

The following table lists the dbspace description fields and definitions.

PAGE_PCHUNK

The seventh reserved page in the root dbspace is PAGE_1PCHUNK. The eighth
reserved page, PAGE_2PCHUNK, is the second page in the pair.

The database server uses the primary chunk page to describe each chunk, its
pathname, its relation to the dbspace, and its current status.

Field Name Description

Dbspace number Dbspace number

Flags Dbspace flags (see next six entries)

0x01 Dbspace is not mirrored.

0x02 Dbspace includes mirrored chunks.

0x04 Dbspace contains a down chunk.

0x08 Dbspace is newly mirrored.

0x10 Dbspace is a blobspace.

0x80 Blobspace has been dropped.

First chunk Number of the dbspace initial chunk

Number of chunks Number of chunks in the dbspace

Date/time created Date and time that the dbspace was created

Dbspace name Dbspace name

Dbspace owner Dbspace owner
Disk Structures and Storage 38-11

Structure of the Root Dbspace
The following table lists the primary chunk fields and definitions.

Field Name Description

Chunk number Primary-chunk number

Next chunk in DBSpace Number of the next chunk in the dbspace

Chunk offset Offset of chunk, in pages

Chunk size Number of pages in the chunk

Number of free pages Number of free pages in the chunk

Dbspace number Number of the dbspace for this chunk

Overhead Free-map page address (blobspace only)

Flags Chunk flags (see next 10 entries in this table)

0x01 Raw device

0x02 Block device

0x04 Operating-system file

0x08 Needs sync() to operating system

0x20 Chunk is off-line.

0x40 Chunk is on-line.

0x80 Chunk is in recovery.

0x100 Chunk is newly mirrored.

0x200 Chunk is part of a blobspace.

0x400 Chunk is being dropped.

0x800 Chunk is part of staging blobspace.

0x1000 Chunk is inconsistent.

Chunk name length Length of the chunk pathname

Chunk path Operating-system path for chunk
38-12 Administrator’s Guide for Informix Dynamic Server

Structure of the Root Dbspace
PAGE_MCHUNK

The ninth reserved page in the root dbspace is PAGE_1MCHUNK. The tenth
reserved page, PAGE_2MCHUNK, is the second page in the pair.

The database server uses the mirrored-chunk page to describe each mirrored
chunk, its pathname, its relation to the dbspace, and its current status.

The following table lists the mirror-chunk fields and definitions.

Field Name Description

Primary-chunk number Chunk number

Next chunk in DBSpace Number of the next chunk in the dbspace

Chunk offset Offset of chunk, in pages

Chunk size Number of pages in the chunk

Number of free pages Number of free pages in the chunk

DBSpace number Number of the dbspace for this chunk

Overhead Free-map page address (blobspace only)

Flags Chunk flags (see next 10 entries in this table)

0x01 Raw device

0x02 Block device

0x04 Operating-system file

0x08 Needs sync() to operating system

0x10 Chunk is a mirrored chunk.

0x20 Chunk is off-line.

0x40 Chunk is on-line

0x80 Chunk is in recovery.

0x100 Chunk is newly mirrored.

0x200 Chunk is part of a blobspace.

 (1 of 2)
Disk Structures and Storage 38-13

Structure of the Root Dbspace
PAGE_ARCH

The eleventh reserved page in the root dbspace is PAGE_1ARCH. The twelfth
reserved page, PAGE_2ARCH, is the second page in the pair.

The database server uses the PAGE_ARCH reserved pages to describe the
most-recent and the second-most-recent dbspace backups. The database
server also uses PAGE_ARCH to record data about data replication.

The following table lists the dbspace backup and data-replication fields and
definitions.

0x400 Chunk is being dropped.

0x800 Chunk is part of staging blobspace.

0x1000 Chunk is inconsistent.

Chunk name length Length of the chunk pathname

Chunk path Operating-system path for chunk

Field Name Description

Archive level Level of this dbspace backup (0, 1, or 2)

Real Time Archive Began Date and time of this dbspace backup

Time Stamp Archive Began Time stamp for this dbspace backup (decimal)

Logical Log Unique Id ID number of the logical-log file that contains the
record of this dbspace backup

Logical Log Position Physical location of this checkpoint record in the
logical-log file

DR Ckpt log id ID number of the logical-log file that contains the
most-recent common checkpoint

 (1 of 2)

Field Name Description

 (2 of 2)
38-14 Administrator’s Guide for Informix Dynamic Server

Structure of a Regular Dbspace
The database server only displays fields concerning data replication if data
replication has been initialized.

Structure of a Regular Dbspace
After disk-space initialization, you can add new dbspaces. When you create
a dbspace, you assign at least one chunk (either raw or cooked disk space) to
the dbspace. This chunk is referred to as the initial chunk of the dbspace.
Figure 38-3 illustrates the structure of the initial chunk of a regular (nonroot)
dbspace.

When the dbspace is first created, it contains the following structures:

■ The first chunk free-list page in the chunk

■ The tblspace tblspace for this dbspace

■ Unused pages

DR Ckpt Logical Pos Logical-log file position of the most-recent common
checkpoint

DR Last Logical Log Id Logical-log file ID of the last log record sent or
received

DR Last Logical Log Page Logical-log file position of last log record
sent/received

Field Name Description

 (2 of 2)

Figure 38-3
Initial Chunk of

Regular Dbspace
Chunk free-list
page

Tblspace

Unused
Disk Structures and Storage 38-15

Structure of a Regular Dbspace
Structure of an Additional Dbspace Chunk

You can create a dbspace that contains more than one chunk. The initial
chunk in a dbspace contains the tblspace tblspace for the dbspace. Additional
chunks do not. When an additional chunk is first created, it contains the
following structures:

■ Two reserved pages (reserved for future use)

■ The first chunk free-list page

■ Unused pages

Figure 38-4 illustrates the structure of all additional chunks in a dbspace.
(The structure also applies to additional chunks in the root dbspace.)

Figure 38-4
Additional Dbspace

Chunk
Chunk free-list
page

Unused
38-16 Administrator’s Guide for Informix Dynamic Server

Structure of a Mirrored Chunk
Structure of a Mirrored Chunk
Each mirrored chunk must be the same size as its primary chunk. When a
mirrored chunk is created, the database server schedules a thread to write the
contents of the primary chunk to the mirrored chunk immediately.

The mirrored chunk contains the same control structures as the primary
chunk. Mirrors of either blobspace or dbspace chunks contain the same
physical contents as their primary counterpart after the database server
brings them on-line.

Figure 38-5 illustrates the mirror-chunk structure as it appears after the
chunk is created.

The mirror-chunk structure is marked full as soon as it is created. For more
information on this topic, see “What Is the Structure of a Mirrored Chunk?”
on page 23-11.

Figure 38-5
Mirror-Chunk

Structure
Number and type of
overhead pages
vary, depending on
chunk type.Overhead
Disk Structures and Storage 38-17

Structure of the Chunk Free-List Page
Structure of the Chunk Free-List Page
In every chunk, the page that follows the last reserved page is the first of one
or more chunk free-list pages that tracks available space in the chunk. A
chunk free-list page contains the starting page (page offset into the chunk) of
each section of free space and the length of the free space measured in
number of pages. Figure 38-6 illustrates the location of the free-list page.

Chunk Free-List Page Entries

Initially, the chunk free-list page has a single entry. For example, in any
dbspace initial chunk other than root, the starting page number of free space
is three. The first two pages are currently unused but reserved for future use
by Informix. The third page is filled by the chunk free list. The length of the
free space in the first entry is the size of the chunk minus three pages.

When chunk pages are allocated, the loss of free space is recorded by
changing the starting-page offset and the length of the unused space.

When chunk pages are freed (for example, if a table is dropped), entries are
added that describe the starting page and length of each section of newly
freed, contiguous space.

If newly freed space is contiguous with existing free space, only the length of
the existing entry is changed. Otherwise, a new entry is created.

Figure 38-6
Free-List PageChunk free-list page

Free pages

Reserved
 pages
38-18 Administrator’s Guide for Informix Dynamic Server

Structure of the Tblspace Tblspace
Figure 38-7 illustrates a sample listing from a chunk free-list page.

Creation of Free-List Pages

If an additional chunk free-list page is needed to accommodate new entries,
a new chunk free-list page is created in one of the free pages in the chunk. The
chunk free-list pages are chained in a linked list. Each free-list page contains
entries that describe all free space starting with the next page and continuing
to the next chunk free-list page or to the end of the chunk.

Structure of the Tblspace Tblspace
In the initial chunk of every dbspace, the page that follows the chunk free-list
page is the first page of the tblspace tblspace. The tblspace tblspace is a
collection of pages that describe the location and structure of all tblspaces in
this dbspace. Figure 38-8 illustrates the location of the tblspace tblspace.

Chunk Offset Number of Free Pages
Figure 38-7

Sample Listing from a
Chunk Free-List Page

14 28

123 36

208 52

Figure 38-8
Tblspace TblspaceChunk free-list page

Chunk

Reserved
 pages

Tblspace tblspace

Free pages
Disk Structures and Storage 38-19

Structure of the Tblspace Tblspace
Tblspace Tblspace Entries

Each page in the tblspace tblspace describes one tblspace in the dbspace and
is considered one entry. Entries in the tblspace tblspace are added when a
new table is created or when a fragment is added to a fragmented table.

The first page in every tblspace tblspace is a bit map of the pages in the
tblspace tblspace. The second page is the first tblspace entry, and it describes
itself. The third page describes the first user-created table in this dbspace.
Each tblspace tblspace entry (page) includes the following components.

Component Description

Page header 24 bytes, standard page-header information

Page-ending time stamp 4 bytes

Tblspace header 56 bytes, general tblspace information available from
an oncheck -pt display

Column information Each special column in the table is tracked with an
8-byte entry. (A special column is defined as a
VARCHAR, BYTE, or TEXT data type.)

Tblspace name 80 bytes, database.owner.tablename

Index information Each index on the table is tracked with a 16-byte entry.

Index column
information

Each column component in each index key is tracked
with a 4-byte entry.

Extent information Each extent allocated to this tblspace is tracked with an
8-byte entry.
38-20 Administrator’s Guide for Informix Dynamic Server

Structure of the Tblspace Tblspace
What Is the Tblspace Number?

Each tblspace that is described in the tblspace tblspace receives a tblspace
number. This tblspace number is the same value that is stored as the partnum
field in the systables system catalog table and as the partn field in the
sysfragments system catalog table.

The tblspace number (partnum) is stored as an integer (4 bytes). The
following SQL query retrieves the partnum for every table in the database
(these can be located in several different dbspaces) and displays it with the
table name and the hexadecimal representation of partnum:

SELECT tabname, tabid, partnum, HEX(partnum) hex_tblspace_name FROM systables

If the output includes a row with a table name but a partnum of 0, this table
consists of two or more table fragments, each located in its own tblspace. For
example, Figure 38-9 shows a table called account that has partnum 0.

tabname tabid partnum hex_tblspace_name

sysfragments 25 1048611 0x00100023
branch 100 1048612 0x00100024
teller 101 1048613 0x00100025
account 102 0 0x00000000
history 103 1048615 0x00100027
results 104 1048616 0x00100028

Figure 38-9
Output from

systables Query
Showing partnum

Values
Disk Structures and Storage 38-21

Structure of the Tblspace Tblspace
To obtain the actual tblspace numbers for the fragments that make up the
table, you must query the sysfragments table for the same database.
Figure 38-10 shows that the account table from Figure 38-9 on page 38-21 has
three table fragments and three index fragments.

Tblspace Number Elements

The hexadecimal representation of the tblspace number is a composite of two
numbers. The most-significant 12 bits (11/2 bytes) indicate the dbspace
number where the tblspace resides. The least-significant 20 bits (21/2 bytes)
indicate the logical page number where the tblspace is described.
Figure 38-11 illustrates the elements of a tblspace number. Compare this
format to the actual partnum values in Figure 38-9 on page 38-21.

The first page in a tblspace is logical page 0. (Physical page numbers refer to
the address of the page in the chunk.) For example, the tblspace number of
the tblspace tblspace in the root dbspace is always 0x1000001. The root space
tblspace tblspace is always contained in the first dbspace and on logical page
1 within the tblspace tblspace. (The bit-map page is page 0.)

tabid fragtype partn hex_tblspace_name

102 T 1048614 0x00100026
102 T 2097154 0x00200002
102 T 3145730 0x00300002
102 I 1048617 0x00100029
102 I 2097155 0x00200003
102 I 3145731 0x00300003

Figure 38-10
Output from

sysfragments Table
with partn Values

Figure 38-11
The Tblspace
Number with

Dbspace Number
and Page Number

0 - 19 page number within the tblspace tblspace
20 - 31 dbspace number19 - 031 - 20
38-22 Administrator’s Guide for Informix Dynamic Server

Structure of the Tblspace Tblspace
Tblspace Tblspace Size

The size of the tblspace tblspace is always 50 pages. These tblspace tblspace
pages are allocated as an extent when the dbspace is initialized. If the
database server attempts to create a table, but the tblspace tblspace is full, the
database server allocates a next extent to the tblspace.

When a table is removed from the dbspace, its corresponding entry in the
tblspace tblspace is deleted. The space in the tblspace is released and can be
used by a new tblspace.

Tblspace Tblspace Bit-Map Page

The first page of the tblspace tblspace, like the first page of any initial extent,
is a bit map that describes the page fullness of the following pages. Each page
that follows has an entry on the bit-map page. If needed, additional bit-map
pages are located throughout the contiguous space allocated for the tblspace,
arranged so that each bit map describes only the pages that follow it, until the
next bit map or the end of the dbspace. Bit-map pages fall at distinct intervals
within tblspaces pages. Each bit-map page describes a fixed number of pages
that follow it.
Disk Structures and Storage 38-23

Structure of the Database Tblspace
Structure of the Database Tblspace
The database tblspace appears only in the initial chunk of the root dbspace.
The database tblspace contains one entry for each database managed by the
database server. Figure 38-12 illustrates the location of the database tblspace.

What Is the Database Tblspace Number?

The tblspace number of the database tblspace is always 0x100002. This
tblspace number appears in an onstat -t listing if the database tblspace is
active.

Database Tblspace Entries

Each database tblspace entry includes the following five components:

■ Database name

■ Database owner

■ Date and time that the database was created

■ The tblspace number of the systables system catalog table for this
database

■ Flags that indicate logging mode

Figure 38-12
Database Tblspace

Location in Initial
Chunk of Root

Dbspace

Reserved

Tblspace

Database

Free pages

Chunk free-list page
38-24 Administrator’s Guide for Informix Dynamic Server

Structure of a Dbspace Bit-Map Page
The database tblspace includes a unique index on the database name to
ensure that every database is uniquely named. For any database, the
systables table describes each permanent table in the database. Therefore, the
database tblspace only points to the detailed database information located
elsewhere.

When the root dbspace is initialized, the database tblspace first extent is
allocated. The initial-extent size and the next-extent size for the database
tblspace are four pages. You cannot modify these values.

Structure of a Dbspace Bit-Map Page
Extents contain one or more bit-map pages that track free pages in the extent.
Each bit-map entry describes the fullness of one page in the extent. The
number of bit-map pages needed for an extent depends on three variables:

■ Number of pages in the extent, which affects the number of bit-map
entries needed

■ Page size, which affects the number of bit-map entries that can fit on
a page

■ Type of the bit-map entries, which depends on the type of data stored
on the page

Types of Bit-Map Entries

All bit-map pages are initialized and linked when the extent is allocated. The
bit-map pages are scattered throughout the extent. The first page in the
extent, and every (n +1)th page thereafter, is designated as a bit-map page,
where n is the number of bit-map entries that fit on a single page. The pages
described by a bit-map page can span extents.

The database server uses two types of bit-map pages, a two-bit bit-map page
(which contains two-bit entries) and a four-bit bit-map page (which contains
four-bit entries).
Disk Structures and Storage 38-25

Structure of a Dbspace Bit-Map Page
Two-Bit Bit-Map Pages

The two-bit bit-map pages track available space in extents allocated to tables
that meet two criteria:

■ The table contains fixed-length rows that are smaller than a page.

■ The table does not contain VARCHAR, BYTE, or TEXT data types.

Only two bits are needed to describe page fullness for these limited condi-
tions, as illustrated in Figure 38-13.

Figure 38-13
Bit Values for Two-Bit Bit-Map Pages

Four-Bit Bit-Map Pages

The four-bit bit-map pages track available space in extents allocated to tables
that contain rows longer than a page, or rows that include VARCHAR, BYTE,
or TEXT data types. Four bits are needed to describe all possible combinations
of page fullness for these extents, as illustrated in Figure 38-14. The terms
used to describe page fullness describe row segments as whole-page, partial-
page, and small. These segment sizes are relative to available free space and
are selected on the basis of performance.

Bit Values Description of Page Fullness

00 Page is unused.

01 Page is partially used (data page).

10 Page is used completely (index page).

11 Page is full (data page).
38-26 Administrator’s Guide for Informix Dynamic Server

Structure and Allocation of an Extent
Figure 38-14
Four-Bit Bit-Map Values

Structure and Allocation of an Extent
This section covers the following topics:

■ What an extent is

■ How extent size can vary

■ The three types of pages contained in an extent

■ How a new extent is allocated

■ Automatic doubling of next-extent size

■ What the database server does when it cannot find sufficient
contiguous space for an extent

■ Extent merging

Bit Values Description of Page Fullness

0000 Page is unused.

0100 Home data page has room for another data row.

1000 Page is used completely (index page).

1100 Home data page is full.

0001 Remainder page, can accept whole-page segments

0101 Remainder page, room for partial-page segments

1001 Remainder page, room for small segments

1101 Remainder page, no room for even small segments

0010 Blob page, can accept whole-page segments

0110 Blob page, room for partial-page segments

1010 Blob page, room for small segments

1110 Blob page, no room for even small segments
Disk Structures and Storage 38-27

Structure and Allocation of an Extent
Extent Structure

An extent is a collection of contiguous pages within a dbspace. Every
permanent database table has two extent sizes associated with it. The initial-
extent size is the number of kilobytes allocated to the table when it is first
created. The next--extent size is the number of kilobytes allocated to the table
when the initial extent, and every extent thereafter, becomes full.

Blobspaces do not employ the concept of an extent.

For specific instructions on how to specify and calculate the size of an extent,
see your Performance Guide.

Extent Size

The minimum size of an extent is four pages. The default size of an extent is
eight pages. No maximum limit exists, although a practical limit is about two
gigabytes (or as much space as is available within the chunk). The maximum
size of an extent is determined by the largest page number that can be accom-
modated in a rowid. Since the page number in a rowid cannot exceed
16,777,215, this figure is the upper limit of the number of pages that a single
extent can contain.

Tblspaces that hold index fragments follow different rules for extent size. The
database server bases the extent size for these tblspaces on the extent size for
the corresponding table fragment. The database server uses the ratio of the
row size to index key size to assign an appropriate extent size for the
detached index tblspace. (For information on fragmented indexes, see
“Fragmenting Table Indexes” on page 15-8.)

Tblspaces that hold index fragments follow different rules for extent size. The
database server bases the extent size for these tblspaces on the extent size for
the corresponding table fragment. The database server uses the ratio of the
row size to index key size to assign an appropriate extent size for the index
tblspace. (For information on fragmented indexes, see “Fragmenting Table
Indexes” on page 15-8.)
38-28 Administrator’s Guide for Informix Dynamic Server

Structure and Allocation of an Extent
Page Types Within an Extent

Within the extent, individual pages contain different types of data. Extent
pages can be separated into five categories:

■ Data pages

Data pages contain the data rows for the table.

■ Index pages (root, branch, and leaf pages)

Index pages contain the index information for the table.

■ Bit-map pages

Bit-map pages contain control information that monitors the fullness
of every page in the extent. If the table contains a VARCHAR, BYTE, or
TEXT data type, or if the length of one row is greater than a page, the
bit map is a four-bit bit map; otherwise, the bit map is a two-bit bit
map.

■ Blobpages

Blobpages contain TEXT and BYTE data types that are stored with the
data rows in the dbspace. TEXT and BYTE data types that reside in a
blobspace are stored in blobpages, a structure that is completely
different than the structure of a dbspace blobpage.

■ Free pages

Free pages are pages in the extent that are allocated for tblspace use,
but whose function has not yet been defined. Free pages can be used
to store any kind of information: data, index, TEXT or BYTE data
types, or bit map.

Important: An extent that is allocated for a table fragment does not contain index
pages. Index pages for a fragmented table always reside in a separate tblspace. (For
information on fragmented indexes, see “Fragmenting Table Indexes” on page 15-8.)

Figure 38-15 on page 38-30 illustrates the possible structure of a nonfrag-
mented table with an initial-extent size of 8 pages and a next-extent size of
16 pages.
Disk Structures and Storage 38-29

Structure and Allocation of an Extent
Figure 38-15
Extent Structure of a

Table
Bit-map page

Index page

Data page

Blobpage

Index page

Data pages

Initial extent

Next extent

Data pages

Blobpage

Data page

Index page

Free pages
38-30 Administrator’s Guide for Informix Dynamic Server

Structure and Allocation of an Extent
Next-Extent Allocation

After the initial extent fills, the database server attempts to allocate another
extent of contiguous disk space. The procedure that the database server
follows is referred to as next-extent allocation.

Extents for a tblspace are tracked as one component of the tblspace tblspace
information for the table. The maximum number of extents allocated for any
tblspace is application and machine dependent because it varies with the
amount of space available on the tblspace tblspace entry.

Next-Extent Size

The number of kilobytes that the database server allocates for a next extent
is, in general, equal to the size of a next extent, as specified in the SQL
statement CREATE TABLE. However, the actual size of the next-extent
allocation might deviate from the specified size because the allocation
procedure takes into account the following three factors:

■ Number of existing extents for this tblspace

■ Availability of contiguous space in the chunk and dbspace

■ Location of existing tblspace extents

The effect of each of these factors on next-extent allocation is explained in the
paragraphs that follow and in Figure 38-16 on page 38-33.

Extent Size Doubles Every 16 Extents

If a tblspace already has 16 extents allocated, the database server automati-
cally doubles the size for subsequent allocations. This doubling occurs every
16 extents. For example, if you create a table with NEXT SIZE equal to 20
kilobytes, the database server allocates the first 16 extents at a size of 20
kilobytes each. The database server allocates extents 17 to 32 at 40 kilobytes
each, extents 33 to 48 at 80 kilobytes each, and so on.
Disk Structures and Storage 38-31

Structure and Allocation of an Extent
What If the Database Server Cannot Find Contiguous Space?

If the database server cannot find available contiguous space in the first
chunk equal to the size specified for the next extent, it extends the search into
the next chunk in the dbspace. Extents are not allowed to span chunks.

If the database server cannot find adequate contiguous space anywhere in
the dbspace, it allocates to the table the largest available amount of
contiguous space. (The minimum allocation is four pages. The default value
is eight pages.) No error message is returned if an allocation is possible, even
when the amount of space allocated is less than the requested amount.

Extents for the Same Table Might Merge

If the disk space allocated for a next extent is physically contiguous with disk
space already allocated to the same table, the database server allocates the
disk space but does not consider the new allocation as a separate extent.
Instead, the database server extends the size of the existing contiguous
extent. Thereafter, all disk-space reports reflect the allocation as an extension
of the existing extent. That is, the number of extents reported is always the
number of physically distinct extents, not the number of times a next extent
has been allocated plus one (the initial extent). Figure 38-16 on page 38-33
illustrates extent-allocation strategies.
38-32 Administrator’s Guide for Informix Dynamic Server

Structure and Allocation of an Extent
After disk space is allocated to a tblspace as part of an extent, the space
remains dedicated to that tblspace even if the data contained in it is deleted.
For alternative methods of reclaiming this empty disk space, see your Perfor-
mance Guide.

Figure 38-16
Next-Extent

Allocation
Strategies

Chunk 1

Chunk 1

Chunk 1

Chunk 6

Extent sizes double every 16 extents.

If the dbspace is too full to accommodate the next-extent size, the
database server allocates the largest available contiguous block of

If the next extent is physically contiguous to an existing extent for
the same tblspace, the disk space is treated as a single extent.

Some other tblspace extent

16th extent 17th extent size is

3rd extent 4th extent

3rd extent

3rd extent

Next extent
Disk Structures and Storage 38-33

Structure and Storage of a Dbspace Page
Structure and Storage of a Dbspace Page
This section describes how a dbspace page is structured and how the
database server uses this structure to store data in a dbspace.

Structure of a Dbspace Page

The basic unit of database-server I/O is a page. Page size might vary among
computers. You cannot modify the page size.

Page Elements

The database server allocates pages in a group called an extent. Pages can be
categorized according to the type of information they contain. All pages
managed by the database server adhere to a similar structure, although the
function of the page can alter slightly the size of structures within the page.
Figure 38-17 illustrates the following three structures that appear on every
page:

■ Page header (24 bytes, including one 4-byte time stamp)

■ Page-ending time stamp (4 bytes)

■ Slot table (4 bytes per entry)

Figure 38-17
Dbspace Page

Structure

Time stamp
(4 bytes)

Free space

Page header
(24 bytes)

Slot table
(4 bytes per entry)

Page
38-34 Administrator’s Guide for Informix Dynamic Server

Structure and Storage of a Dbspace Page
Page Headers

The page header includes the following six components:

■ Page-identification number (address of the page on disk)

■ Number of slot-table entries used on the page (used to calculate
where to locate the next slot-table entry)

■ Number of free bytes left on the page

■ Pointer to the contiguous free space on the page that lies between the
last data entry and the first slot-table entry

■ Time stamp that changes each time the page contents are modified

■ Two index-related pointers (used if the page is used as an index
page)

Page Time Stamps

The page-header time stamp and the page-ending time stamp function as a
pair to validate page consistency. Each time the page contents are modified,
a time stamp is placed in the page header. At the end of the write, the header
time stamp is copied into the last four bytes on the page. Subsequent access
to the page checks both time stamps. If the two time stamps differ, this
inconsistency is reported as a part of consistency checking.

Page Slot Tables

The slot table is a string of 4-byte slot-table entries that begins at the page-
ending time stamp and grows toward the beginning of the page. The entries
in the slot table enable the database-server user processes to find data on
dbspace pages. Each entry in the slot table describes one segment of data that
is stored in the page. The number of the slot-table entry is stored as a 1-byte
unsigned integer. The slot-table entries cannot exceed 255. This number is the
upper limit on the number of rows, or parts of a row, that can be stored in a
single data page.
Disk Structures and Storage 38-35

Structure and Storage of a Dbspace Page
The slot-table entry is composed of the following two parts:

■ Page offset where the data segment begins

■ Length of the data segment

For example, in a data page, the slot-table entry would describe the page
offset where the data row (or portion of a data row) starts and the length of
the row (or portion of a row).

Slot Table and Rowid

The number of the slot-table entry is stored as part of the data-row rowid. The
data-row rowid is a unique identifier for each data row. It is composed of the
page number where the row is stored and the number of the slot-table entry
that points to that data row.

As part of a rowid, the number of the slot-table entry is stored as a 1-byte
unsigned integer. Since the rowid cannot store a slot-table entry greater than
255, this number is the upper limit on the number of rows than can be stored
in a single data page.

Slot Table Stays Accurate Even If Row Moves

The slot table is the only database-server structure that points to a specific
location in a data page. For this reason, the database server can initiate page
compression whenever required, according to internal algorithms. Typically,
page compression changes the location of the data row in the page and,
therefore, generates a new page offset that is written into the slot-table entry.
However, the number of the slot-table entry remains fixed. Thus all
forwarding pointers and descriptor values that rely on a rowid value remain
accurate.
38-36 Administrator’s Guide for Informix Dynamic Server

Structure and Storage of a Dbspace Page
Rowid in Nonfragmented Tables

The database server can store rows that are longer than a page. The database
server also supports the VARCHAR data type, which results in rows of
varying length.

As a result, rows do not conform to a single format. The following facts about
rows must be considered when the database server stores data rows in a
page:

■ Rows within a table are not necessarily the same length if the table
contains one or more columns of type VARCHAR. In addition, the
length of a row in such a table might change when an end user
modifies data contained in the VARCHAR column.

■ The length of a row can be greater than a page.

■ TEXT and BYTE data types are not stored within the data row. Instead,
the data row contains a 56-byte descriptor that points to the location
of the data. (The descriptor can point to either a dbspace page or a
blobspace blobpage. If you are using Optical Subsystem, the
descriptor can also point to an optical-storage subsystem.)

For instructions about how to estimate the length of fixed-length and
variable-length data rows, see your Performance Guide.

What Is a Rowid?

In the context of a nonfragmented table, the term rowid refers to a unique
4-byte integer that is a function of the physical location of the row in the table.
Rowid is the combination of a page identification number (the logical page
number) and the number of an entry in the slot table on that page. The rowid
defines the location of a data row. The page that contains the first byte of the
data row is the page that is specified by the rowid. This page is called the data
row home page.

Fragmented tables can also have rowids, but they are implemented in a
different way. For more information on this topic, see “Rowid in Fragmented
Tables” on page 38-39.
Disk Structures and Storage 38-37

Structure and Storage of a Dbspace Page
Rowids Never Change

The rowid structure permits the length of the row and its location on a page
to change without affecting the contents of the rowid. Either change, a change
in length caused by an insert or a delete or a change in location on the page
caused by page compression, is reflected in the entry stored in the slot table.
If the page where the data row is stored changes, a forward pointer is left on
the home page. In all cases, the rowid remains unchanged. Figure 38-18 illus-
trates the rowid format.

Logical Page Number

The logical page number describes the data row home page. The logical page
number is stored in the most-significant three bytes of the rowid as an
unsigned integer. Logical pages are numbered relative to the tblspace. That
is, the first logical page in a tblspace is page 0. (Physical page numbers refer
to the address of the page in the chunk.) For example, if you create a table,
and the resulting initial extent is located in the middle of a chunk, the
physical address of the first page in the extent represents the location in the
chunk. The logical address for the same page is zero. Since the largest number
that can be stored in the three most-significant bytes of a rowid is 16,777,215,
this figure is the upper limit of the number of pages that can be contained in
a single tblspace.

Figure 38-18
Rowid Format

31 - 08 Logical page number where the data is located
0 - 07 Number of the slot-table entry on this page

31 07 0
38-38 Administrator’s Guide for Informix Dynamic Server

Structure and Storage of a Dbspace Page
How Does the Database Server Use Rowid?

Every data row in a nonfragmented table is uniquely identified by an
unchanging rowid. When you create an index for a nonfragmented table, the
rowid is stored in the index pages associated with the table to which the data
row belongs. When the database server requires a data row, it searches the
index to find the key value and uses the corresponding rowid to locate the
requested row. If the table is not indexed, the database server might sequen-
tially read all the rows in the table.

Eventually, a row might outgrow its original storage location. If this occurs,
a forward pointer to the new location of the data row is left at the position
defined by the rowid. The forward pointer is itself a rowid that defines the
page and the location on the page where the data row is now stored.

Rowid in Fragmented Tables

Unlike rows in a nonfragmented table, the database server does not assign a
rowid to rows in fragmented tables. If you wish to access data by rowid, you
must explicitly create a rowid column as described in the Performance Guide
for Informix Dynamic Server. If user applications attempt to reference a rowid
in a fragmented table that does not contain a rowid that you explicitly
created, the database server returns an appropriate error code to the
application.

Accessing Data Using Rowid in Fragmented Tables

From the viewpoint of an application, the functionality of a rowid column in
a fragmented table is identical to the rowid of a nonfragmented table.
However, unlike the rowid of a nonfragmented table, the database server
uses an index to map the rowid to a physical location.

When the database server accesses a row in a fragmented table using the
rowid column, it uses this index to look up the physical address of the row
before it attempts to access the row. For a nonfragmented table, the database
server uses direct physical access without having to do an index lookup. As
a consequence, accessing a row in a fragmented table using rowid takes
slightly longer than accessing a row using rowid in a nonfragmented table.
You should also expect a small performance impact on the processing of
inserts and deletes due to the cost of maintaining the rowid index for
fragmented tables.
Disk Structures and Storage 38-39

Structure and Storage of a Dbspace Page
Primary-key access can lead to significantly improved performance in many
situations, particularly when access is in parallel.

Informix Recommendations on Use of Rowid

Informix recommends that application developers use primary keys as a
method of access rather than rowids. Because primary keys are defined in the
ANSI specification of SQL, using them to access data makes your applications
more portable.

For a complete description on how to define and use primary keys to access
data, see the Informix Guide to SQL: Reference and the Informix Guide to SQL:
Tutorial.

Data-Row Format and Storage

The variable length of a data row has the following consequences for row
storage:

■ A page might contain one or more whole rows.

■ A page might contain portions of one or more rows.

■ A page might contain a combination of whole rows and partial rows.

■ An updated row might increase in size and become too long to return
to its original storage location in a row.

The following paragraphs describe the guidelines that the database server
follows during data storage.
38-40 Administrator’s Guide for Informix Dynamic Server

Structure and Storage of a Dbspace Page
How Are Rows Stored?

To minimize retrieval time, rows are not broken across page boundaries
unnecessarily. Rows that are shorter than a page are always stored as whole
rows. A page is considered full when the count of free bytes is less than the
number of bytes needed to store a row of maximum size. Figure 38-19
illustrates data storage when rows are less than a page.

Where Are Rows Stored?

When the database server receives a row that is longer than a page, the row
is stored in as many whole pages as required. The database server then stores
the trailing portion in less than a full page.

The page that contains the first byte of the row is the row home page. The
number of the home page becomes the logical page number contained in the
rowid. Each full page that follows the home page is referred to as a big-
remainder page. If the trailing portion of the row is less than a full page, it is
stored on a remainder page.

Figure 38-19
Rows Shorter Than

a Page
Page header

Complete data
rows

Time stamp

Slot-table
entries

Free space
Disk Structures and Storage 38-41

Structure and Storage of a Dbspace Page
After the database server creates a remainder page to accommodate a long
row, it can use the remaining space in this page to store other rows.

Figure 38-20 illustrates the concepts of home page, big-remainder page, and
remainder page.

How Are Data Row Sections Linked?

When a row is longer than one page, but less than two pages, the home row
contains a forward pointer to a remainder page. The forward pointer is
always stored as the first 4 bytes in the data portion of the page. The forward
pointer contains the rowid of the next portion of the row. A flag value is
added to the slot-table entry of the data row to indicate that a pointer exists.

When a row is longer than two pages, the home row and each big-remainder
page contain forward pointers to the next portion of the data row.
Figures 38-21 through illustrates data storage for rows that are longer than
two pages

Figure 38-20
Remainder PagesData row represented in whole-page-sized segments

Remainder page

Big-remainder page

Big-remainder page

Home page
38-42 Administrator’s Guide for Informix Dynamic Server

Structure and Storage of a Dbspace Page
.

Figure 38-21
Rows Longer Than

Two Pages

Header

Big-remainder page

Data

Header

Big-remainder page

Data

Header

Home page Forward pointer

Time stamp

Slot-table
entry

Trailing portion of the data

Free space

Remainder page

Data

Header

Data
Disk Structures and Storage 38-43

Structure and Storage of a Dbspace Page
What Happens When a Row Is Modified?

When a row is modified, the database server attempts to return the modified
row to its current location. If the row size is unchanged, no changes are
needed in the slot table. If the row is smaller than before, the database server
changes the slot-table entry for this row to reflect the new row length. If the
row no longer fits, the database server attempts to store the row in another
location on the same page. If the database server can do this, the slot-table
entry is changed to reflect both the new starting offset and the new length of
the row.

What Happens If the Updated Row Is Too Large for the Home Page?

If the modified data row is shorter than a page but cannot be accommodated
on the current page, a 4-byte forwarding pointer (that contains the new
rowid) is stored on the home page. The data row retains its original rowid,
which is stored in the index page. The data is moved to the new page, and the
space freed by the move is available for other rows. Figure 38-22 on
page 38-45 illustrates data storage if the updated row is too large for the
home page but shorter than a whole page.
38-44 Administrator’s Guide for Informix Dynamic Server

Structure and Storage of a Dbspace Page
Figure 38-22
Updated Rows

Original row size and

Header

Forward pointer (rowid)
to new location

1. Data storage before data is modified

3. Data storage after data is modified

Newly freed space

2. Data is modified

Modified slot-table
entry for data row

New, longer row after

Modified row

Header

Header
Disk Structures and Storage 38-45

Structure and Storage of a Dbspace Page
What Happens When the Updated Row Is Longer Than a Whole Page?

If the modified data row is longer than a page, the database server first begins
to divide the data into whole-page segments, starting from the tail end of the
row. Then the database server tries to fit the leading segment plus 4 bytes (for
the forward pointer) into the current location of the row on the home page. If
the leading segment fits, the whole-page tail segments are stored in big-
remainder pages, and forwarding pointers are added.

If the leading segment cannot fit into the current location of the row on the
home page, the database server divides the page into whole-page segments
again, this time beginning with the leading end of the row. The database
server stores only a forwarding pointer in the current page location. The rest
of the data row is stored in whole-page segments on one or more big-
remainder pages. Forward pointers are added to each page. The trailing
portion of the row is stored on a remainder page. Figure 38-23 on page 38-47
illustrates storage of an updated row that is longer than a whole page.

Page Compression

Over time, the free space on a page can become fragmented. When the
database server attempts to store data, it first checks row length against the
number of free bytes on a page to determine if the row fits. If adequate space
is available, the database server checks if the page contains adequate
contiguous free space to hold the row (or row portion). If the free space is not
contiguous, the database server calls for page compression.

During page compression, a user process locates a free buffer in the shared-
memory buffer pool and copies to the buffer the data-page header and page
time stamp. Then, starting from the first slot-table entry, the user process
copies each slot-table entry and its associated data, updating the slot-table
information as the data is written to the buffer. When the process completes
the rewriting, the newly compressed page is written back to the data page.

All free space in the data page is now contiguous, and the row (or row
portion) is stored according to the usual procedure of writing the data and its
associated slot-table entry.
38-46 Administrator’s Guide for Informix Dynamic Server

Structure and Storage of a Dbspace Page
Figure 38-23
Updated Rows That

Span Pages

Original row size and

Header

Forward pointer (rowid)
to new location

1. Data storage before data is modified

3. Data storage after data is modified

Leading segment of row

2. Data is modified.

Modified slot-table
entry for data row

Modified row size is
larger than a page.

Whole-page segment
of modified row

Header

Header
Disk Structures and Storage 38-47

Structure of B-Tree Index Pages
Structure of B-Tree Index Pages
This section provides general information about the structure of B-tree index
pages. It is designed as an overview for the interested reader; it does not
describe all the rules governing index creation, page splitting, and page
merging.

The section begins with a definition of terms used in B-tree indexing. An
overview of the process that the database server uses to create and fill indexes
is then explained. The latter part of the section describes the physical layout
of an index page.

Definition of Terms in B-Tree Indexing

The database server uses a B-tree structure for organizing index information.
As shown in Figure 38-24 on page 38-49, a fully developed index is
composed of the following three different types of index pages, or nodes:

■ One root node

■ Two or more branch nodes

■ Many leaf nodes

Each node serves a different function. The following sections describe each
node and the role that it plays in indexing.
38-48 Administrator’s Guide for Informix Dynamic Server

Structure of B-Tree Index Pages
What Is an Index Item?

The fundamental unit of indexes is the index item. As shown in Figure 38-25,
an index item is made up of a key value, a rowid, and a delete flag. A key value
represents the value of the indexed column for a particular row. A rowid is a
unique identifier for the row that indicates its location in the table. A delete
flag is a one-byte indicator that specifies whether the row that the rowid
points to still exists or has been deleted.

 A delete flag value of 0 indicates the row still exists; a value of 1 indicates
the row has been deleted. When a transaction deletes an item, the database
server locks the item and sets the delete flag to 1. Items with delete flags that
indicate deleted rows are purged from the B-tree structure frequently. Only
leaf nodes contain items with delete flags.

Figure 38-24
Full B-Tree Structure

Root
node

Branch
nodes

Leaf
nodes

Index item

Figure 38-25
Logical Depiction of

an Index Item
Pauli

Key value Rowid Delete flag

101/0
Disk Structures and Storage 38-49

Structure of B-Tree Index Pages
Figure 38-25 on page 38-49 illustrates an example of an index item. The index
item illustrated is row 101 in the customer table. The lname value of row 101
is Pauli. The delete flag is set to 0, indicating that the row still exists. The
index item for this lname value is composed of a key value, Pauli, a rowid
for data row 101, and a delete flag, 0.

What Is a Node?

A node is an index page that stores a group of index items. Figure 38-26
shows a logical depiction of an index node.

B-tree structures contain the following three types of nodes: root, branch, and
leaf nodes. When an index is fully developed (see Figure 38-24 on
page 38-49), the three types of nodes can be described as follows:

■ A root node contains node pointers to branch nodes.

■ A branch node contains pointers to leaf nodes or other branch nodes.

■ A leaf node contains index items and horizontal pointers to other leaf
nodes.

Although not necessary for the explanation of indexing presented here, a
node contains other elements that are described in “Physical Storage Format
of Index Pages” on page 38-55.

Logical Storage of Indexes

This section presents an overview of how the database server creates and fills
an index. For clarity, the physical storage details of indexing are left out of
this section. For this level of detail, see “Physical Storage Format of Index
Pages” on page 38-55.

Figure 38-26
An Index NodeAlbertson

Baxter
Beatty
Currie
Keyes
Lawson
Mueller
Wallach
Watson

207/0
208/0
206/0
201/0
204/0
205/0
203/0
209/0
202/0
38-50 Administrator’s Guide for Informix Dynamic Server

Structure of B-Tree Index Pages
Creation of Root and Leaf Nodes

When you create an index for an empty table, the database server allocates a
single index page. This page represents the root node and remains empty
until you insert data into the table.

At first, the root node functions like a leaf node. For each row that you insert
into the table, the database server creates and inserts an index item into the
root node. Figure 38-27 illustrates how a root node appears before it fills.

When the root node becomes full, the database server first creates two leaf
nodes. The database server then moves approximately half of the root-node
entries to each of the newly created leaf nodes, as depicted in Figure 38-28.

Figure 38-27
Root NodeRoot node: 1

Albertson
Baxter
Beatty
Currie
Keyes
Lawson
Mueller
Wallach

207/0
208/0
206/0
201/0
204/0
205/0
203/0
209/0

Figure 38-28
Two Leaf Nodes

Created After a Root
Node Becomes Full

Root node: 1

Left leaf node: 2 Right leaf node: 3

Node pointer

Infinity item

Lawson
Mueller
Randolph
Wallach
Watson

205/0
203/0
212/0
209/0
202/0

Keyes 2
3

Albertson
Baxter
Beatty
Currie
Keyes

207/0
208/0
209/0
210/0
212/0
Disk Structures and Storage 38-51

Structure of B-Tree Index Pages
The root node retains only two entries. The first entry consists of a key value
plus a pointer to a leaf node. The key value in the root node is the same as
that of the last index item of the left branch node. The second item is called
an infinity item. An infinity item has no key value but instead contains a
pointer that points to the rightmost leaf node.

As you add new rows to a table, the database server adds index items to the
leaf nodes. When a leaf node fills, a new leaf node is created, and the database
server moves part of the contents of the full node to the new node. A node
pointer to the new leaf node is added to the root node.

For example, suppose that leaf node 3 in Figure 38-28 on page 38-51 becomes
full. When this occurs, the database server adds yet another leaf node. The
database server moves part of the records of leaf node 3 to the new leaf node
as depicted in Figure 38-29.

Creation of Branch Nodes

Eventually, as you add rows to the table, the database server fills the root
node with node pointers to all the existing leaf nodes. When the database
server splits yet another leaf node, and the root node has no room for an
additional node pointer, the following process occurs.

Figure 38-29
Leaf Node 4 Created After Leaf Node 3 Fills

Root

Leaf

Root node: 1

Leaf node: 3Leaf node: 2 Leaf node: 4
38-52 Administrator’s Guide for Informix Dynamic Server

Structure of B-Tree Index Pages
The database server splits the root node and divides its contents among two
newly created branch nodes. Just as it did in its first split, which created the
leaf level, the root node retains only two entries: one node pointer to the left
branch node and an infinity item pointing to the right one. Figure 38-30 illus-
trates this structure.

As index items are added, more and more leaf nodes are split, causing the
database server to add more branch nodes. Eventually, the root node fills
with pointers to these branch nodes. When this occurs, the database server
splits the root node again. The database server then creates yet another
branch level between the root node and the lower branch level. This process
results in a 4-level tree, with one root node, two branch levels, and one leaf
level. The B-tree structure can continue to grow in this way to a maximum of
20 levels.

Branch nodes can point either to other branch nodes below them (for very
large indexes of four levels or greater) or to leaf nodes. In Figure 38-31, the
branch node points to leaf nodes only. The first item in the left branch node
contains the same key value as the largest item in the left-most leaf node and
a node pointer to it. The next item contains the largest item in the next leaf
node and a node pointer to it, and so on.

Figure 38-30
Full B-Tree Structure

Root node

Branch nodes

Leaf nodes

Infinity Item

Node pointer
Disk Structures and Storage 38-53

Structure of B-Tree Index Pages
Duplicate Key Values

Duplicate key values occur when the value of an indexed column is identical
for multiple rows. For example, suppose that the third and fourth leaf nodes
of a B-tree structure contain the key value Smith. Suppose further that this
value is duplicated six times, as illustrated in Figure 38-32.

Figure 38-31
Typical Contents of

a Branch NodeHiggins
Lawson
(infinity item)

3
4
5

Left leaf node: 3 Right leaf node: 5

Branch node: 2

Left leaf node: 4

Grant
Hanlon
Henry
Higgins

215/0
219/0
222/0
221/0

Jaeger
Jewell
Keyes
Lawson

252/0
213/0
232/0
209/0

Miller
Neelie

223/0
217/0

Figure 38-32
Leaf Nodes 3 and 4

Left leaf node: 3 Right leaf node: 4

Branch node: 2

Keyes
Lawson
Smith

1
2
322/3
4

Smith 315/0
319/0
321/0
3221/0

Smith 323/0
327/0
38-54 Administrator’s Guide for Informix Dynamic Server

Structure of B-Tree Index Pages
The first item on the third leaf page contains the duplicate key value, Smith.
It also contains the rowid of the first physical row in the table that contains
the duplicate key value and a delete flag of 0. To conserve space, the second
item does not repeat the key value Smith but instead contains just the rowid
of the next physical row and a delete flag. This process continues throughout
the page; no other key values are on the leaf, only rowid/delete-flag pairs,
sorted by rowid.

The first item on the fourth leaf page again contains the duplicated key value
and a rowid/delete-flag pair. Subsequent items contain only rowid/delete-
flag pairs. Again, the rowids are sorted, and all have a rowid greater than the
largest rowid on the third leaf page.

Now consider the branch node. The third item in the branch node contains
the same key value and rowid as the largest item in the third leaf node and a
node pointer to it. The fourth item would contain only a node pointer to the
fourth leaf node, thus saving the space of an additional duplicate key value.

Physical Storage Format of Index Pages

An empty node is a 2- or 4-kilobyte area with a page header at the top and a
stamp and empty slot-table at the bottom (see Figure 38-33). The page header
contains the following information:

■ Location of page

■ Data used for consistency checking

■ Amount and location of free space

■ Links to left and right index pages at the same level

The last item, horizontal links to sibling index pages, is unique to index
pages. All nodes on the same level are horizontally linked, branch-to-branch
or leaf-to-leaf. These links are set to zero for root nodes because no other
index pages are at the root-node level.
Disk Structures and Storage 38-55

Structure of B-Tree Index Pages
The horizontal links are implemented as pointers to the next node. These
pointers, which are stored in the branch- or leaf-node page header, facilitate
sequential index scans. A sequential index scan occurs when the database
server traverses a table in index order.

The slot table grows upward from the bottom of the page as the database
server adds index items to the page. The slot-table entries point to the
physical location of the various items on the page as they are added.

What Happens Physically When You Insert Indexed Data?

When an index item is added to a node, the database server takes the
following actions:

1. Sets the length of the item to the size of the key value plus
rowid/delete flags

2. Copies the index item to the location indicated by the page free
pointer, if contiguous free space exists

3. Allocates a slot structure at page bottom and initializes it with a
pointer to the item and length of the item

4. Increments the free pointer by the length of the index item

5. Decrements the free counter by length plus size of slot structure

Figure 38-33
Physical Format of

Newly Created Index
Page

Page header: free count, free ptr

Index item
Index item
Index item

.

.

.

.

.

Slot-table entry, Page stamp
38-56 Administrator’s Guide for Informix Dynamic Server

Structure of B-Tree Index Pages
Key Value Locking

When the database server deletes a row with an index from a table, the
delete-flag portion of the index item is marked with a 1, and an exclusive lock
is placed on that index item. The database server does not delete the index
item from the index until you or your application commit the transaction.
After the transaction is committed, a request to delete the item is placed in a
list in shared memory called the btree cleaner list. This request consists of the
tblspace number, the page number of the index page, and the index number
for the key to be deleted. The requests in the list are read by the btree cleaner
thread at one-minute intervals or if the number of requests in the list exceeds
100; the thread then finds the index page and deletes the index item that is
marked as deleted.

You can also use the UPDATE STATISTICS statement to remove deleted items.
This statement acts as a backup for the normal method of removing deleted
index items. You might want to use this method, for example, when your
system fails resulting in outstanding delete requests. For additional infor-
mation about the UPDATE STATISTICS statement, see the Informix Guide to
SQL: Syntax.

Are Freed Index Pages Reused?

When the database server physically removes an index item from a node, it
checks if the node is a compression candidate. A node becomes a
compression candidate when the node contains two or less index items, and
the node is not a root node.

When the database server finds a compression candidate, the items contained
in the candidate are either merged or shuffled to another node immediately
to the right or left.

Merging

The database server merges items if the node to the right or left has space for
all the items contained in the compression candidate. When all the items are
merged with this sibling, the compression candidate is freed to be reused in
the table for any purpose necessary.
Disk Structures and Storage 38-57

Structure of B-Tree Index Pages
Shuffling

If neither of the siblings of a compression candidate has space for all of the
items, the database server moves items from the fuller of the two siblings to
the compression candidate until they have an approximately equal amount
of items. This process is termed shuffling.

Controlling How Indexes Are Filled

When you create an index, you can specify how densely or sparsely filled you
want the index. The index fill factor is a percentage of each index page that
will be filled during the index build. Use the FILLFACTOR option of the
CREATE INDEX statement or the FILLFACTOR configuration parameter to set
the fill factor. This option is particularly useful for indexes that you do not
expect to grow after they are built. For additional information about the
FILLFACTOR option of the CREATE INDEX statement, see the Informix Guide to
SQL: Syntax.

Calculating the Length of Index Items

Figure 38-34 illustrates the physical-storage format of index items. As shown
in this illustration, index items typically contain a key value and one or more
rowid/delete-flag pairs. For data types other than VARCHAR, the length of an
index item is calculated by adding the length of the key value plus 5 bytes for
each rowid/delete flag associated with the key value.

Figure 38-34
Index-Item FormatsRowid

Rowid Rowid

Key value

Key value

Del flag

Del flagDel flag

+4 +1

+4 +4+1 +1 n + 4 + 1 + 4 +1 = n + 10

n + 4 + 1 = n + 5

Index-item length

Index-item length

n

n

38-58 Administrator’s Guide for Informix Dynamic Server

Blobspace Structure and Storage
The key values in an index are typically of fixed length. If an index holds the
value of one or more columns of the VARCHAR data type, the length of the
key value is at least the sum of the length-plus-one of each VARCHAR value
in the key. A byte precedes the VARCHAR data in both the row and the key
value in the index. This byte contains the actual length of the VARCHAR
column. Because the maximum length of a key value is 390 bytes, the
combined size of VARCHAR columns that make up a key must be less than
390, minus an additional byte for each VARCHAR column. For example, the
key length of the index that the database server builds for the following state-
ments equals 390, or ((1+255) + (1+133)):

CREATE TABLE T1 (c1 varchar(255, 10), c2 varchar(133, 10));
CREATE INDEX I1 on T1(c1, c2);

Figure 38-34 illustrates the structure of an index item.

Blobspace Structure and Storage
This section explains the structures and storage techniques that the database
server uses to store TEXT and BYTE data in a blobspace.

Structure of a Blobspace
When you create a blobspace, you can specify the effective size of the data
pages, which are called blobpages. The blobpage size for the blobspace is
specified when the blobspace is created. Blobpage size must be a multiple of
page size. (See “Determining Database Server Page Size” on page 14-17.) All
blobpages within a blobspace are the same size, but the size of the blobpage
can vary between blobspaces. Blobpage size can be greater than the page size
because data stored in a blobspace is never written to the page-sized buffers
in shared memory.

The advantage of customizing the blobpage size is storage efficiency. Within
a blobspace, TEXT and BYTE data types are stored in one or more blobpages,
but objects do not share blobpages. Storage is most efficient when the TEXT
or BYTE data is equal to, or slightly smaller than, the blobpage size.
Disk Structures and Storage 38-59

Structure of a Blobspace
The blobspace free-map pages and bit-map pages are the size specified as a
database-server page, which enables them to be read into shared memory
and to be logged.

When the blobspace is first created, it contains the following structures:

■ Blobspace free-map pages

■ The blobspace bit map that tracks the free-map pages

■ Unused blobpages

Figure 38-35 illustrates the chunk structure of a blobspace as it appears
immediately after the blobspace is created.

Figure 38-35
Structure of a Chunk

in a Blobspace
Free-map pages

Unused space initialized as

Bit map that
tracks the
free-map pages
38-60 Administrator’s Guide for Informix Dynamic Server

TEXT and BYTE Data Storage and the Descriptor
TEXT and BYTE Data Storage and the Descriptor
Data rows that include TEXT or BYTE data do not include the data in the row
itself. Instead, the data row contains a 56-byte descriptor that includes a
forward pointer (rowid) to the location where the first segment data is stored.
The descriptor can point to a page (if the data is stored in a dbspace), a
blobpage (if the data is stored in a blobspace), or an optical platter (if you are
using the Optical Subsystem).

Figure 38-36 illustrates the structure of the 56-byte descriptor.

When Are TEXT or BYTE Objects Created?

When a row that contains TEXT or BYTE data is to be inserted, the TEXT or
BYTE objects are created first. After the objects are written to disk (or optical
medium), the row is updated with the descriptor and inserted.

Figure 38-36
Structure of the Descriptor for TEXT or BYTE data

typedef struct tblob
 {
 short tb_fd; /* TEXT or BYTE data descriptor (must be first) */
 short tb_coloff; /* Column offset in row */
 long tb_tblspace;/* TEXT or BYTE table space */
 long tb_end; /* ending byte: 0 for end of TEXT or BYTE data */
 long tb_size; /* Size of data */
 long tb_addr; /* Starting Sector or Blobpage */
 long tb_family; /* Family Number (optical support) */
 long tb_volume; /* Family Volume */
 short tb_medium; /* Medium - one if optical */
 short tb_bstamp; /* first Blobpage stamp */
 short tb_sockid; /* socket id of remote blob */
 short tb_flags; /* flags */
 long tb_sysid; /* optical system identifier */
 long tb_reserved2;/* reserved for the future */
 long tb_reserved3;/* reserved for the future */
 long tb_reserved4;/* reserved for the future */
 } tblob_t;
Disk Structures and Storage 38-61

Structure of a Dbspace Blobpage
Are TEXT and BYTE Objects Modified?

TEXT and BYTE objects are never modified. TEXT and BYTE objects can only
be inserted or deleted. Deleting an object means that the database server frees
the space consumed by the deleted blob for reuse.

 When TEXT or BYTE data is updated, a new TEXT or BYTE object is created,
and the data row is updated with the new blob descriptor. The old image of
the row contains the descriptor that points to the obsolete value for the TEXT
or BYTE object. The space consumed by the obsolete TEXT or BYTE object is
freed for reuse after the update is committed. TEXT or BYTE objects are
automatically deleted if the rows containing their blob descriptors are
deleted. (Blobpages that stored a deleted TEXT or BYTE object are not
available for reuse until the logical log that contains the original INSERT
record for the deleted TEXT or BYTE object is backed up. For more infor-
mation, see “Backing Up Logical-Log Files to Free Blobpages” on page 18-22)

What Limits the Size of TEXT and BYTE Objects?

The largest TEXT or BYTE object that the blob descriptor can accommodate is
(231 - 1), or about 2 gigabytes. This limit is imposed by the 4-byte integer that
defines the size of the TEXT or BYTE object in the blob descriptor.

Structure of a Dbspace Blobpage
TEXT or BYTE data that is stored in the dbspace is stored in a blobpage. The
structure of a dbspace blobpage is similar to the structure of a dbspace data
page. The only difference is an extra 12 bytes that can be stored along with
the TEXT or BYTE data in the data area.

TEXT and BYTE objects can share dbspace blobpages if more than one TEXT or
BYTE object can fit on a single page, or if more than one trailing portion of a
TEXT or BYTE object can fit on a single page.

For a general discussion of how to estimate the number of dbspace blobpages
needed for a specific table, see your Performance Guide.
38-62 Administrator’s Guide for Informix Dynamic Server

Structure of a Dbspace Blobpage
Each segment of TEXT or BYTE data stored in a dbspace page might be
preceded by up to 12 bytes of information that do not appear on any other
dbspace page. These extra bytes contain up to three pieces of information:

■ A 4-byte blob time stamp for this blob segment (required)

■ A 4-byte forward pointer (rowid) to the next portion of the blob
segment, if one exists (optional)

■ A 4-byte blob time stamp stored with the forward pointer to the next
portion of the blob segment (required if a forward pointer exists)

Figure 38-37 illustrates TEXT or BYTE data storage in a dbspace.

Figure 38-37
Dbspace Blobpage

Page header

TEXT or BYTE data
segment (first part)

Slot-table entry

Blob time stamp and
forward-pointer
information

TEXT or BYTE data segment (trailing part)

Blob time stamp

Page header

Time stamp

Free space

Next TEXT or BYTE data segment
Disk Structures and Storage 38-63

Blobspace Page Types
Blobspace Page Types
Every blobspace chunk contains three types of pages:

■ A blobspace free-map page

■ A bit-map page

■ Blobpages

What Is the Blobspace Free-Map Page?

The blobspace free-map page identifies unused blobpages so that the
database server can allocate them as part of blob creation. When a blobpage
is allocated, the free-map entry for that page is updated. All entries for a
single TEXT or BYTE object are linked.

A blobspace free-map page is the size of one database server page. Each entry
on a free-map page is 8 bytes, stored as two 32-bit words, as follows:

■ The first bit in the first word specifies whether the blobpage is free or
used.

■ The next 31 bits in the first word identify the logical-log file that was
current when this blobpage was written. (This information is needed
for logging TEXT or BYTE data.)

■ The second word contains the tblspace number associated with the
TEXT or BYTE object stored on this page.

The number of entries that can fit on a free-map page depends on the page
size of your computer. The number of free-map pages in a blobspace chunk
depends on the number of blobpages in the chunk.

What Is the Blobspace Bit-Map Page?

The blobspace bit-map page tracks the fullness and number of blobspace
free-map pages in the chunk. Each blobspace bit-map page is capable of
tracking a quantity of free-map pages that represent more than 4,000,000
blobpages. Each blobspace bit-map page is the size of one page.
38-64 Administrator’s Guide for Informix Dynamic Server

Structure of a Blobspace Blobpage
What Is the Blobpage?

The blobpage contains the TEXT or BYTE data. Blobpage size is specified by
the database server administrator who creates the blobspace. Blobpage size
is specified as a multiple of the page size.

Structure of a Blobspace Blobpage
The storage strategy used to store TEXT or BYTE objects in a blobspace differs
from the dbspace storage strategy. The database server does not combine
whole TEXT or BYTE objects or portions of a TEXT or BYTE object on a single
blobspace blobpage. For example, if blobspace blobpages are 24 kilobytes
each, a TEXT or BYTE object that is 26 kilobytes is stored on two 24-kilobyte
pages. The extra 22 kilobytes of space remains unused.

Blobpage Structure

The structure of a blobpage includes a blobpage header, the TEXT or BYTE
data, and a page-ending time stamp. The blobpage header includes, among
other information, the page-header time stamp and the blob time stamp
associated with the forward pointer in the data row. If a TEXT or BYTE object
is stored on more than one blobpage, a forward pointer to the next blobpage
and another blob time stamp are also included in the blobpage header.

Figure 38-38 illustrates the structure of a blobpage.

Figure 38-38
Blobspace Blobpage

TEXT or BYTE data segment

Page header

Free space

Time
Disk Structures and Storage 38-65

Structure of a Blobspace Blobpage
What Is in the Blobpage Header?

The blobpage header includes the following information:

■ The physical address of the blobpage

■ A page-header time stamp that indicates the last time this blobpage
was modified

■ A forward pointer to the blobpage that holds the next segment of
TEXT or BYTE data and an associated blob time stamp, if a next
segment exists

Otherwise, only the current page number appears, indicating this is
the last page.

■ A blob time stamp that describes the last time this page was allocated
(when TEXT or BYTE data was written to the page)

■ The size of this blobpage

■ A percentage of blobpage fullness

■ A unique identifier that is written when a blobpage is written to tape
(used only during the data-restore procedure)

Figure 38-39 on page 38-67 illustrates the different locations of the two pairs
of time stamps that appear on the blobspace blobpage
38-66 Administrator’s Guide for Informix Dynamic Server

Structure of a Blobspace Blobpage
.

The blob time stamps track the point at which a blobpage is allocated. Page-
header and page-ending time stamps validate page consistency and confirm
that the page write was successful.

Figure 38-39
Blobpage Time

Stamps

Blob time-stamp pair

Free space
Page-header and
page-ending
time stamps

Before the TEXT or BYTE object is overwritten

After the TEXT or BYTE object is overwritten

TEXT or BYTE data segment

Blob descriptor

Blob descriptor

003

004

96

003Header 96

Free space

TEXT or BYTE data segment

96

004Header 96
Disk Structures and Storage 38-67

Database and Table Creation: What Happens on Disk
Database and Table Creation: What Happens
on Disk
This section explains how the database server stores data related to the
creation of a database or table and allocates the disk structures that are
necessary to store your data.

Creating a Database
After the root dbspace exists, users can create a database. The paragraphs
that follow describe the major events that occur on disk when the database
server adds a new database.

Disk-Space Allocation for System Catalog Tables

The database server searches the chunk free-list pages (see “Structure of the
Chunk Free-List Page” on page 38-18) in the dbspace, looking for free space
in which to create the system catalog tables. For each system catalog table, in
turn, the database server the database server allocates eight contiguous
pages, the size of the initial extent of each system catalog table. The tables are
created individually and do not necessarily reside next to each other in the
dbspace. They can be located in different chunks. As adequate space is found
for the initial extent of each table, the pages are allocated, and the associated
chunk free-list page is updated.
38-68 Administrator’s Guide for Informix Dynamic Server

Creating a Table
System Catalog Tables Are Tracked

The database server tracks newly created databases in the database tblspace,
which resides in the root dbspace. An entry describing the database is added
to the database tblspace (see “Structure of the Database Tblspace” on
page 38-24) in the root dbspace. For each system catalog table, the database
server adds a one-page entry to the tblspace tblspace (see “Structure of the
Tblspace Tblspace” on page 38-19) in the dbspace where the database was
built. Figure 38-40 illustrates the relationship between the database tblspace
entry and the location of the systables table for the database.

For instructions on how to list your databases after you create them, see
“Monitoring Databases” on page 29-43.

Creating a Table
After the root dbspace exists, and a database has been created, users with the
necessary SQL privileges can create a database table. When users create a
table, the database server allocates disk space for the table in units called
extents (see “What Is an Extent?” on page 13-13). The paragraphs that follow
describe the major events that occur when the database server creates a table
and allocates the initial extent of disk space.

Figure 38-40
New DatabasesAn entry in the database tblspace (located

in the root dbspace) points to the database
systables table.

Database

Tblspaces

Dbspace

Systables
Disk Structures and Storage 38-69

Creating a Table
Disk-Space Allocation

The database server searches the chunk free-list pages (see “Structure of the
Chunk Free-List Page” on page 38-18) in the dbspace for contiguous free
space equal to the initial extent size for the table. When adequate space is
found, the pages are allocated, and the associated chunk free-list page is
updated. If space for the extent cannot be found, an error is returned.
(Because an extent is, by definition, contiguous disk space, extents cannot
span two chunks.)

Entry Is Added to Tblspace Tblspace

The database server adds a one-page entry for this table to the tblspace
tblspace in this dbspace. The tblspace number (see “What Is the Tblspace
Number?” on page 38-21) assigned to this table is derived from the logical
page number in the tblspace tblspace where the table is described.

The tblspace number indicates the dbspace where the tblspace is located.
Tblspace extents can be located in any of the dbspace chunks. Execute
oncheck -pe for a listing of the dbspace layout by chunk if you must know
exactly where the tblspace extents are located.

Entries Are Added to the System Catalog Tables

The table itself is fully described in entries stored in the system catalog tables
for the database. Each table is assigned a table identification number or tabid.
The tabid value of the first user-defined table in a database is always 100. For
a complete discussion of the system catalog, see the Informix Guide to SQL:
Reference.
38-70 Administrator’s Guide for Informix Dynamic Server

Creating a Table
Figure 38-41 illustrates the pointers within the disk data structures that track
and monitor the disk space allocated to a table.

Figure 38-41
New Tables

Tblspace

Tblspace

Tblspace

Tblspace

Dbspace

Tblspace tblspace

Initial extent

Next extent

Dbspace

Initial extent

Initial extent

Initial extent
Disk Structures and Storage 38-71

Creating a Table
A table can be located in a dbspace that is different than the dbspace that
contains the database. The tblspace itself is the sum of allocated extents, not
a single, contiguous allocation of space. The database server tracks tblspaces
independently of the database.

What Happens on Disk When a Temporary Table Is Created?

The tasks involved in creating temporary tables are similar to the tasks that
the database server performs when it adds a new permanent table. The key
difference is that temporary tables do not receive an entry in the system
catalog for the database. For more information on temporary tables, see
“What Is a Temporary Table?” on page 13-24.
38-72 Administrator’s Guide for Informix Dynamic Server

A
Appendix
Files That the Database
Server Uses
This appendix provides brief summaries of the files that you use
when you configure and use Dynamic Server. The filenames are
shown in a UNIX format. For Windows NT, the file names are the
same with the following format:

maindirectory\subdirectory\subdirectory

This appendix also includes descriptions of some of the files and
one directory that the database server creates and uses internally.
For many of these files, your only responsibility is to recognize
that they are legitimate.

Figure A-1 lists the database server files and the directories that
contain them. In the table in Figure A-1 on page A-2 and
throughout the chapter, the directory examples are shown using
UNIX pathname syntax. The Windows NT directories use the
same filenames. The following table provides examples of the
difference between UNIX pathname syntax and Windows NT
pathname syntax.

UNIX Syntax Windows NT Syntax

/usr/lib \usr\lib

$INFORMIXDIR/etc %INFORMIXDIR%\etc

Figure A-1
Files that the Database Server Uses

Filename Directory Purpose Created

af.xxx specified by DUMPDIR
configuration
parameter

assertion-failure
information

by the
database
server

buildsmi.xxx /tmp error messages
about SMI
database

by the
database
server

config.arc $INFORMIXDIR/etc configuration for
archiving

during instal-
lation;
modified by
user
informix ♦

core directory from which
the database server
was invoked

core dump by the
database
server ♦

gcore specified by DUMPDIR
configuration
parameter

assertion failure
information

by the
database
server ♦

illlsrra.xx On UNIX: lib and
/usr/lib

On Windows NT: lib

shared libraries
for the database
server and some
utilities

by install
procedure

.informix user’s home directory set personal
environment
variables

by the user

informix.rc $INFORMIXDIR/etc set default
environment
variables for all
users

by user
informix

Directory:
INFORMIXTMP

INFORMIXTMP create and
maintain local
files

by the
database
server

 (1 of 3)

UNIX

UNIX

UNIX
A-2 Administrator’s Guide for Informix Dynamic Server

.inf.servicename /INFORMIXTMP connection
information

by the
database
server

.infos.servername $INFORMIXDIR/etc connection
information

by the
database
server

message log; filename
specified by MSGPATH
configuration
parameter

specified by MSGPATH error messages
and status
information

by the
database
server

ONCONFIG file;
filename specified by
ONCONFIG
environment variable

$INFORMIXDIR/etc configuration
information

by user
informix

onconfig $INFORMIXDIR/etc default
ONCONFIG file
(optional)

by user
informix

onconfig.std $INFORMIXDIR/etc template for
ONCONFIG file

during
installation

oncfg_servername.ser
vernum

$INFORMIXDIR/etc information for
full-system
restores

by the
database
server

oper_dflt.arc $INFORMIXDIR/etc defaults for
archiving

during instal-
lation;
modified by
user
informix ♦

servicename.exp /INFORMIXTMP connection
information

by the
database
server

servicename.str /INFORMIXTMP connection
information

by the
database
server

Filename Directory Purpose Created

 (2 of 3)

UNIX
Files That the Database Server Uses A-3

Descriptions of Files
Descriptions of Files
This section gives short descriptions of the files listed in Figure A-1.

af.xxx
The database server writes information about an assertion failure into the
af.xxx file. The file is stored in the directory specified by the DUMPDIR config-
uration parameter. For more information, see “Monitor for Data
Inconsistency” on page 27-7.

buildsmi.xxx
If the database server cannot build the sysmaster database, it places a
message in the message log that refers you to the buildsmi.xxx file. This file
provides information about why the build failed. For information about the
sysmaster database, see Chapter 34, “The sysmaster Database.”

shmem.xxx specified by DUMPDIR
configuration
parameter

assertion-failure
information

by the
database
server

sqlhosts $INFORMIXDIR/etc connection
information

during instal-
lation;
modified by
user
informix ♦

VP.servername.nnx /INFORMIXTMP connection
information

by the
database
server

Filename Directory Purpose Created

 (3 of 3)

UNIX
A-4 Administrator’s Guide for Informix Dynamic Server

core
core
The core file contains a core dump caused by an assertion failure. The
database server writes this file into the directory from which the database
server was invoked. For more information, see “Monitor for Data Inconsis-
tency” on page 27-7.

gcore.xxx
The database server writes information about an assertion failure into the
gcore.xxx file. The file is stored in the directory specified by the DUMPDIR
configuration parameter. For more information, see “Monitor for Data Incon-
sistency” on page 27-7.

illlsrra.xx
The illlsrra.xx files are shared libraries that the database server and some
database server utilities use. The shared libraries, if supported on your
platform, are installed in lib. Additionally on UNIX, symbolic links to them
are automatically created in /usr/lib when the products are installed on your
computer.

The naming convention of the Informix shared library filename is:

illlsrra.xx

Important: The symbolic links to the shared libraries in /usr/lib are automatically
created by the product installation procedures on UNIX. However, if your
$INFORMIXDIR is not installed using the standard installation method (for
example. your $INFORMIXDIR is NFS-mounted from another computer), you or
your system administrator may need to manually create the symbolic links of the
shared libraries in /usr/lib on your computer.

lll library class (for example, “asf” or “smd”)

s library subclass (d=DSA; s=standard)

rr major release number (for example, “07” or “08”)

a library version ID (for example, “a” or “b”)

xx shared-library filename extension (for example, “so”)

UNIX

UNIX
Files That the Database Server Uses A-5

.informix
.informix
The .informix file (~/.informix on UNIX) is the private-environment file. Users
can create this file and store it in their home directory. Chapter 4 of the
Informix Guide to SQL: Reference discusses the environment-configuration
files.

informix.rc
The informix.rc file is the environment-configuration file. You can use it to set
environment variables for all users of Informix products. Chapter 4 of the
Informix Guide to SQL: Reference discusses the environment-configuration
files.

INFORMIXTMP
The INFORMIXTMP directory is an internal database server directory. During
initialization, the database server creates this directory (if it does not exist
yet) for storing internal files that must be local and relatively safe from
deletion.These internal files cannot be saved in INFORMIXDIR or tmp
because INFORMIXDIR is not necessarily local, and files in tmp can easily be
deleted by accident.

.inf.servicename
The database server creates .inf.servicename if any DBSERVERNAME or
DBSERVERALIASES uses a shared-memory connection. The database server
removes the file when you take the database server off-line. The database
server derives the name of this file from the servicename field of the sqlhosts
file. The database server keeps information about client/server connections
in this file.

You do not use .inf.servicename directly. You only need to recognize that it is
a legitimate file when it appears in the INFORMIXTMP directory.

If this file is accidentally deleted, you must restart the database server.
A-6 Administrator’s Guide for Informix Dynamic Server

.infos.servername
.infos.servername
The database server creates .infos.servername when you initialize shared
memory and removes the file when you take the database server off-line. The
database server derives the name of this file from the DBSERVERNAME
parameter in the ONCONFIG file. The database server uses this file to attach
to utilities such as onstat.

You do not use .infos.servername directly. You only need to recognize that the
file is a legitimate file when it appears in your INFORMIXDIR/etc directory.

Message Log
The database server writes status and error information into the message-log
file. Use the MSGPATH configuration parameter to specify the filename and
location of the message log. For more information, see “MSGPATH” on
page 33-55.

oncatlgr.out.pidnum
The oncatlgr.out.pidnum file is created when the oncatlgr utility is started
using the start_oncatlgr script. The file contains output messages from
oncatlgr. For information about oncatlgr, see the Archive and Backup Guide.

ONCONFIG File
The ONCONFIG file is the current configuration file. The database server uses
the ONCONFIG file during initialization. To maintain compatibility with
earlier versions, the database server also recognizes the TBCONFIG
environment variable. However, Informix recommends that you use
ONCONFIG.
Files That the Database Server Uses A-7

onconfig
If you start the database server with oninit and do not explicitly set the
ONCONFIG environment variable, the database server uses the configuration
file specified by the TBCONFIG environment variable. If neither ONCONFIG
nor TBCONFIG is set, and onconfig does not exist, the database server returns
the following error message:

WARNING: Cannot access configuration file $INFORMIXDIR/etc/$ONCONFIG.

For more information, see Chapter 3, “Configuring the Database Server.”

onconfig
The onconfig file is an optional file in the etc directory. It contains configu-
ration information. You can create the onconfig file by copying onconfig.std
or one of your customized configuration files.

onconfig.std
The onconfig.std file is the configuration-file template. It contains default
values for the configuration parameters and serves as the template for all
ONCONFIG files that you create. To use the template, copy it into another file,
and modify the values. Do not modify onconfig.std.

For more information, see “A Sample onconfig.std File” on page A-10,
“Configuring the Database Server” on page 3-7, and Chapter 33, “Configu-
ration Parameters”.

oncfg_servername.servernum
The database server creates oncfg_servername.servernum when you
initialize disk space (oninit -i). The database server updates
oncfg_servername.servernum every time you add or delete a dbspace, a
logical-log file, or a chunk. The database server uses
oncfg_servername.servernum when it salvages logical-log files during a full-
system restore. The database server derives the name of this file from the
values of the DBSERVERNAME and SERVERNUM parameters in the
ONCONFIG file.
A-8 Administrator’s Guide for Informix Dynamic Server

oper_deflt.arc
You do not use oncfg_servername.servernum directly. You only need to
recognize that these files are legitimate files when they appear in your etc
directory. For more information, see “Create the
oncfg_servername.servernum File” on page 8-10.

oper_deflt.arc
The oper_deflt.arc file contains default command qualifier values used by
ON-Archive. The Archive and Backup Guide describes the oper_dflt.arc file.

Users can set the ARC_DEFAULT environment variable to point to a file that
contains personal defaults that differ from the defaults in oper_deflt.arc.

servicename.exp
On some platforms, the database server creates servicename.exp if a
DBSERVERNAME or DBSERVERALIASES uses a stream-pipe connection. The
database server uses servicename.exp to handle expedited data, which
occurs when the client program issues sqlbreak() or the user enters CTRL-C.
The database server removes servicename.exp when you take the database
server off-line. The database server derives the name of this file from the
servicename field of the sqlhosts file.

You do not use the servicename.exp file directly. You only need to recognize
that it is a legitimate file when it appears in the INFORMIXTMP directory.

servicename.str
The database server creates servicename.str if a DBSERVERNAME or DBSERV-
ERALIASES uses a stream-pipe connection. The database server removes
servicename.str when you take the database server off-line. The database
server derives the name of this file from the servicename field of the sqlhosts
file. The database server keeps information about client/server connections
in servicename.str.

You do not use servicename.str directly. You only need to recognize that it is
a legitimate file when it appears in the INFORMIXTMP directory.

If this file is accidentally deleted, you must restart the database server.

UNIX
Files That the Database Server Uses A-9

shmem.xxx
shmem.xxx
The database server writes information about an assertion failure into the
shmem.xxx file. The file is stored in the directory specified by the DUMPDIR
configuration parameter. For more information, see “Monitor for Data Incon-
sistency” on page 27-7.

sqlhosts
The sqlhosts file is the connectivity file. It contains information that lets an
Informix client application connect to an Informix database server. For more
information, see Chapter 4, “Client/Server Communications.”

Tip: On Windows NT, the connectivity information is in a key in the Windows
registry called HKEY_LOCAL_MACHINE\SOFTWARE\Informix\SQLHOSTS.

VP.servername.nnx
The database server creates VP.servername.nnx, if needed, when you
initialize shared memory. The database server derives the name of this file
from the DBSERVERNAME or DBSERVERALIASES in the ONCONFIG file, the
VP number (nn), and an internal identifier (x). The database server keeps
information about client/server connections in VP.servername.nnx.

You do not use the file directly. You only need to recognize that it is a legit-
imate file.

If this file is accidentally deleted, you must restart the database server.

A Sample onconfig.std File
The following file is a sample copy of the onconfig.std file. Some of the values
might be different from the ones in your onconfig.std file because some
values are platform dependent.

UNIX
A-10 Administrator’s Guide for Informix Dynamic Server

A Sample onconfig.std File
#***
#
INFORMIX SOFTWARE, INC.
#
Title:onconfig.ids
Description: Informix Dynamic Server Configuration Parameters
#
#***

Root Dbspace Configuration

ROOTNAMErootdbs # Root dbspace name
ROOTPATH/dev/dynsrv_root # Path for device containing root dbspace
ROOTOFFSET0 # Offset of root dbspace into device (Kbytes)
ROOTSIZE50000 # Size of root dbspace (Kbytes)

Disk Mirroring Configuration Parameters

MIRROR0 # Mirroring flag (Yes => 1, No => 0)
MIRRORPATH # Path for device containing mirrored root
MIRROROFFSET0 # Offset into mirrored device (Kbytes)

Physical Log Configuration

PHYSDBSrootdbs # Location (dbspace) of physical log
PHYSFILE5000 # Physical log file size (Kbytes)

Logical Log Configuration

LOGFILES10 # Number of logical log files
LOGSIZE1000 # Logical log size (Kbytes)

Configuration Manager

CONFIGSIZE STANDARD # Amt of rootdbs space to reserver for CM data
Only applies to CM coservers

Diagnostics

MSGPATH/usr/informix/online.log # System message log file path
CONSOLE/dev/console # System console message path
ALARMPROGRAM # Alarm program path

System Configuration

SERVERNUM102 # Unique id corresponding to a db server instance
DBSERVERNAMExyz32t_prod # Name of default database server
DBSERVERALIASES # List of alternate dbservernames
NETTYPEipcshm,1,20,CPU # Override sqlhosts nettype parameters
DEADLOCK_TIMEOUT 60 # Max time to wait of lock in distributed env.
RESIDENT0 # Forced residency flag (Yes = 1, No = 0)

MULTIPROCESSOR 0 # 0 for single-processor,
 # 1 for multi-processor
Files That the Database Server Uses A-11

A Sample onconfig.std File
NUMCPUVPS1 # Number of user (cpu) vps
SINGLE_CPU_VP 0 # If non-zero, limit number of cpu vps to one

NOAGE0 # Process agingy
AFF_SPROC0 # Affinity start processor
AFF_NPROCS0 # Affinity number of processors

Shared Memory Parameters

LOCKS5000 # Maximum number of locks
BUFFERS2000 # Maximum number of shared buffers
NUMAIOVPS # Number of asynchronous I/O VPs
NUMFIFOVPS2 # Number of FIFO VPs
PHYSBUFF32 # Physical log buffer size (Kbytes)
LOGBUFF32 # Logical log buffer size (Kbytes)
LOGSMAX100 # Maximum number of logical log files
CLEANERS 1 # Number of buffer cleaner processes
SHMBASE 0x30000000L # Shared memory base address
SHMVIRTSIZE8000 # Initial virtual shared memory segment size
SHMADD 8192 # Size of new shared memory segments (Kbytes)
SHMTOTAL 0 # Total shared memory (Kbytes). 0=>unlimited
CKPTINTVL 300 # Check point interval (in seconds)
LRUS8 # Number of LRU queues
LRU_MAX_DIRTY60 # LRU percent dirty begin cleaning limit
LRU_MIN_DIRTY50 # LRU percent dirty end cleaning limit
LTXHWM50 # Long transaction high water mark percentage
LTXEHWM60 # Long transaction high water mark
TXTIMEOUT300 # Transaction timeout (in seconds)
STACKSIZE32 # Stack size (Kbytes)

System Page Size

BUFFSIZE - Dynamic Server no longer supports this configuration parameter.
To determine the page size used by the Dynamic Server on your platform
see the last line of output from the command, 'onstat -b'.

Recovery Variables
OFF_RECVRY_THREADS:
Number of parallel worker threads during fast recovery or an offline restore.
ON_RECVRY_THREADS:
Number of parallel worker threads during an online restore.

OFF_RECVRY_THREADS 10 # Default number of offline worker threads
ON_RECVRY_THREADS 1 # Default number of online worker threads

Data Replication Variables
DRAUTO: 0 manual, 1 retain type, 2 reverse type
DRAUTO0 # DR automatic switchover
DRINTERVAL30 # DR max time between DR buffer flushes (secs)
DRTIMEOUT30 # DR network timeout (in sec)
DRLOSTFOUND/usr/informix/etc/dr.lostfound # DR lost+found file path

Read Ahead Variables
RA_PAGES # Number of pages to attempt to read ahead
A-12 Administrator’s Guide for Informix Dynamic Server

A Sample onconfig.std File
RA_THRESHOLD # Number of pages left before next group

DBSPACETEMP:
This is the list of dbspaces
that the SQL Engine will use to create temp tables etc.
The list can be specified using various preset “sets” that are
ALL - all dbspaces can be used for temp files
TEMP - use only temporary dbspaces for temp files
NOTCRITICAL - use only non-critical dbspaces for temp files
Critical dbspaces are the rootdbspaces and dbspaces containing
log files.
The list an also be specified as an explicit list of dbspaces/dbslices
that exist when the Dynamic Server is brought online. If not specified,
or if all dbspaces specified are invalid, various ad hoq queries will create
temporary files in /tmp instead. If a dbspaces in this list is
added to the system at a later point in time, it is automatically added
to the list of dbspaces that can be used for temp purposes.

DBSPACETEMPNOTCRITICAL# Default temp dbspaces

DUMP*:
The following parameters control the type of diagnostics information which
is preserved when an unanticipated error condition (assertion failure) occurs
during Dynamic Server operations.
For DUMPSHMEM, DUMPGCORE and DUMPCORE 1 means Yes, 0 means No.

DUMPDIR/tmp # Preserve diagnostics in this directory
DUMPSHMEM1 # Dump a copy of shared memory
DUMPGCORE0 # Dump a core image using 'gcore'
DUMPCORE0 # Dump a core image (Warning: this aborts Dynamic)

Server
DUMPCNT1 # Number of shared memory or gcore dumps for

 # a single user's session

ADT*
The following parameters control the type and level of secure auditing
present in the Dynamic Server system. By default, ADTMODE is 0 and auditing
is disabled

ADTMODE0# Auditing mode
ADTPATH/tmp# Directory where audit trails will be written

by Dynamic Server
ADTSIZE50000# Maximum size of any single audit trail file
ADTERR0 # 0 ==> retry railed audit writes;

1 ==> log failure
Index Fill Factor

FILLFACTOR90 # Fill factor for building indexes

Method for Dynamic Server to use when determining current time

USEOSTIME0 # 0: use internal time (fast),
 # 1: get time from OS (slow)
Files That the Database Server Uses A-13

A Sample onconfig.std File
Parallel Database Queries (pdq)
PDQPRIORITY0 # Degree of parallism: 0 => OFF, 1 => LOW,

 # -2 => HIGH, max of 100.
MAX_PDQPRIORITY 100 # Maximum allowed pdqpriority
DS_MAX_QUERIES # Maximum number of decision support queries
DS_TOTAL_MEMORY # Decision support memory (Kbytes)
DS_MAX_SCANS 1048576 # Maximum number of decision support scans
DATASKIP # List of dbspaces to skip

Backup/Restore variables

BAR_ACT_LOG /tmp/bar_act.log # File for errors, warnings, and messages
BAR_RETRY 1 # Number of times to retry failures
BAR_XPORT_COUNT 10 # Number of transport buffers per worker
BAR_XFER_BUFSIZE 8 # Size of each transport buffer

LOG_BACKUP_MODE MANUAL # When to backup logical log files:
 # CONT - backup as soon as the file fills
 # MANUAL - user must perform log backups
 # NONE - don't backup logs and re-use them
 # as soon as they fill. Use of
 # NONE is not recommended as data
 # will be lost if the Dynamic Server
 # must be restored
BAR_IDLE_TIMEOUT 5
BAR_BSALIB_PATH /usr/lib/ibsad001.so # full pathname of storage manager
 # XBSA shared library
Storage Manager instances
BAR_SM 1 # Storage manager ID
BAR_SM_NAME A # Storage manager name
BAR_WORKER_COSVR 1 # Storage manager is located on coserver 1
BAR_DBS_COSVR 1-5 # Route dbspaces from this coserver to this
 # storage manager instance
BAR_LOG_COSVR 1-5 # Route logical log files from this coserver to this
 # storage manager instance
BAR_WORKER_MAX 1 # Number of backup/restore objects this storage
 # manager can support concurrently
END
A-14 Administrator’s Guide for Informix Dynamic Server

B
Appendix
Trapping Errors
Occasionally, a series of events causes the database server to
return unexpected error codes. If you do not have the appro-
priate diagnostic tools in place when these events occur, it might
be difficult for you to determine the cause of these errors.

To help you collect additional diagnostics, you can use onmode
-I to instruct Dynamic Server to perform the same diagnostics
collection procedures described in “Collecting Diagnostic Infor-
mation” on page 27-11. You can use onmode -I whenever you
encounter an error number by supplying the iserrno and an
optional session ID. The -I option is just one of many onmode
options. For more information about onmode, see “onmode:
Mode and Shared-Memory Changes” on page 35-28.

Syntax

Whenever the database server sets the iserrno to this value, the corresponding
diagnostics events will occur producing an af.* file that you can fax or email
to Informix Technical Support. b

Element Purpose Key Considerations
-I iserrno Error number of the error for which you want to collect diagnostic

information.
None.

sid Session ID of the session for which you want to collect diagnostic
information.

None.

iserrnoonmode -I
,

sid
B-2 Administrator’s Guide for Informix Dynamic Server

Index

Index
A
Adding listen threads 9-33
Adding virtual processors 9-17
ADM (Administration virtual

processor) 9-17
Administrative tasks

configuration tasks 2-7
consistency checking 27-4
controlling location of

storage 13-16
cron jobs 3-34
initial tasks 2-4
list of tasks 3-31
planning 3-3
routine tasks 2-5
situations to avoid 28-3
startup and shutdown

scripts 3-31
ADT (audit) virtual processor 9-36
ADTMODE parameter

mentioned 9-36
AFF_NPROCS parameter

description of 33-9
purpose of 9-22

AFF_SPROC parameter
description of 3-24, 33-10
processor affinity 9-23
purpose of 9-22

af.xxx file A-4
Aggregate, parallel processing

of 9-10
AIO virtual processors

how many 9-28
NUMAIOVPS parameter 9-27
when used 9-27

ALARMPROGRAM
parameter 29-8

Allocating disk space
extent 13-14
for mirrored data 24-5
initial configuration 3-28
procedure 14-4

ALTER TABLE statement
mentioned 4-51

Alternate dbservername 33-17
ANSI compliance

level Intro-16
ANSI-compliant transaction

logging. See Logging.
Application

client. See Client application.
Applications, types of 15-12
Archive

preparing environment in
multiple-residency setting 6-8

reserved page information 38-14
using ontape 35-95
with multiple residency 6-8

Archive configuration file A-9
Archiving

strategy 3-3
ARC_KEYPAD environment

variable A-9
ASF 4-6
ASF. See Connectivity.
Assertion failure

and data corruption 27-9
description of 2-6, 27-3
determining cause of 27-11
DUMPCNT parameter 3-27,

33-32

DUMPCORE parameter 33-33
DUMPSHMEM parameter 3-27,

33-35
during consistency checking 27-7
during processing of user

request 27-8
form in message log 27-7

Assertion failure file A-4
af.xxx 27-7
gcore A-5
gcore.xxx 27-7
list of 27-7
shmem.xxx 27-7, A-10

Asterisk, as wildcard in hostname
field 4-36

Asynchronous I/O 9-26
and NUMAIOVPS

parameter 33-61
write requests for mirrored

data 23-9
Attaching to shared memory

additional segments 11-15
client to communications

portion 11-11
database server utilities 11-12
description of 11-11
virtual processors 11-12
virtual processors and key

value 11-13
Audit mode 9-36
Audit records

and sysaudit table 34-10
Auditing 1-12, 34-9, 34-10
Authentication

default policy 4-14
description of 4-14

Automatic recovery, by two-phase
commit protocol 30-10

Availability
and critical media 13-16
as goal in efficient disk

layout 13-33
improving with

fragmentation 15-5
sample disk layout 13-40

B
Backup

active users, and 1-9
and fragmentation 15-5
dbspace backup, mentioned 1-9
displaying contents of 35-23
freeing a log file 19-14
mentioned 13-32
of TEXT and BYTE data 13-21
planning for 3-4
reducing size of 13-21
strategy 3-3
transaction records 1-9
with multiple residency 6-8

Bad-sector mapping, absence
of 1-12

Before-image
contents 22-6
described 20-3
flushing of 11-47
in physical log buffer 11-47
journal. See Physical log.
role in buffer modification 11-46

Big buffers
and regular buffers 11-31
description of 11-31

Big-remainder page 38-41
Binding CPU virtual processors

and AFF_NPROCS
parameter 33-9

benefit of 9-12
parameters 9-23

Bit-map page
2-bit values describing

fullness 38-26
4-bit values describing

fullness 38-27
component of a tblspace 13-27
component of an extent 38-29
component of the tblspace

tblspace 38-22, 38-23
description of 38-25
location in extent 38-25
of a blobspace 38-64
role of 4-bit page 38-26
structure of 38-25
types of entries 38-25

Blobpage
average fullness statistics 35-13
blobpage size 38-59
blobpage size and storage

efficiency 14-21
components of page header 38-66
description of 13-11
freeing deleted pages 18-22
fullness terminology

explained 14-23
interpreting average

fullness 14-23
oncheck -pB display

explained 14-22
relationship to chunk 13-12
size, storage efficiency of 38-59
sizing for performance 14-21
sizing recommendations 13-12
specifying size of 38-59
storage statistics 14-21
structure and storage 38-59, 38-65
structure in dbspace 38-62
writes bypass shared

memory 11-63
Blobspace

activating 18-21
adding a chunk 14-14, 14-18
bit-map page 38-64
blobpage structure 38-65
blobpage time stamps 11-61
buffers 11-64
creating using ON-Monitor 14-17
creating using onspaces 14-17
description of 13-21
dropping using ON-

Monitor 14-20
dropping, initial tasks 14-19
free-map page

description of 38-64
location in blobspace 38-60
role in blobpage logging 18-23,

38-64
role in tracking blobpages 11-65
tracked by bit-map 38-64

in physical and logical log 13-21
logical-log administration tasks

for 18-21
monitoring for fullness 13-21
multiple residency 6-8
2 Administrator’s Guide for Informix Dynamic Server

overhead pages 18-22
page types 38-64
purpose of 13-21
restriction concerning

dropping 35-52
storage efficiency 14-21
storage statistics 14-21
structure 38-59
structure of blobspace mirror

chunk 38-17
TEXT and BYTE data

storage 38-61
writing data to 11-63
writing TEXT and BYTE

data 11-65
Blobspace blobpage

and physical logging 20-5
Block device 13-6
Boot file. See Startup script.
B-tree

cleaner list 38-57
indexing 38-48
structure 38-48

Buffer
access-level flag bits 35-71
big buffers 11-31
blobpage buffer 11-64
concurrent access 11-43
current lock-access level for 11-27
data replication 11-24, 25-10
dirty 11-46
exclusive mode 11-36
flushing 11-46
how a thread accesses a buffer

page 11-43
how a user thread acquires 11-38
how thread releases after

modification 11-46
least-recently used 11-38
lock types 11-36
lock-access level of 11-44
logical-log buffer 11-22, 11-46
maximum number 11-20
minimum requirement 11-20
monitoring statistics and use

of 29-20
most-recently used 11-38
not dirty 11-46
page-type codes 35-70

physical-log buffer 11-24, 11-46
reading from disk 11-44
regular buffer 11-19
releasing if no thread

waiting 11-45
releasing if thread waiting 11-45
releasing when modified 11-45
releasing when not

modified 11-45
share lock 11-36
status 11-27
synchronizing flushing 11-46
threads waiting for 11-27
what occurs when

modified 11-45
write types during flushing 11-51

Buffer flushing
description of 11-46
how synchronized 11-50

Buffer pool
bypassed by blobspace data 11-63
contents of 11-19
description of 11-19
flushing 11-47
LRU queues management 11-38
monitoring activity 29-23
read-ahead 11-42
synchronizing buffer

flushing 11-50
Buffer table

contents of 11-27
description of 11-27
LRU queues 11-37

Buffered logging, when
flushed 16-9

Buffered transaction logging. See
Logging.

BUFFERS parameter
description of 11-20, 33-12

Buffer-size option, in options
field 4-44

BUFFSIZE. See Page size.
buildsmi script

buildsmi.xxx file, description A-4
error log message 36-16
failure of A-4
when initializing database

server 34-4

BYTE data type
Committed Read isolation 11-62
requires 4-bit bit map 38-26, 38-29

Byte lock 11-29

C
Cache. See Shared-memory buffer

pool.
Cascading deletes 16-5
Cataloger, ON-Archive,

mentioned 6-8
Cautions 28-3
Central registry, sqlhosts 4-29
Checkpoint

and chunk writes 11-53
and flushing of regular

buffers 11-47
and logical-log file 11-57
and physical-log buffer 11-57,

20-11
description of 11-57
events that initiate 11-57
force with onmode -c 35-32
forcing, to free logical-log

file 12-16
mentioned 8-9
monitoring activity 29-16
reserved page information 38-9
role in data replication 25-14
role in fast recovery 11-59, 22-5,

22-6
step in shared-memory

initialization 8-9
updating the reserved pages 38-7

Chunk
activity during mirror

recovery 23-8
adding to a blobspace 14-18
adding to a dbspace 14-14
adding to mirrored dbspace 24-9
adding using ON-Monitor 14-15
adding using onspaces 14-15
allocating initial 14-8
and associated partitions 13-34
changing mirror chunk

status 24-10
checking for overlap 35-12
Index 3

chunk status as PD 27-10
creating a link to the

pathname 14-9, 24-5
defining multiple in a

partition 14-5
description of 13-5
dropping from a blobspace or

sbspace 14-19
dropping from a dbspace 14-18
exceeding size limits with

LVM 13-46
free-list page 38-15, 38-16, 38-18
general disk layout

guidelines 13-34
initial chunk of dbspace 38-4
initial mirror offset 33-53
I/O errors during

processing 27-10
limits on size and number 13-5
maximum size of 13-5
mirror chunk reserved page

information 38-13
monitoring 29-53, 34-11
multiple residency 6-8
name, when allocated as raw

device 13-7
pathname stored 38-11
purpose of 13-5
recovering a down chunk 24-10
relation to extent 13-14
relinking after disk failure 24-12
reserved page information 38-11
structure

additional dbspace chunk 38-16
initial dbspace chunk 38-15
mirror chunk 38-17

using a symbolic link for the
pathname 33-76

Chunk free list
how checked by oncheck 35-11

Chunk table
and mirroring 11-28
contents of 11-28
description of 11-28

Chunk write
checkpoints 11-53
monitoring 29-24

CKPTINTVL parameter
description of 33-13
initiating checkpoints 11-57

Classes of virtual processor 9-7
CLEANERS parameter

description of 33-14
purpose of 11-29

Client
and USEOSTIME configuration

parameter 33-91
client id 35-77
connecting to primary server 25-5
connecting to secondary

server 25-5
description of 1-4
designing for redirection 25-23
enabling communication 4-17
finding and connecting to a

host 4-27
improving performance and

availability 25-4
killing a client session 35-33
loopback connection 4-12
printing client sessions 35-76
reacting to failure 25-17
redirecting and connectivity in

data replication 25-22
redirecting in data

replication 25-18
remote 4-22
results of connection 33-62
security requirements 4-22
specifying a dbservername 4-51
specifying dbservername 33-18

Client application
redirecting in data

replication 25-22
testing 5-4
wildcard addressing 4-38

Client-server protocol 4-9
Client/server architecture

description of 1-4
Client/server configuration

example
7.2 client with 5.x server 4-63
7.2 relay module 4-60
local loopback 4-55
multiple connection types 4-57
multiple database servers 4-59

multiple residency 4-59
network connection 4-56
shared memory 4-54
using IPX/SPX 4-57

listen and poll threads 9-30
local loopback 4-12
remote host 4-8
shared memory 4-10

Cold restore, number of recovery
threads 33-63

Command-line conventions
elements of Intro-11
example diagram Intro-12
how to read Intro-12

Comment icons Intro-9
COMMIT statement, unbuffered

logging 16-9
Committed Read isolation level

data-consistency checks 11-62
role of blob time stamps 11-61

Commit, heterogeneous 30-38
Communication configuration file.

See ONCONFIG configuration
file.

Communication support services
description of 4-13

Communications portion of shared
memory

how client attaches 11-11
Communications portion (shared

memory)
contents of 11-34
description of 11-34
size of 11-34

Communications support module
configuring 4-15
DCE-GSS module 4-14
description of 4-14
sqlhosts file 4-15
sqlhosts option field 4-45

Communications support services
message integrity 4-14
message privacy 4-14

Communication, client to database
server. See Connectivity.

Compactness, of index page 33-36
Compliance, with industry

standards Intro-16
4 Administrator’s Guide for Informix Dynamic Server

concsm.cfg file
configuring the communications

support module 4-15
format of entries 4-25
location of 4-16
options field for DCE-GSS 4-25
specifying the communications

support module 4-16
Concurrency

improving with
fragmentation 15-5

Concurrency control 11-35
Configuration

estimating required disk
space 13-33

monitoring 29-14
overview 3-7
parameter overview 3-13
planning for database server 3-3
using 7.2 relay module 4-60

Configuration file
and multiple residency 5-3, 6-5
connectivity 4-17
reserved page information 38-8
warning about multiple

residency 6-5
Configuration parameter

See also Configuration parameter
use.

See also each parameter listed under
its own name.

AFF_NPROCS 33-9
AFF_SPROC 3-24, 33-10
ALARMPROGRAM 29-8
BUFFERS 33-12
CKPTINTVL 33-13
CLEANERS 33-14
CONSOLE 3-12, 33-15
DBSERVERALIASES 4-51, 33-17
DBSERVERNAME 3-12, 4-31,

4-51, 33-18
DBSPACETEMP 33-19
DEADLOCK_TIMEOUT 33-21
DRAUTO 3-26, 33-22
DRINTERVAL 3-26, 33-23
DRLOSTFOUND 3-26, 33-24
DRTIMEOUT 3-26, 33-25
DS_MAX_QUERIES 33-26
DS_MAX_SCANS 33-27

DS_TOTAL_MEMORY 33-28
DUMPCNT 3-27, 33-32
DUMPCORE 3-27, 33-33
DUMPDIR 3-27, 33-34
DUMPGCORE 3-27, 33-34
DUMPSHMEM 3-27, 33-35
FILLFACTOR 33-36
HETERO_COMMIT 33-37
LOCKS 33-38
LOGBUFF 33-40
LOGFILES 33-41
LOGSIZE 33-42
LOGSMAX 33-43
LRUS 11-39, 33-44
LRU_MAX_DIRTY 3-21, 33-45
LRU_MIN_DIRTY 3-21, 33-45
LTAPEDEV 3-12
LTXEHWM 33-49
LTXHWM 33-50
MAX_PDQPRIORITY 33-51
MIRROR 33-52
MIRROROFFSET 33-53
MIRRORPATH 33-53
MSGPATH 3-12, 33-54
MULTIPROCESSOR 33-55
NETTYPE 4-50, 33-57
NOAGE 33-60
NUMAIOVPS 33-61
NUMCPUVPS 33-62
OFF_RECVRY_THREADS 3-25,

33-63
ON_RECVRY_THREADS 3-25,

33-64
OPTCOMPIND 33-67
PHYSBUFF 33-68
PHYSDBS 33-69
PHYSFILE 33-70
RA_PAGES 3-21, 33-71
RA_THRESHOLD 3-21, 33-72
RESIDENT 33-73
RESTARTABLE_RESTORE 33-74
ROOTOFFSET 33-75
ROOTPATH 3-12, 33-75, 33-76
ROOTSIZE 33-77
SERVERNUM 3-12, 11-12, 33-78
SHMBASE 11-12, 33-80
SHMVIRTSIZE 33-82
SINGLE_CPU_VP 33-83
STACKSIZE 33-84

STAGEBLOB 33-85
TAPEDEV 3-12
TXTIMEOUT 33-90
USEOSTIME 33-91

Configuration parameter use
and initial chunk of root

dbspace 13-19
displayed

in data-replication screen 32-15
in diagnostics screen 32-16
in initialization screen 32-12
in PDQ screen 32-17
in performance screen 32-14
in shared-memory screen 32-13

enabling Logs Full HWM 18-9
for diagnostic information 27-11
for multiple residency 5-5
shared memory 12-3

Configuring
network card 4-19
TCP/IP network software 4-19

Configuring multiple ports 4-21
config.arc file

with multiple residency 6-8
CONNECT statement

example 4-52
mentioned 4-51

Connecting
and multiple residency 6-7
description of 9-30
methods 9-28
to multiple database servers 4-59
to multiple servers 5-3
to non-Informix databases 1-11

Connecting to the Windows NT
Network application 4-19

server to server 4-9
Connection

7.2 client with 5.x server,
example 4-63

database vs. network 4-7
IPX/SPX 4-57
local loopback, definition of 4-12
local loopback, example 4-55
multiple connection types

example 4-57
multiple residency, example 4-59
multiplexed 4-7
network, description of 4-8
Index 5

network, example 4-56
network, when to use 4-8
security restrictions 4-22
shared memory, description

of 4-10
TCP/IP 4-22

Connectivity
configuration file 4-17
configuration parameters 4-50
file, sqlhosts 3-28
hosts file 4-19
services file 4-19

Consistency checking
corruption of data 27-9
data and overhead 27-4
index corruption 27-9
monitoring for data

inconsistency 27-7
overview 27-3
periodic tasks 27-4
validating extents 27-6
validating indexes 27-6
validating reserved pages 27-5
when to schedule 27-4

Console messages 29-12
CONSOLE parameter

changing 29-12
description of 33-15
setting 3-12

Constraint, deferred checking 16-5
Contention. See Disk contention.
Context switching

description of 9-14
how functions when OS

controls 9-10
OS versus multithreaded 9-10

Contiguous space for physical
log 21-4

Control structures
description of 9-13
queues 9-16
session control block 9-13
stacks 9-15
thread control block 9-13

Conversion
during initialization 8-9

Cooked file space
and buffering 13-8
compared with raw space 13-7
contiguity of space 13-9
database server management

of 13-7
description of 13-7
for static data 13-9
how to allocate 14-7
rationale for using 13-8
reliability 13-9
warning 13-7

Coordinating database server
and automatic recovery 30-11
description of 30-5

Coordinator recovery
mechanism 30-11

Core dump
and DUMPCORE configuration

parameter 33-33
contained in core file A-5
contents of gcore.xxx 27-7
when useful 27-11
See also DUMPCNT, DUMPDIR,

DUMPGCORE,
DUMPSHMEM.

core.pid.cnt file 33-35
Correlated subquery, effect of

PDQ 15-22
Corruption

corrective actions 27-9
determining if exists 27-9
I/O errors from a chunk 27-10
symptoms of 27-9

CPU
binding to virtual processor 9-12
relationship to virtual

processor 9-5
time tabulated 35-85

CPU virtual processor
adding and dropping in on-line

mode 9-22
AFF_NPROCS parameter 9-22
AFF_SPROC parameter 9-22
and poll threads 9-29
and SINGLE_CPU_VP

parameter 33-83

binding 33-9
description of 9-20
how many 9-20
on a multiprocessor

computer 9-21
on a single-processor

computer 9-21, 9-22
preventing priority aging 9-22
the NUMCPUVPS

parameter 9-20
types of threads run by 9-20

CREATE INDEX statement
effect of PDQ 15-20
using FILLFACTOR 33-36

CREATE TABLE
TEMP 15-8

CREATE TABLE statement
mentioned 4-51

Critical dbspaces
mirroring 13-34
storage of 13-16

Critical media
mirroring 13-44

Critical section of code
and checkpoints 11-58
and filling of physical-log

buffer 11-49
description of 11-56
related to size of physical log 20-5

cron jobs, warning about 3-34

D
Data block. See Page.
Data consistency

fast recovery 22-3
how achieved 11-56
monitoring for 27-7
symptoms of corruption 27-9
time stamps 11-60
verifying consistency 27-4

Data definition statements, when
logged 16-6

Data files. See Logging.
Data management 13-7
Data manipulation statements,

when logged 16-7
6 Administrator’s Guide for Informix Dynamic Server

Data pages
and oncheck 35-10

Data replication
actions to take if primary

fails 25-18
actions to take if secondary

fails 25-18
administration of 26-15
advantages of 25-4
and the PAGE_ARCH reserved

page 38-14
automatic switchover 25-19
changing database server

mode 26-20
changing database server

type 26-21
client redirection

comparison of different
methods 25-33

handling within an
application 25-30

using DBPATH 25-23
using

INFORMIXSERVER 25-29
using sqlhosts file 25-25

configuring connectivity for 26-9
database and data requirements

for 26-6
database server configuration

requirements for 26-6
description of 1-10, 25-4
designing clients to use secondary

database server 25-35
designing clients to use the

primary server 25-34
detecting failures of 25-16
DRAUTO parameter 25-19
DRINTERVAL parameter 25-11
DRLOSTFOUND

parameter 25-12
DRTIMEOUT parameter 25-16
flush interval 3-26, 33-23
hardware and operating system

requirements for 26-5
how it works 25-8
how updates are replicated 25-9
importance of reliable

network 25-21

information in sysdri table 34-17
initial replication 25-8
lost-and-found file 33-24
lost-and-found transactions 25-11
manual switchover 25-21
mentioned 16-5
monitoring status 29-71
planning for 26-4
possible failures 25-15
read-only mode 7-4
restarting after failure 25-20,

25-22, 26-26
restarting after network

failure 26-29
restoring system after media

failure 26-23
role of checkpoint 25-14
role of log records 25-9
role of primary database

server 25-5
role of secondary database

server 25-5
role of temporary dbspaces 25-38
setting up 26-5
specialized threads 25-13
starting 26-11
synchronization 25-14
wait time for response 3-26, 33-25
with asynchronous

updating 25-11
with synchronous updating 25-11

Data row
and rowid 38-39
big-remainder page 38-41
forward pointer 38-39, 38-42
home page 38-37, 38-41
how database server locates 38-39
storage strategies 38-37
storing data on a page 38-40
TEXT and BYTE data

descriptor 38-61
Data storage

control of 13-17
limits on due to maximum chunk

size 13-5
overview 13-3
types of 13-3
See also Disk space.

Data Type segment
See also Disk space.

Database
controlling storage location 13-23
creating, what happens on

disk 38-68
demonstration Intro-5
description of 13-22
effects of creation 38-68
estimating disk space for 13-33
estimating size of 13-33
information in sysdatabases

table 34-14
locale, in sysdbslocale table 34-15
location of 13-22
migration. See Migration.
monitoring 29-43
owner, in sysmaster

database 34-14
purpose of 13-22
recovery. See Recovery.
size limits 13-23
tuning. See Performance tuning.

Database administrator
See also Administrative tasks.

Database I/O 9-26
Database logging status

ANSI-compliant,
description 16-10

buffered, description 16-9
changes permitted 17-3
changes, general info 17-4
changing buffering status

using ON-Archive 17-7
using ontape 17-8

description of 16-8
ending logging

using ON-Archive 17-6
using ontape 17-8

in a distributed
environment 16-10

making ANSI-compliant
using ON-Archive 17-7
using ontape 17-9

modifying
using ON-Archive 17-5
using ON-Monitor 17-9
using ontape 17-7

setting 16-8
Index 7

turning on logging
using ON-Archive 17-5
using ontape 17-7

unbuffered, description 16-9
who can change 16-11

Database schema. See Informix
Migration Guide.

Database server
connecting to multiple 4-59, 5-3
multiple instances 5-3
remote 4-23, 34-27
security 1-12
shut down with UNIX script 3-32

Database server name. See
dbservername.

DATABASE statement,
mentioned 4-51

Database tblspace
entries 38-24
location in root dbspace 38-5,

38-24
relation to systable 38-69
structure and function 38-24
tblspace number 38-24

Data-recovery mechanisms
fast recovery 22-3
mirroring 23-4

Data-replication buffer 11-24, 25-9
DATASKIP parameter

specifying with onspaces
utility 35-61

Data, estimating disk space
for 13-31

DBNETTYPE environment
variable 4-61

DBPATH environment variable
use in automatic

redirection 25-23
DBPATH, and dbserver group 4-48
Dbserver group

purpose of 4-46
DBSERVERALIASES parameter

and multiple residency 5-5
description of 4-51, 33-17
example 4-51
in sqlhosts file 4-31
multiple connection types

example 4-57

dbservername
description of 33-18
field in sqlhosts file 4-31
syntax rules 4-31

DBSERVERNAME parameter
and multiple residency 5-5
associated protocol 9-29
description of 4-51, 33-18
in sqlhosts file 4-31
multiple residency 6-6
setting 3-12
virtual processor for poll

thread 9-29
Dbspace

adding a chunk to 14-14
adding a mirrored chunk 24-9
as link between logical and

physical units of storage 13-16
bit-map page 38-25
blobpage structure 38-62
blobpage time stamps 11-61
creating a temporary 14-12
creating during initial

configuration 3-30
creating with ON-Monitor 14-13
creating with onspaces 14-13
creating, overview 14-11
description of 13-16
dropping a chunk from 14-18
dropping using ON-

Monitor 14-20
dropping, overview 14-19
identifying the dbspace for a

table 38-22
initial dbspace 13-19
list of structures contained

in 38-15
mirror chunk information 38-7
mirroring if logical log files

included 23-7
modifying with onspaces

utility 35-61
monitoring TEXT and BYTE

data 29-69
monitoring with SMI 34-15
multiple residency 6-8
page header 38-34
primary chunk information 38-7
purpose of 13-16

reserved page information 38-11
role in fragmentation 15-3
root dbspace defined 13-19
root name 33-75
shared-memory table 11-28
starting to mirror 24-8
storage 38-4
structure 38-4, 38-15, 38-16
structure of additional dbspace

chunk 38-16
structure of chunk free-list

page 38-18
structure of mirror chunk 38-17
structure of nonroot

dbspace 38-15
structure of tblspace

tblspace 38-19
temporary 13-20
TEXT and BYTE data

storage 38-61
usage report 38-5

Dbspace table
contents of 11-28
description of 11-28

Dbspaces
creating 14-8

DBSPACETEMP environment
variable 13-27

DBSPACETEMP parameter
and load balancing 13-35
description of 33-19
if not set 13-27
relationship to DBSPACETEMP

environment variable 13-26
DCE components

installing and configuring 4-15
DCE-GSS communications support

module
configuring 4-15
description of 4-14
shared library 4-14
shared library location 4-14
sqlhosts 4-15
steps to use 4-15

Deadlock prevention 18-8
Deadlock. See

DEADLOCK_TIMEOUT
parameter.
8 Administrator’s Guide for Informix Dynamic Server

DEADLOCK_TIMEOUT parameter
description of 33-21
in two-phase commit 30-37

Decision-support application
characteristics 15-15
definition of 15-14
uses of 15-14

Decision-support query
DS_MAX_QUERIES

parameter 3-23, 33-26
DS_TOTAL_MEMORY

parameter 33-28
MAX_PDQPRIORITY

parameter 33-51
monitoring resources allocated

for 29-38
monitoring threads for 29-37
parameters, setting with

onmode 35-39
See also PDQ.

Default configuration file 8-7
Default locale Intro-4
Deferred checking of

constraints 16-5
Delete flag

described 38-49
Demonstration database Intro-5
Descriptor

TEXT and BYTE data 38-61
Detached index 15-8
Device 13-6, 13-7
Devices

when are offsets needed 14-5
Diagnostic information

and disk space restraints 27-11
collecting 27-11
parameters to set 27-11

Diagnostic messages. See Message
log.

Diagnostics
using onmode B-1

Dictionary cache 11-33
Dirty buffer, description of 11-46
Dirty Read isolation level

data-consistency checks 11-62
role of blob time stamps 11-61

Disabling I/O error
circumstances under which they

occur 13-15
defined 13-15
destructive versus

nondestructive 13-15
monitoring using event

alarms 29-53
monitoring using message

log 29-52
Disk contention

and high-use tables 13-37
of critical media 13-35
reducing 13-33

Disk failure 1-9
Disk I/O

kernel asynchronous I/O 9-24
logical log 9-24
operating system I/O 13-7
physical log 9-24
priorities 9-25
raw I/O 13-6
reads from mirrored chunks 23-9
role of shared memory in

reducing 11-5
virtual processor classes 9-24
writes to mirrored chunks 23-9

Disk I/O queues 9-28
Disk layout

and archiving 13-36, 13-38
and logical volume

managers 13-46
and mirroring 13-38
and table isolation 13-37
for optimum performance 13-34
sample disk layouts 13-40
trade-offs 13-40

Disk page
before-images in physical

log 11-47
function of time stamp

pairs 11-60
logical page number 38-38
number to read ahead 3-21, 33-71
page compression 38-36, 38-46
physical page number 38-38
read ahead 11-42

storing data on a page 38-40
structure

blobspace blobpage 38-29
dbspace page 38-34

types of pages in an extent 38-29
Disk space

allocating
raw disk space 13-8
when a database is

created 38-68
when a table is created 38-70

allocating cooked file space 14-7
allocating raw disk, Windows

NT 14-9
allocation for system

catalogs 38-68
caution with multiple

residency 6-8
chunk free-list page 38-18
configuring for multiple

residency 5-6
creating a link to chunk

pathname 14-9
described 14-4
estimating size of 13-30
initialization 8-8

definition of 8-3, 14-10
with new database server 3-30
with oninit 14-11, 35-20
with ON-Monitor 14-11

layout guidelines 13-33
limits on due to maximum chunk

size 13-5
list of structures 38-3
locating free space 38-18
multiple residency 6-7
offsets for chunk pathnames 14-5
optimal storage of tables 13-39
optimizing temporary space

layout 13-35
page compression 38-36, 38-46
raw devices versus cooked

files 13-6
requirements 13-33

for root dbspace 13-30
storage of TEXT and BYTE

data 14-22
Index 9

strategies for improving
performance 13-33

temporary. See Temporary disk
space.

tracking
available space in a

blobspace 38-64
available space in a chunk 38-18
free pages with bit-map

page 38-25
usage by tblspace 13-27

Distributed databases 1-11
Distributed environment, logging

status 16-10
Distributed queries, description

of 1-11
Distributed transaction

and two-phase commit
protocol 30-3

determining if inconsistently
implemented 31-6

mentioned 16-5
Distribution scheme 15-6
Documentation

on-line notes Intro-15
Documentation conventions

command-line Intro-10
icon Intro-8
typographical Intro-8

Documentation notes Intro-15
Documentation notes, program

item Intro-15
Documentation, types of

documentation notes Intro-15
error message files Intro-14
machine notes Intro-15
on-line manuals Intro-13
printed manuals Intro-14
release notes Intro-15

Domain, Windows NT
and database server 4-5
and user accounts 4-5
controller 4-5
description of 4-5
trusted 4-6
user account in 4-6

DRAUTO parameter
description of 3-26, 33-22
role in recovering from data-

replication failure 25-19
set to RETAIN_TYPE 25-20
set to REVERSE_TYPE 25-20

DRINTERVAL parameter
description of 3-26, 33-23
setting for asynchronous

updating 25-11
setting for synchronous

updating 25-11
DRLOSTFOUND parameter

description of 3-26, 33-24
use with data replication 25-12

DRTIMEOUT parameter
description of 3-26, 33-25
role in detecting data replication

failures 25-16
dr.lostfound file 33-24
DSA. See Dynamic scalable

architecture.
DSS applications. See Decision-

support applications.
DS_MAX_QUERIES parameter

description of 3-23, 33-26
DS_MAX_SCANS parameter

description of 3-23, 33-27
DS_TOTAL_MEMORY parameter

deriving the value 33-30
description of 3-23, 33-29
recalculated by server 33-29

DUMPCNT parameter 3-27, 33-32
DUMPCORE parameter 3-27, 33-33
DUMPDIR parameter

af.xxx assertion failure file A-4
and consistency checking 27-7
and shmem file A-10
description of 3-27, 33-34
gcore file A-5

DUMPGCORE parameter 3-27,
27-7, 33-34

DUMPSHMEM parameter 3-27,
27-7, 33-35

Dynamic Host Configuration
Product 4-20

Dynamic scalable architecture
advantages 9-3
description of 9-3

Dynamic Server
bad-sector mapping, absence

of 1-12
client/server architecture 1-4
distributed queries 1-11
fault-tolerant features 1-8
features beyond the scope of 1-12
high performance of 1-6
scalability of 1-5
TEXT and BYTE data

compression, absence of 1-13

E
Enterprise Replication 4-46
Environment configuration file A-6
Environment variable

ARC_KEYPAD A-9
DBNETTYPE 4-61
for users of client

applications 3-33
INFORMIXCONCSMCFG 4-16
INFORMIXDIR 3-8, 3-32, 4-61
INFORMIXSERVER 3-9
INFORMIXSHMBASE 11-11
INFORMIXSQLHOSTS 4-27
INFORMIXTERM 3-10
ONCONFIG 3-9
PATH 3-8, 3-32
PDQPRIORITY 15-17
setting 3-8
SQLEXEC 4-61
SQLRM 4-61
SQLRMDIR 4-61
TBCONFIG A-7
TERMINFO 3-10

en_us.8859-1 locale Intro-4
Error messages

files Intro-14
for two-phase commit

protocol 30-29
I/O errors on a chunk 27-10

/etc/hosts file 4-17
and client redirection 25-27

/etc/services file 4-17
and client redirection 25-27
multiple residency 6-7
10 Administrator’s Guide for Informix Dynamic Server

Event alarm
class ID parameter 29-10
class message parameter 29-10
description 29-8
event severity codes 29-9

Event alarms
mentioned 34-7

Example
7.2 relay module 4-60
connecting 7.2 client to 5.0

server 4-64
DBSERVERALIASES and sqlhosts

file 4-52
DBSERVERALIASES

parameter 4-51
/etc/services file entry 4-18
how page cleaning begins 11-41
IPX/SPX connection 4-57
local loopback connection 4-55
multiple connection types 4-57
NETTYPE parameters for

tuning 33-58
relay module with three

servers 4-62
shared-memory connection 4-54
SQLEXEC environment

variable 4-61
TCP/IP connection 4-56

Exclusive lock (buffer), description
of 11-36

exit codes, ontape utility 35-97
Explicit temporary table 13-26
Expression-based distribution

scheme 15-7
Extent

automatic doubling of size 38-31
default size 38-28
description of 13-13
disk page types 38-29
how database server

allocates 13-14
information in sysextents

table 34-18
initial size 13-14, 38-28
key concepts concerning 13-14
merging 38-32
monitoring 29-60
next-extent allocation 38-31

next-extent allocation
strategies 38-33

next-extent size 13-14, 38-31
procedure for allocating 38-31
purpose of 13-13
relationship to chunk 13-14
size limitations 38-28
structure 13-14, 38-27
tracking free pages using bit-map

page 38-25
validating consistency 27-6

Extent size
index fragments 38-28

External spaces. See extspace.

F
Fast recovery

description of 1-9, 22-3
details of process 22-5
effects of buffered logging 22-4
how database server detects need

for 22-4
mentioned 7-4, 8-9, 16-4
no logging 22-5
purpose of 22-4
role of checkpoint 11-59
role of PAGE_CHKT reserved

page 22-6
when needed 22-4
when occurs 22-3

Fault tolerance
backups, and 1-9
data replication 1-10, 25-4, 25-6
fast recovery 1-9, 22-3
mirroring 1-10

Feature icons Intro-9
Features, product Intro-6
File

af.xxx A-4
buildsmi.xxx A-4
config.arc 6-8, 6-9
connectivity configuration 4-17
core A-5
core.pid.cnt 33-35
dr.lostfound 33-24
gcore 3-27, 33-34
gcore, xxx A-5

hosts.equiv 4-22
in INFORMIXTMP directory A-6
.informix A-6
informix.rc environment file A-6
.infos.dbservername A-7
.inf.servicename A-6
network security 4-22
oncatlgr.out.pidnum A-7
oncfg_servername.servernum 8-

10, A-8
onconfig A-8
onconfig, during initialization 8-6
onconfig.std

description of A-8
during initialization 8-6
sample file A-10

oper_deflt.arc 6-8, 6-9, A-9
private environment file A-6
servicename.exp A-9
servicename.str A-9
shmem.pid.cnt 33-35
shmem.xxx A-10
sqlhosts 3-28
summary of database server

files A-1
template for configuration

file A-8
VP.servername.nnx A-10

File I/O. See Disk I/O.
Files

NTFS 13-6
FILLFACTOR parameter

control how indexes fill 38-58
description of 33-36

finderr script Intro-14
FLRU queues

and reading a page from
disk 11-44

and releasing buffer 11-45
description of 11-37
See also LRU queues.

Flushing
buffers 11-46
data-replication buffer, maximum

interval 3-26, 33-23
of before-images 11-47

Forced residency
initialization 8-10
start/end with onmode 35-32
Index 11

Forcing a checkpoint. See
Checkpoint.

Foreground write
and before-image 11-47
description of 11-52
monitoring 11-52, 29-24

Forward pointer
description of 38-39
how it can become invalid 11-61
role in a blobspace

blobpage 38-65
role in data storage 38-42
role in dbspace blob storage 38-61
unaffected by page

compression 38-36
Fragment

description of 15-3
monitoring disk usage 29-60,

29-63
monitoring I/O requests

for 29-55
turning DATASKIP ON or OFF

for 35-61
warning returned when skipped

during query 33-16
See also Fragmentation.

Fragmentation
and memory-resident

tables 11-21
and mirroring 13-38
and rowids 38-39
description of 15-3
distribution schemes for 15-6
for improved concurrency 13-38
goals of 15-5, 15-7
of temporary tables 15-8
strategy 15-6
with PDQ 15-5
See also Fragment.

Fragmented table, using primary
keys 38-40

Fragments
index 38-28

Free list. See Chunk free list.
Free-map page

description of blobspace free-map
page 38-64

role in blobspace logging 18-23

G
Gateway transactions 33-37
Gateway, Informix, in

heterogeneous commit 30-38
gcore

file 27-7
utility 3-27, 33-32, 33-34

gcore.xxx file A-5
Global Language Support

(GLS) Intro-4
mentioned 3-29

Global pool, description of 11-34
Global transaction identification

number 31-7, 31-8
Group, parallel processing of 9-10

H
Hash table

to buffer table 11-27
to lock table 11-29

Hash tables 11-26
Heaps 11-33
Heterogeneous

commit 30-38 to 30-46
Heterogeneous-commit

transactions 33-37
HETERO_COMMIT configuration

parameter 33-37
Heuristic decision

result from independent
action 30-20

types of 30-21
Heuristic end-transaction

conditions for 30-26
description of 30-26
determining effects on

transaction 31-4
illustration, including logical log

records 30-35
messages returned by 30-28
results of 30-28
when necessary 30-26

Heuristic rollback
conditions resulting in 30-22
description of 30-22
illustration, including logical log

records 30-33
indications that rollback

occurred 31-5
results of 30-23

High-availability data replication.
See Data replication.

HKEY_LOCAL_MACHINE
registry 3-28

Home directory, Windows NT 4-23
Home page 38-37, 38-41
Horizontal index link

described 38-55
how implemented 38-56

hostname
syntax rules 4-34, 4-40

hostname field
multiple network interface

cards 9-34
using IP addresses 4-35
wildcard addressing 4-36
with IPX/SPX 4-40
with shared memory 4-34
with TCP/IP communication

protocol 4-34
hosts file 4-19

multiple residency 6-7
on UNIX 4-18
on Windows NT 4-20

hosts.equiv file 4-22
sqlhosts security options 4-49

Hot site backup. See Data
replication.

I
Icons

comment Intro-9
feature Intro-9
platform Intro-9
product Intro-9

illlsrra.xx file A-5
Impersonate, client 4-24
Inconsistency information

how to detect 27-4
12 Administrator’s Guide for Informix Dynamic Server

Index
branch node 38-48
btree cleaner list 38-57
controlling how filled 38-58
delete flag 38-49
duplicate key values 38-54
effects on structure of item

insertion 38-56
horizontal node links 38-56
how created and filled 38-50
how deleted items removed 38-57
insertion of indexed data 38-56
item described 38-49
key value locking 38-57
leaf node 38-48
location of index page 38-55
parallel building of 9-10
physical format and storage 38-55
repairing structures with oncheck

utility 35-5
reuse of freed pages 38-57
root node 38-48
structure of B+ tree 38-48
validating consistency 27-6

Index fragments
extent size 38-28

Index item
calculating the length of 38-58
defined 38-49
example of 38-50
how removed 38-57
merging 38-57
shuffling 38-58
when purged 38-49

Index page
compactness 33-36
contents 38-55
creation of first 38-51
effects of creation 38-51
effects of inserting item 38-56
page header 38-55
sibling pointers 38-55
size 38-55
structure 38-55
structure of 38-48

Industry standards, compliance
with Intro-16

Infinity item
and creation of branch node 38-53
defined 38-52

.informix file
mentioned A-6
multiple residency 6-9

Informix Find Error utility Intro-14
Informix recommendations

on allocation of disk space 13-9
on consistency checking 27-4
on mirroring the physical

log 20-8
INFORMIXCONCSMCFG

environment variable 4-16
$INFORMIXDIR/etc/sqlhosts. See

sqlhosts file.
INFORMIXDIR environment

variable 3-8
and 5.x products 4-61
in shutdown script 3-32
in startup script 3-32
multiple residency startup

script 6-9
INFORMIXDIR/bin

directory Intro-5
INFORMIXKEYTAB environment

variable
Environment variable

INFORMIXKEYTAB 4-16
INFORMIXSERVER environment

variable
and dbserver group 4-48
during initialization 3-9
multiple residency startup

script 6-9
multiple versions of database

server 3-32
relation to

DBSERVERNAME 33-18
use in client redirection 25-29
values of 3-9
with multiple residency 6-9

INFORMIXSHMBASE
environment variable 11-11

INFORMIXSQLHOSTS
environment variable 4-27, 4-29

INFORMIXSTACKSIZE
environment variable 11-32

INFORMIXTERM environment
variable 3-10

INFORMIXTMP directory
description of A-6
servicename.exp file A-9
servicename.str file A-9
.inf.servicename file A-6

informix.rc environment file
description of A-6
multiple residency 6-9
use of 3-9

.infos.dbservername file
description of A-7
regenerate 35-38

.inf.servicename file A-6
Initial configuration

creating blobspaces and
dbspaces 3-30

disk layout 13-33
guidelines for root dbspace 13-19
raw disk devices versus cooked

files 13-6
Initialization

checkpoint 8-9
commands 14-10
configuration changes 8-9
configuration files 8-6
control returned to user 8-11
conversion of internal files 8-9
disk space 3-30, 8-3, 8-8
disk space for multiple

residency 6-7
disk structures initialized 38-5
fast recovery 8-9
forced residency 8-10
message log 8-11
oncfg_servername.servernum

file 8-10
onconfig file 8-6
onconfig.std file 8-6
reserved page information 38-8
shared memory 8-3
SMI tables 8-11
steps in 8-4
temporary tablespaces 8-10
upon completion 8-12
utilities for 8-4
virtual processors 8-8

INSERT cursor 15-6
Index 13

Installation
definition of 3-7
when no other Informix products

are present 3-7
Installing, TCP/IP network

software 4-19
Integrity, data. See Consistency

checking.
Interprocess communication

in nettype field 4-32
shared memory for 11-5

Interval, checkpoint 33-13
IP address

how to find 4-35
use in hostname field 4-35

ipcshm protocol and
communications portion
(shared memory) 11-34

IPC. See Interprocess
communications.

IPX/SPX
in hostname field 4-40, 4-57
in servicename field 4-42
multiple residency 6-7
service, definition of 4-42
sqlhosts entry 4-57

ISAM calls tabulated 35-85
ISO 8859-1 code set Intro-4
Isolation level

Committed Read and blob time
stamps 11-61

Dirty Read and TEXT or BYTE
data 11-61

I/O errors during processing 27-10
I/O. See Disk I/O.

J
Join, parallel processing of 9-10

K
KAIO thread 9-27
Keep-alive option, in options

field 4-48
Kernel asynchronous I/O

description of 9-27
non-logging disk I/O 9-24

Key value
and index items 38-49
checking ordering with

oncheck 35-11
duplicates 38-54, 38-55
for shared memory 11-13
locking 38-57

keytab file
purpose of 4-16

L
Latch

and wait queue 9-18
description of 11-35
displaying information with

onstat 35-67, 35-88
identifying the resource

controlled 35-88
monitoring statistics and

use 29-27
mutex 9-19, 11-35

Level-0 dbspace
use in consistency checking 27-8

Limits
on chunk size 13-5

Linking, name of root
dbspace 33-76

LIO virtual processors
description of 9-25
how many 9-25

Listen threads
and multiple interface cards 9-34
description of 9-30

Load balancing
as performance goal 13-33
done by virtual processors 9-9
of critical media 13-35
through use of

DBSPACETEMP 13-35
Local loopback

compared with shared-memory
connection 4-12

connection 4-12, 9-29
example 4-55
restriction 4-12

Locale Intro-4

Lock
and oncheck 35-7
and wait queue 9-18
buffer-access-level flag bits 35-71
description of 11-35
information in syslocks

table 34-18
key value locking 38-57
maximum time to acquire 33-21
monitoring 29-29, 35-66, 35-79
type codes 35-80
types 11-36

Lock table
contents of 11-29
hash table 11-29
maximum number of

entries 11-29
Lock-access level, of a buffer 11-44
Locking

for multiprocessor 33-55
when occurs 11-44
when released 11-45

LOCKS parameter
description of 33-38

LOGBUFF parameter
and logical log buffers 11-23
description of 33-40

LOGFILES parameter
changing 19-10
description of 33-41
use in logical-log size

determination 18-7
Logging

activity that is always logged 16-6
database server processes

requiring 16-4
definition of transaction

logging 16-8
effect of buffering on logical log

fill rate 18-19
monitoring activity 29-44
physical logging

description of 20-3
process of 20-9
purpose of 20-4
sizing guidelines for 20-5
suppression in temporary

dbspaces 13-21
process for blobspace data 18-27
14 Administrator’s Guide for Informix Dynamic Server

process for dbspace data 18-25
role in data replication 25-9
role of blobspace free-map

page 18-28, 38-64
suppression for implicit

tables 13-20
when to buffer transaction

logging 16-11
when to use transaction

logging 16-10
with TEXT and BYTE data 16-7
See also Database-logging status.

Logical consistency, description
of 22-5

Logical log
administration tasks for

blobspaces 18-21
backing up 18-8
checking consistency 35-12
configuration parameters 19-10
description of 11-22, 16-4, 18-3
determining disk space

allocated 18-7
how to prevent logs full 18-8
in root dbspace 38-5
maximum number of files 33-43
monitoring for fullness using

onstat 29-44
monitoring with SMI 34-19
optimal storage of 13-35, 13-36
preserving space in 18-8
purpose of 1-9
setting high-water marks 18-20
size, guidelines 18-6
size, performance

considerations 18-5
types of records 11-22
See also Logical-log buffer,

Logical-log file.
Logical page number 38-38
Logical recovery

number of threads 3-25, 33-64
role in data replication 25-9

Logical units of storage
description of 13-16
list of 13-4

Logical volume manager (LVM)
description of 13-46
mirroring alternative 23-6

Logical-log buffer
and data-replication buffer 11-24
and LOGBUFF parameter 33-40
and logical-log records 11-53
description 11-22
description of 11-22
flushing 11-53
flushing for non-logging

databases 11-55
flushing when a checkpoint

occurs 11-55
flushing when no before-

image 11-56
flushing with unbuffered

logging 11-55
monitoring 29-49
role in logging process 16-9
synchronizing flushing 11-46
when flushed to disk 11-53, 18-27
when it becomes full 11-54

Logical-log file
adding a log file

using ON-Monitor 19-5
using onparams 19-5

allocating disk space for 18-5
and reserved pages 38-9
backup

effect on performance 18-5
goals of 18-15
to free deleted blobpages 18-22

changing the size of 19-9
consequences of not freeing 18-16
created during

initialization 33-41
description of 16-4, 18-4
displaying contents 35-23
dropping a log file

using ON-Monitor 19-7
using onparams 19-7

file status 18-13
how to free 19-13
how to switch 19-15
I/O to 9-24
location 18-12
logid number 18-12
mirroring a dbspace containing a

file 23-7
moving to another dbspace 19-8
number of files 18-11

rate at which files fill 18-18
reading the log file 35-23
relationship between unique ID

and logid 18-12
reserved page information 38-9
role in fast recovery 22-5,

22-7 to 22-8
size 18-11, 33-42
status flags 18-13
switch using onmode 35-33
switching to activate blobspace

chunks 18-22
switching to activate

blobspaces 18-21
unique ID number 18-12
when database server tries to free

files 18-16
when freed for reuse 18-16
See also Logical log.

Logical-log I/O virtual
processors 9-25

Logical-log record
additional columns of 37-7
database server processes

requiring 16-4
displaying 35-23
flushing under two-phase commit

protocol 30-32
for a checkpoint 37-5
for a drop table operation 37-4
generated by a rollback 37-4
header columns 37-6
involved in distributed

transactions 37-5
involved in two-phase commit

protocol 30-30, 37-5
role in fast recovery 22-7
role in two-phase commit

protocol 30-6
SQL statements generating 16-7
types 37-7
when written to logical-log

buffer 18-26
logid 18-12
Logs-Full High-Water Mark 18-8
LOGSIZE parameter

changing 19-10
description of 33-42
Index 15

LOGSMAX parameter
changing 19-12
description of 33-43
mentioned 18-11

Long transaction
consequences of 18-17
description of 18-18
mentioned within two-phase

commit discussion 30-19,
30-23, 30-26

preventing development of 18-18
starting percentage 33-49, 33-50

LRU queues
and buffer pool

management 11-38
and buffer table 11-20
components 11-37
composition of 11-37
description of 11-37
displaying information with

onstat 35-66, 35-87
FLRU queues 11-37
how database server selects 11-38
MLRU queues 11-37
modified pages, percentage

of 3-21, 33-45
ordering of 11-38
rationale for ordering 11-38
reason for multiple 11-39
recommendation on

configuring 11-39
LRU write

description of 11-52
monitoring 29-24
triggering of 11-52
who performs 11-52

LRUS configuration parameter
setting the value of 11-39

LRUS parameter
description of 11-37, 33-44

LRU_MAX_DIRTY parameter
and LRU_MIN_DIRTY

parameter 11-37
description of 3-21, 33-45
example of use 11-41
how to calculate value 11-41
purpose of 11-40
role in buffer-pool

management 11-40

LRU_MIN_DIRTY parameter
and LRU_MAX_DIRTY

parameter 11-37
default value 11-41
description of 3-21, 33-45
example of use 11-41
how to calculate value 11-41
role in buffer pool

management 11-41
when tested 11-51

LTAPEBLK parameter
description of 33-46

LTAPEDEV parameter
setting 3-12

LTXEHWM parameter
and physical log 20-8
changing 19-12
description of 33-49
role in heuristic rollback 30-22
role in preventing long

transactions 18-20
LTXHWM parameter

changing 19-12
description of 33-50
flushing of logical-log

buffer 11-54
role in heuristic rollback 30-22
role in preventing long

transactions 18-20

M
Machine notes Intro-15
Main_loop() thread 11-58

role in checkpoint 11-59
role in two-phase commit

recovery 30-12
Management of data 13-7
Manual recovery

deciding if action needed 31-9
determining if data

inconsistent 31-6
example of 31-10
obtaining information from

logical log files 31-7
procedure to determine if

necessary 31-3
use of GTRID 31-7

Mapping, bad sector 1-12
MAX_PDQPRIORITY parameter

description of 33-51
Media failure

detecting 23-10
recovering from 23-5
restoring data 1-9

Memory
specifying size of 3-28, 33-66

Memory-resident tables
adding a fragment to 11-21
description of 11-21

Memory. See Shared memory.
Message log

alphabetical listing of
messages 36-3

and data corruption 27-9
and event alarms 29-8
categories of messages 36-4
description of 29-7, 36-3
displaying with onstat

utility 35-66, 35-82
during initialization 8-11
file pathname 33-54
location of 33-54
mentioned A-7
monitoring 29-7

Messages, for onspaces 36-31
MGM. See Memory Grant Manager.
Migration. See Informix Migration

Guide.
Mirror chunk

adding 24-9
changing status of 24-10
creating 24-6
disk reads from 23-9
disk writes to 23-9
pathnames 38-13
recovering 23-10, 24-10
relinking after disk failure 24-12
structure 23-11, 38-17

Mirror dbspace, creating 14-8
MIRROR parameter

changing 24-4
description of 24-4, 33-52
initial configuration value 24-4
16 Administrator’s Guide for Informix Dynamic Server

Mirroring
activity during processing 23-9
alternatives 23-6
and chunk table 11-28
and multiple residency 6-7
asynchronous write requests 23-9
benefits of 23-4
changing chunk status 24-10
costs of 23-5
creating mirror chunks 24-6
description of 1-10, 23-4
detecting media failures 23-10
during system initialization 24-7
enable flag 33-52
enabling 24-4
ending 24-12
if the dbspace holds logical-log

files 23-7
initial chunk 33-53
network restriction 23-4
recommended disk layout 13-38
recovering a chunk 24-10
recovery activity 23-8
reserved page information 38-13
split reads 23-9
starting 24-3, 24-6
status flags 23-8
steps required 24-3
what happens during

processing 23-9
when mirroring begins 23-7
when mirroring ends 23-11

MIRROROFFSET parameter 13-19
and multiple residency 5-5
description of 33-53
setting 24-7
when needed 14-6

MIRRORPATH parameter
and multiple residency 5-5
description of 33-53
mentioned 13-19
multiple residency 6-7
setting 24-7
specifying a link pathname 33-53

Miscellaneous (MSC) virtual
processor 9-36

Mixed transaction result 30-25

MLRU queues
and flushing of regular

buffers 11-47
and LRU_MIN_DIRTY

parameter 11-41
description of 11-37
how buffer is placed 11-39
how to end page-cleaning 11-41
limiting number of pages 11-40
role in buffer modification 11-46
when cleaning ends 11-41
See also LRU queues.

Mode
description of 7-3
graceful shutdown 7-7
immediate shutdown 7-7
off-line from any mode 7-8
off-line to on-line 7-6
off-line to quiescent 7-5
on-line to quiescent,

gracefully 7-7
on-line to quiescent,

immediately 7-7
quiescent to on-line 7-6
reinitializing shared memory 7-5
taking off-line 7-8
users permitted to change 7-5

MODE ANSI keywords, and
database logging status 16-10

Monitoring database server
active tblspaces 29-32
blobspace storage

efficiency 14-21
buffer-pool activity 29-23
buffers 11-20, 29-20
checkpoints 29-16
chunks 29-53
configuration parameter

values 29-14
databases 29-43
data-replication status 29-71
disk I/O queues 9-28
extents 29-60
fragment load 29-55
fragmentation disk use 29-60,

29-63
latches 29-18, 29-27
list of tools 3-5
locks 29-29

logging status 29-43
logical-log buffers 29-49
logical-log files 29-44
message log 29-7
PDQ resources 29-40
physical-log buffer 11-24, 29-49
physical-log file 29-47
profile of activity 29-19
sessions 29-35
shared memory 29-18
shared-memory segments 29-18
sources of information 29-6
stack size 29-38
TEXT and BYTE data in

dbspaces 29-69
threads 29-35
transactions 29-41
user threads 11-31
using oncheck 29-12
using ON-Monitor 29-12
using onperf 29-13
using onstat 29-12
using SMI tables 29-12
virtual processors 29-33

Monitoring, length of disk I/O
queues 9-28

MSGPATH parameter
and multiple residency 5-5
description of 33-54
multiple residency 6-6
setting 3-12

Multiple concurrent threads
(MCT) 9-13

Multiple connection types
example 4-57
in sqlhosts file 4-52
See also Connection.

Multiple instances of database
server on same computer 5-3

Multiple network interface
cards 9-34

Multiple residency
and blobspace 6-8
and chunk assignment 6-8
and dbspaces 6-8
and multiple binaries,

warning 6-4
archiving 6-8
backups 6-8
Index 17

benefits of 5-3
configuration file 5-3
configuration parameters 5-5
DBSERVERNAME parameter 6-6
definition of 3-7, 5-3
editing the ONCONFIG file 6-5
example 4-59
hosts & services files 6-7
how it functions 5-4
INFORMIXSERVER

environment variable 6-9
informix.rc & .informix files 6-9
initializing disk space 6-7
IPX/SPX 6-7
MIRRORPATH parameter 6-7
MSGPATH parameter 6-6
ONCONFIG environment

variable 5-5
planning for 6-3
requirements 6-3
ROOTNAME parameter 6-6
ROOTPATH parameter 6-6
SERVERNUM parameter 6-5, 6-6
sqlhosts file 6-7
startup script 6-9
to isolate applications 5-4
use for testing 5-4

Multiplexed connection
4-7

description of 4-7
limitations 4-7

Multiprocessor computer
advantages on 9-3
AFF_SPROC parameter 33-10
MULTIPROCESSOR

parameter 9-21
processor affinity 9-12

MULTIPROCESSOR parameter
description of 9-21, 33-55
for single-processor

computer 9-21
Multi-threaded database server. See

Dynamic scalable architecture.
Multithreaded processes,

description of 9-5
Multithreading, use of OS

resources 9-10

Mutex
description of 9-19, 11-35
on buffer table hash table 11-44
synchronization 9-20
when used 11-35

N
Named pipe connection

description of 4-11
mentioned 4-8

nettype field
description of 4-31
format of 4-31
summary of values 4-33
syntax of 4-31
use of interface type 4-56

NETTYPE parameter
and multiple network

addresses 9-34
description of 33-57
for multiplexed connection 4-7
mentioned 4-50
ON-Monitor screen entries 10-6
purpose of 4-50
tuning example 33-58
vp class entry 9-29

NetWare file server 4-40
Network

interface card, configuring 4-19
Network communication

using IPX/SPX 4-40, 4-42, 4-57
using TCP/IP 4-34, 4-41

Network connection
how implemented 9-30
types of 9-28
when to use 4-8

Network Information Service 4-17
Network interface cards

and listen threads 9-34
sqlhosts file 9-34
using multiple 9-34

Network security
files 4-22
hosts.equiv 4-22
.netrc file 4-23

Network virtual processors
description of 9-28
how many 9-29

NIS servers, effect on /etc/hosts
and /etc/services 4-18

NOAGE parameter
description of 33-60
purpose of 9-22

Node, index (disk)
branch node defined 38-50
checking horizontal and vertical

nodes 35-11
contents of leaf nodes 38-52
creation of branch nodes 38-52,

38-53
defined 38-50
leaf node defined 38-50
pointer 38-52
root node 38-51
root node defined 38-50
types of 38-50
what branch nodes point to 38-53
when root node fills 38-51

Non-Informix databases 1-11
NTFS files 13-6
null file

for creating a chunk 14-8
NUMAIOVPS parameter

description of 33-61
purpose of 9-27

Number of
page-cleaner threads 33-14

NUMCPUVPS parameter
and poll threads 9-29
description of 33-62
purpose of 9-20
used by

DS_TOTAL_MEMORY 33-30

O
Offset

definition of 13-9
purpose of 14-5
use in prevention of overwriting

partition information 13-10
18 Administrator’s Guide for Informix Dynamic Server

use in subdividing
partitions 13-10

when needed 14-5
OFF_RECVRY_THREADS

parameter, description of 3-25,
33-63

OLTP application
characteristics of 15-13
definition of 15-13
uses of 15-13

ON-Archive
backing up logical-log files 18-17
configuration file 3-29
config.arc file 3-29
estimating disk space for 13-32
modifying database logging

status 17-5
use in starting data

replication 26-11
oncatlgr utility

in UNIX startup script 3-32
message file A-7
multiple residency 6-8

oncatlgr.out.pidnum file A-7
oncfg_servername.servernum

file 8-10, A-8
oncheck utility

and locking 35-7
blobpage information 14-22
check-and-repair options 35-5
comparison with onstat 29-12
corrective actions 27-4
description of 35-5
list of functions 35-7
obtaining blobspace

information 29-68
obtaining blobspace storage

statistics 29-67
obtaining chunk

information 29-56, 29-57
obtaining configuration

information 29-15
obtaining extent

information 29-60
obtaining fragmentation

information 29-60
obtaining logical-log

information 29-46

obtaining physical-log
information 29-49

obtaining tblspace
information 29-62

options
-cc 35-9
-cd 35-10
-ce 35-11
-cI 35-12
-ci 35-11
-cr 35-12
-pB 14-21, 35-13
-pD 35-14
-pd 35-13
-pe 38-5
-pK 35-14
-pk 35-14
-pL 35-14
-pl 35-14
-pP 35-15
-pp 35-15
-pr 35-15
-pT 35-16
-pt 35-16

overview of functionality 35-5
syntax 35-8
use in consistency checking 27-4

ONCONFIG configuration file
conventions 33-5
conventions used 33-6
description A-7
during initialization 8-6
editing with multiple

residency 6-5
mentioned 4-50
multiple residency 4-59, 6-5
parameters 4-51
white space 33-6

ONCONFIG environment
variable 3-9

and ONCONFIG file A-7
changes for multiple

residency 6-5
interaction with TBCONFIG A-7
multiple residency startup

script 6-9
multiple versions of database

server 3-32
use with multiple residency 5-5

onconfig file A-8
ONCONFIG file parameters. See

Configuration parameter.
ONCONFIG parameter, and

multiple residency 6-4
onconfig.std file

and multiple residency 6-5
description A-8
during initialization 8-6
sample A-10

ondblog utility 35-18
oninit utility

bringing database server on-
line 14-11

option descriptions 35-22
-p option 8-10, 13-25
starting database server 35-20
temporary tables 13-25, 35-21

On-line manuals Intro-13
On-line transaction processing. See

OLTP application.
On-line transaction processing. See

PDQ.
onload utility. See Informix

Migration Guide.
onlog utility

description of 35-23
filters for displaying logical-log

records 35-26
filters for reading logical-log

records 35-25
reconstructing a global

transaction 31-7
onmode utility

adding a shared-memory
segment 35-37

changing database server
mode 35-30

changing shared-memory
residency 12-14, 35-32

decision-support parameters,
changing 35-39

description of 35-28
dropping CPU virtual

processors 10-10
forcing a checkpoint 12-16, 35-32
freeing a logical-log file 19-14,

19-15
killing a participant thread 30-19
Index 19

killing a session 30-22, 35-33
killing a transaction 30-19, 30-27,

31-4
options

-c force checkpoint 35-32
-d set data replication

type 35-35
-I B-1
-k take off-line 35-30, 35-31
-l switch logical-log file 35-33
-n end forced residency 35-32
-p add or remove virtual

processor 35-38
-r begin forced residency 35-32
-R regenerate .infos file 35-38
-s take to quiescent 35-30, 35-31
-Z kill transaction 35-34

set decision-support
parameters 35-39

setting database server
type 26-11, 26-21, 35-35

switching logical-log files 19-15,
35-33

trapping errors B-1
user thread services onmode

utility requests 9-7
ON-Monitor

adding a logical-log file 19-5
adding mirror chunks 24-9
archive menu and options 32-10
data-replication screen 32-15
dbspaces menu and options 32-9
diagnostics screen 32-16
dropping a logical-log file 19-7
enabling mirroring 24-5
force-ckpt option 32-9, 32-10
help 32-4
initialization screen 32-12
logical-logs menu and

options 32-11
mode menu and options 32-10
parameters menu and

options 32-7
parameters screens 32-12 to 32-17
PDQ screen 32-17
performance screen 32-14
recovering a chunk 24-11
setting performance

options 12-12

setting shared memory
parameters 12-7, 12-10

setting virtual processor
parameters 10-5

starting mirroring 24-9
status menu and options 32-7
taking a chunk down 24-10

onparams utility
adding a logical-log file 19-5,

35-44
changing physical log size,

location 35-46
changing physical-log

location 21-6
changing physical-log size 21-6
description of 35-43
dropping a logical-log file 19-7,

35-45
onperf utility 29-13
onspaces utility

adding a chunk 35-53
adding a mirror chunk 24-9
changing chunk status 35-59
creating a blobspace, dbspace, or

temporary dbspace 35-49
dropping a blobspace or

dbspace 35-52
dropping a chunk 35-55
ending mirroring 24-13, 35-59
recovering a down chunk 24-11
starting mirroring 24-9, 35-57
taking a chunk down 24-11

onstat utility
and CPU virtual processors 9-21
comparison with oncheck

utility 29-12
description of 35-62
freeing blobpages and

timing 35-74
header 35-68
monitoring blobspace 29-64
monitoring buffer use 11-20,

29-20, 29-21, 29-22
monitoring buffer-pool 29-24,

29-25
monitoring byte locks 11-29
monitoring checkpoints 29-16
monitoring chunk status 29-54
monitoring configuration 29-14

monitoring data replication 29-71
monitoring database server

profile 29-19
monitoring disk usage 29-55
monitoring fragment load 29-55
monitoring latches 29-27, 29-28
monitoring locks 29-29, 29-30
monitoring log buffers 29-49
monitoring logical-log files 29-45
monitoring physical log 29-48
monitoring sessions 29-35
monitoring shared memory 29-18
monitoring tblspaces 29-34
monitoring transactions 29-41
monitoring virtual

processors 29-33, 29-34
option descriptions 35-9, 35-69
options

-a 35-70
-b 35-70
-c 35-65
-D 35-74
-d 35-72, 35-73
-F 35-75
-k 35-79
-l 35-80
-m 35-66, 35-82
-o 35-66
-p 35-84
-R 35-87
-r 35-66
-s 35-88
-t 35-89
-u 35-90
-X 35-94
-z 35-94
-- 35-65, 35-70
(none) 35-69

repeated execution with -r 35-66
repeated execution with seconds

parameter 35-68
syntax 35-64
table of options and

functions 35-62
terminating interactive

mode 35-79
terminating repeating

sequence 35-79
20 Administrator’s Guide for Informix Dynamic Server

tracking a global
transaction 30-28

using SMI tables for onstat
information 34-33

using with shared-memory
source file 35-67

ontape utility
backing up logical-log files 18-17
data replication functions 35-97
description of 35-95
exit codes 35-97
LTAPEBLK, use of 33-46, 33-47,

33-48, 33-86, 33-87, 33-89
modifying database logging

status 17-7
tasks performed by 35-95
use in starting data

replication 26-11
onunload utility

LTAPEBLK, use of 33-46, 33-47,
33-48, 33-86, 33-87, 33-89

onunload utility. See Informix
Migration Guide.

ON_RECVRY_THREADS
parameter

description of 3-25, 33-64
role in data replication 25-14

OPCACHEMAX parameter
description of 3-28, 33-66

Operating database server, things
to avoid 28-3

Operating system, scheduled
jobs 3-34

Operating-system files. See Cooked
file space.

Operating-system kernel
parameters, initial values 3-29

Operating-system parameters
description of 12-3

oper_deflt.arc file
and multiple residency 6-8
contents A-9

OPTCOMPIND environment
variable

See also OPTCOMPIND
parameter.

OPTCOMPIND parameter
description of 33-67
See also OPTCOMPIND

environment variable.
Optical storage

and STAGEBLOB
parameter 3-28, 33-85

Optical Subsystem memory cache
allocation 29-65, 35-82
availability of memory 29-65,

35-82
described 29-65, 35-66, 35-82
kilobytes of TEXT and BYTE data

written 29-65, 29-66
kilobytes of TEXT and BYTE data

written to staging area 35-83
number of kilobytes 29-65, 35-83
number of kilobytes of TEXT and

BYTE objects written 29-66
number of objects written 29-65,

29-66, 35-82, 35-83
number of TEXT and BYTE

objects written to staging
area 35-83

session ID for user 29-66, 35-83
size 29-65, 35-82
size of TEXT and BYTE data 35-83
user ID of client 29-66, 35-83

Optical (OPT) virtual
processor 9-35

Optimizing, hash joins versus
nested-loop joins 33-68

options field
buffer-size option 4-44
keep-alive option 4-48
list of options 4-43
security option 4-49
syntax rules 4-44

ORDBMS. See Object-relational
database management system.

Outer join, effect on PDQ 15-23

P
Page

bit-map page 38-64
blobspace blobpage 38-64
blobspace free-map page 38-64
components of dbspace

page 38-34
compression 38-38, 38-46
dbspace blobpage 38-62
dbspace page types 38-29
definition of full page 38-41
description of 13-10
determining database server page

size 14-17
displaying contents with

oncheck 35-15
free page, definition of 38-29
fullness bit values 38-26
fullness, 4-bit values 38-27
header components 38-35
least-recently used 11-38
locating in shared memory 11-44
logical page number 38-38
most-recently used 11-38
page types in extent 38-29
physical page number 38-38
relationship to chunk 13-11
size recorded in reserved

pages 38-8
slot table 38-35
structure and storage of 38-34
validating consistency 27-6

Page compression 38-36, 38-38,
38-46

Page size
shown in ON-Monitor 12-8
shown with onstat -b 35-71
stored in reserved pages 38-8

Page-cleaner table
description of 11-29
number of entries 11-29

Page-cleaner threads
alerted during foreground

write 11-52
codes for activity state 35-75
description of 11-46
Index 21

flushing buffer pool 11-46
flushing of regular buffers 11-47
monitoring 11-30
monitoring activity 35-65, 35-75
number of 33-14
role in chunk write 11-53
sleeping forever 11-51

PAGE_1CKPT reserved page 38-7
PAGE_1PCHUNK reserved

page 38-11
PAGE_2CKPT reserved page 38-7
PAGE_ARCH reserved page 38-8,

38-14
PAGE_CKPT reserved page 38-9
PAGE_CONFIG reserved

page 35-12, 38-8
mentioned 8-7, 8-9

PAGE_DBSP reserved page 38-11
PAGE_MCHUNK reserved

page 38-13
PAGE_PCHUNK reserved

page 38-11
PAGE_PZERO reserved page

contents of 38-8
mentioned 8-8
when written to 38-7

Parallel Database Query. See PDQ.
Parallel processing

mentioned 1-7
virtual processors 9-10

Parallel sort
memory allocation 11-34

Parallelism
degree of, definition 15-11

Parameters
setting decision-support with

onmode 35-39
specifying dataskip with

onspaces 35-61
used with PDQ 15-16

Participant database server
automatic recovery 30-14
description of 30-5

Partnum field in systables 38-21
PATH environment variable 3-8

in shutdown script 3-33
in startup script 3-32
multiple residency startup

script 6-9

PDQ (Parallel Database Query)
and remote tables 15-23
and stored procedures 15-22
and triggers 15-22
degree of parallelism 15-11
description of 15-10
DS_MAX_QUERIES

parameter 33-26
DS_MAX_SCANS

parameter 33-27
DS_TOTAL_MEMORY

parameter 3-23, 33-29
effect of table fragmentation 15-3
how used 15-18
MAX_PDQPRIORITY

parameter 33-51
monitoring resources 29-40
parameters used to control 15-16
PDQPRIORITY parameter 15-17,

33-51
principal components 15-11
priority

effect of remote database 15-23
queries that do not use

PDQ 15-21
queries that use PDQ 15-18
resource allocation 15-16
SET PDQPRIORITY

statement 15-17
statements affected by PDQ 15-21
used with fragmentation 15-5
uses of 15-3
when to use 15-12

PDQPRIORITY environment
variable

values of 15-17
PDQPRIORITY parameter

and MAX_PDQPRIORITY 33-51
effect of outer joins 15-23

Pending transaction 35-92
Performance

and resident shared-
memory 11-17

and shared memory 11-5
and yielding functions 9-14
effect of read-ahead 11-42
effects of VP controlled context

switching 9-10

how frequently buffers are
flushed 11-37

of CPU virtual processors 9-21
shared-memory connection 4-10

Performance configuration
parameters

setting, using a text editor 12-11
setting, using ON-Monitor 12-12

Performance tuning
and extent size 13-40
and foreground writes 11-52
and logical volume

managers 13-46
blobspace blobpage size 14-21
disk layout guidelines 13-33
logical-log size 18-5
LRU write 11-52
mechanisms 1-6
minimizing disk head

movement 13-39
minimizing disk-head

movement 13-39
moving the physical log 21-4
sample disk layout for optimal

performance 13-42
spreading data across multiple

disks 13-46
tuning amount of data

logged 20-5
Permissions, file 14-7
PHYSBUFF parameter

and physical-log buffers 11-24
description of 33-68

PHYSDBS parameter
changing size and location 21-5
description of 33-69
mentioned 3-14, 3-15, 3-16, 3-17,

3-18
where located 20-8

PHYSFILE parameter
changing size and location 21-5
description of 33-70
initial configuration value 20-6

Physical consistency, description
of 22-5

Physical log
and virtual processors 9-24
becoming full 20-7
before-image contents 20-5
22 Administrator’s Guide for Informix Dynamic Server

buffer 20-9
changing size and location

possible methods 21-3
rationale 21-4
restrictions 21-4
using an editor 21-5
using ON-Monitor 21-5
using onparams 21-6

checking consistency 35-12
contiguous space 21-4
description of 20-3
effects of checkpoints on

sizing 20-6
effects of frequent updating 20-6
ensuring does not become

full 20-7
flushing of buffer 20-10
how emptied 20-11
in root dbspace 38-5
I/O, virtual processors 9-26
managing 21-3
monitoring 29-47
optimal storage of 13-35, 13-36
reinitialize shared memory 21-3
role in fast recovery 22-4, 22-5,

22-6
scenario for filling 20-8
size of 33-70
sizing guidelines 20-5
where located 20-8

Physical logging
and archiving 20-4
and blobspace blobpages 20-5
and data buffer 20-10
and fast recovery 20-4
description of 20-3
details of logging process 20-9
purpose of 20-4
which activity logged 20-4

Physical page number 38-38
Physical units of storage

list of 13-4
Physical-log buffer

amount written 11-50
and checkpoints 20-11
dbspace location 33-69
description of 11-24
events that prompt flushing 11-48
flushing of 11-47, 20-10

mentioned 11-49
monitoring 29-49
number of 11-24
PHYSBUFF parameter 11-24
role in dbspace logging 18-26,

20-10
size of 33-68
when it becomes full 11-49

PIO virtual processors
description of 9-26
how many 9-26

Planning for database server
resources 3-3

Platform icons Intro-9
Point-in-time recovery. See Backup

and Restore Guide.
Point-in-time recovery. See also

Archive and Backup Guide.
Poll threads

and message queues 11-34
DBSERVERNAME

parameter 9-29
description of 9-30
how many 9-29
on CPU or network virtual

processors 9-29
Post-decision phase 30-6, 30-9
Precommit phase 30-6
Presumed-abort

optimization 30-10, 30-17
Primary database server 25-5
Primary key, use in fragmented

table 38-40
Printed manuals Intro-14
Priorities for disk I/O 9-25
Priority aging

description of 9-22
of CPU virtual processors 33-60
preventing 9-22

Private environment file A-6
Privileges

on databases and tables 1-12
Processes

compared to threads 9-5
DSA versus dual process

architecture 9-9
that attach to shared-

memory 11-11

Processor affinity
AFF_NPROCS parameter 33-9
and AFF_SPROC

parameter 33-10
description of 9-12
using 9-22

Processor, locking for multiple or
single 33-55

Product icons Intro-9
Profile

displaying counts with onstat
utility 35-66, 35-84

monitoring with SMI 34-20
setting counts to zero 35-67, 35-94

Profile statistics 29-19
Program counter and thread

data 11-32
Program group

documentation notes Intro-15
release notes Intro-15

PSORT_DBTEMP environment
variable

creating temporary implicit
tables 13-27

relationship to
DBSPACETEMP 33-20

PSORT_NPROCS environment
variable, allocating sort
memory 11-34

Q
Queues

description of 9-16
disk I/O 9-28
ready 9-17
sleep 9-17
wait 9-18

Quiescent mode
with oninit utility 35-21
Index 23

R
RAID. See Redundant array of

inexpensive disks.
Raw device 13-7

and character-special
interface 13-6

definition of 13-6
Raw disk space 13-6

compared with cooked
space 13-7

description of 13-6
how to allocate, UNIX 14-8
how to allocate, Windows

NT 14-9
on Windows NT 13-7
rationale for using 13-8
steps for allocating 13-8

RA_PAGES parameter
description of 3-21, 33-71
purpose of 11-42
reading a page from disk 11-44

RA_THRESHOLD parameter
description of 3-21, 33-72
purpose of 11-42

RDBMS. See Relational database
management system.

Read-ahead
description of 11-42
number of pages 3-21, 33-71
RA_PAGES parameter 11-42
RA_THRESHOLD

parameter 11-42
threshold for 3-21, 33-72
when it occurs 11-44
when used 11-42

Read-only mode, description of 7-4
Ready queue

description of 9-17
moving a thread to 9-17, 9-18

Reception buffer 25-9
Recovery

by two-phase commit
protocol 30-10

fast, description of 22-3
from media failure 23-5
parallel processing of 9-10

Recovery mode, description of 7-4

Recovery threads
off-line 33-63
on-line 3-25, 33-64

Redundant array of inexpensive
disks (RAID), mirroring
alternative 23-7

Referential constraints 16-5
regedt32 program

and sqlhosts registry 4-29
Regular buffers

and big buffers 11-31
description of 11-19
events that prompt flushing 11-47
how big 11-20
monitoring status of 11-20

Relay module, version 7.2
description of 4-60
example 4-60
example with three servers 4-62

Release notes Intro-15
Release notes, program

item Intro-15
Remainder page, description

of 38-41
Remote client 4-22
Remote database, effect on

PDQPRIORITY 15-23
Remote hosts 4-22
Replication server. See Data

replication.
Reserved pages

archive information 38-8
checking with oncheck 35-12
checkpoint information 38-7
data-replication information 38-8
dbspace information 38-7
description of 38-6
estimating disk space for 13-32
location in root dbspace 38-5
optimal storage 13-35
organization in pairs 38-7
role in checkpoint

processing 38-9
validating with oncheck 27-5
viewing of contents 38-8
when updated 38-7

RESIDENT parameter
description of 33-73
during initialization 8-10

interaction with onmode
utility 35-32

mentioned 12-15
Resident shared memory 8-7, 11-18

conditions for 11-17
contents of 11-18
description of 11-17, 11-18
internal tables 11-26
RESIDENT parameter 33-73
setting configuration

parameters 12-7
turning on/off residency 35-32

Resource allocation
effects of PDQ 15-16

RESTARTABLE_RESTORE
parameter

description of 33-74
rofferr script Intro-14
Roll back

in fast recovery 22-8
mentioned 1-9

Roll forward
in fast recovery 22-7
mentioned 1-9

Root dbspace
and temporary tables 13-19
calculating size of 13-30
description of 13-19
estimating disk space for 13-32
initial chunk 33-76
location of logical-log files 18-12
mirroring 24-7, 33-53
specified by ROOTNAME

parameter 33-75
structure 38-4
using a link 33-76

ROOTNAME parameter
description of 33-75
mentioned 13-19
multiple residency 6-6
used by PHYSDBS 33-69

ROOTOFFSET parameter
and multiple residency 5-5
description of 33-75
mentioned 13-19
multiple residency 6-6
when is it needed 14-6
24 Administrator’s Guide for Informix Dynamic Server

ROOTPATH parameter
and multiple residency 5-5
description of 33-76
mentioned 3-13, 13-19
multiple residency 6-6
setting 3-12
specifying as a link 33-76

ROOTSIZE parameter
description of 33-77

Round-robin distribution
scheme 15-6

Row
accommodating large rows 38-44
data row storage 38-40
displaying contents with

oncheck 35-13
effects of deletion on index 38-57
effects of modifying 38-44
linking of sections 38-42
maximum in a page 38-36
storage location 38-41

Rowid
as component of index item 38-49
description of 38-37
effect of page compression 38-38
elements of 38-36
for fragmented table 38-39
functions as forward

pointer 38-39
locking information derived

from 35-80
relation to slot table 38-36
stored in index pages 38-39
structure 38-38
where stored 38-39

RSAM task control block 29-35

S
Sample onconfig.std file A-10
Scalability of Dynamic Server 1-5
Scans

of indexes 11-42
of sequential tables 11-42
parallel processing of 9-10

Scheduled system jobs 3-34
Secondary database server 25-5

Security
database server 1-12
how enforced 1-12
isolating applications 5-4
of database server 1-12
risks with shared-memory

communications 4-10
Security options, sqlhosts 4-49
Security option, in options

field 4-49
Segment identifier (shared-

memory) 11-14
Segment. See Chunk.
Semaphore, UNIX parameters

Shared memory
semaphore guidelines 12-6

SERVERNUM parameter
and multiple database

servers 11-13
and multiple residency 5-4, 5-5,

6-5, 6-6
description of 33-78
how used 11-13
setting 3-12

Server-to-server connections
TCP/IP 4-9

servicename
syntax rules 4-34, 4-40

servicename field in sqlhosts file
choosing an appropriate

name 4-40
description of 4-40
with IPX/SPX 4-42
with shared memory 4-40
with stream pipes 4-40

servicename file A-9
servicename.exp file A-9
Services file

on Windows NT 4-20
services file 4-19

multiple residency 6-7
Service, in IPX/SPX 4-42
Session

and active tblspace 11-30
and dictionary cache 11-33
and locks 11-29
and shared memory 11-31
and stored procedure cache 11-34
control block 9-13

description of 9-13
information in SMI tables 34-23,

34-24
monitoring 29-35
primary thread 11-32
shared-memory pool 11-25
sqlexec threads 9-7
threads 9-7

Session control block 9-13
description of 11-31
shared memory 11-31

SET INDEX statement 11-21
SET PDQPRIORITY

statement 15-17
SET TABLE statement 11-21
setup program

and sqlhosts registry 4-28
Share lock (buffer), description

of 11-36
Shared data 11-5
Shared library files A-5
Shared memory

adding segment with
onmode 35-37

allocating 11-25
amount for sorting 11-33
and blobpages 11-63
and critical sections 11-56
and SERVERNUM

parameter 11-12
and SHMBASE parameter 11-12
attaching additional

segments 11-13, 11-15
attaching to 11-11
base address 33-80
buffer allocation 11-20
buffer locks 11-36
buffer pool 11-19, 20-9
buffer table 11-27
buffer-table hash table 11-27
buffer, frequency of

flushing 33-44
changing residency with

onmode 12-14, 35-32
changing with onmode 35-39
checkpoint 11-57
chunk table 11-28
communication 4-34
communications portion 11-34
Index 25

configuring for multiple
residency 5-6

connection 4-12
copying to a file 29-18
created during initialization 8-7
database server

requirements 11-12
data-replication buffer 25-10
dbspace table 11-28
description of 11-5
dictionary cache 11-33
dumps 3-27, 33-34, 33-35
dynamic management of 1-7
effect of operating system

parameters 12-3
examining with SMI 34-5
first segment 11-13
for interprocess

communication 11-5
global pool 11-34
hash tables 11-26
header 11-15, 11-19
heaps 11-33
how much 11-9
how utilities attach 11-12
how virtual processors

attach 11-12
identifier 11-13
initializing 8-3, 35-20
initializing structures 8-8
internal tables 11-26
key value 11-13
largest allocation of resident

portion 11-19
latches 11-35
locating a page 11-44
lock table 11-29
logical-log buffer 11-22
lower boundary address

problem 11-15
mirror chunk table 11-28
monitoring 29-18, 35-62
mutexes 11-35
operating-system segments 11-9
page-cleaner table 11-29
performance 11-5
performance options 12-12
physical-log buffer 11-24, 33-68

pools 11-25
portions 11-7
purposes of 11-5
reinitializing 12-14
resident portion 12-7
resident portion, flag 33-73
resident portion, mentioned 8-7
saving copy of with onstat 35-66
segment identifier 11-14
segments, dynamically added,

size of 33-79
session control block 11-31
session data 11-31
setting configuration

parameters 12-3
SHMADD parameter 11-25
SHMTOTAL parameter 11-9
SHMVIRTSIZE parameter 11-25
size displayed by onstat 11-9,

35-68
size of virtual portion 11-25
sorting 11-33
stacks 11-32
STACKSIZE parameter 11-32
stored procedures cache 11-34
synchronizing buffer

flushing 11-46
tables 11-26
tblspace table 11-30
the resident portion 11-18
thread control block 11-32
thread data 11-32
thread isolation and buffer

locks 11-36
total size 11-15
transaction table 11-30
use of SERVERNUM

parameter 33-78
user table 11-31
virtual portion 11-25, 11-26,

12-10, 12-15
virtual segment, initial size 33-82

Shared-memory buffer, maximum
number 33-12

Shared-memory connection
example 4-54
how a client attaches 11-11
in servicename field 4-40

message 9-31
message buffers 11-34
virtual processor 9-28

SHMADD parameter
description of 11-25
specifying value 33-79

SHMBASE parameter
attaching first shared-memory

segment 11-13
description of 11-14, 33-80
warning 11-14

shmem file
and assertion failures 27-7
and DUMPSHMEM

parameter 33-35
shmem.xxx file A-10
shmkey

attaching additional
segments 11-15

description of 11-13
SHMTOTAL parameter

description of 11-9
specifying value 33-81

SHMVIRTSIZE parameter
description of 33-82
specifying size of virtual shared

memory 11-25
Shutdown

graceful 7-7
immediate 7-7
mode, description of 7-4
taking off-line 7-8

Shutdown script
multiple residency 6-9
steps to perform 3-32

Single processor computer 9-21
SINGLE_CPU_VP parameter

and single processor
computer 9-21, 9-22

description of 33-83
Situations to avoid 28-3
Sizing guidelines

logical log 18-6
physical log 20-5

Sleep queues, description of 9-17
Sleeping threads

forever 9-18
types of 9-17
26 Administrator’s Guide for Informix Dynamic Server

Slot table
description of 38-35
entry number 38-35
entry reflects changes in row

size 38-38, 38-44
location on a dbspace page 38-34
relation to rowid 38-36

SMI table
aborted table build 8-11
description of 34-5
during initialization 8-11
list of supported tables 34-8
monitoring buffer use 29-23
monitoring buffer-pool 29-26
monitoring checkpoints 29-17
monitoring chunks 29-59
monitoring data replication 29-73
monitoring databases 29-44
monitoring fragmentation 29-63
monitoring latches 29-28
monitoring locks 29-31
monitoring log buffer use 29-51
monitoring logical-log files 29-47
monitoring sessions 29-39
monitoring shared memory 29-20
monitoring virtual

processors 29-35
preparation during

initialization 8-11
See also sysmaster database.
See also System monitoring

interface.
Sockets

on Windows NT 4-9
Sockets, in nettype field 4-32
Software dependencies Intro-4
Sorting

and shared memory 11-33
as parallel process 9-10

Split read 23-9
SQL statement

using temporary disk space 13-25
SQLCA

warning flag when fragment
skipped during query 33-16

SQLEXEC environment variable,
example 4-61

sqlexec thread
and client application 9-13
as user thread 9-7
role in client/server

connection 9-31
sqlhosts file 3-28

and communications support
module 4-15

communications support module
option 4-45

description of 4-27
mentioned 1-5

sqlhosts file and registry
and multiplexed connection 4-7
buffer size option 4-45
dbservername field 4-31
defining multiple network

addresses 9-33
end of group option 4-46
entries for multiple interface

cards 9-34
fields of 4-30
group option 4-46
identifier option 4-48
keep alive option 4-48
local loopback example 4-55
mentioned A-10
multiple connection types,

example 4-52
multiple dbservernames 33-17
multiple residency 6-7
nettype field 4-31
network connection example 4-56
options field 4-43
security options 4-49
servicename field 4-40
shared-memory example 4-54
syntax rules 4-30

sqlhosts registry
central registry 4-29
changing 4-29
description of 4-28
INFORMIXSQLHOSTS

environment variable 4-29
location of 4-29

SQLRM environment variable 4-61
SQLRMDIR environment

variable 4-61

Stack
and thread control block 9-16
description of 9-15
INFORMIXSTACKSIZE

environment variable 11-32
monitoring stack size 29-38
pointer 9-16
size of 11-32
STACKSIZE parameter 11-32
thread 11-32

STACKSIZE parameter
changing the stack size 11-32
description of 33-84

STAGEBLOB parameter 33-85
Standard database server 25-5
Starting database server

and initializing disk space 3-30
using oninit 35-20

Startup script
multiple residency 6-9
multiple versions of database

server 3-32
Statement, SET

PDQPRIORITY 15-17
Statistics. See onstat utility.
Stored procedure

effect of PDQ 15-22
Stored procedures cache 11-34
stores7 database Intro-5
Stream-pipe connection

advantages and
disadvantages 4-11

in servicename field 4-40
Structured Query Language 1-4

INSERT statement 15-6
Structured Query Language.

See also SQL statement.
Swapping memory 11-17
Switching between threads 9-16
Symbolic link

using with shared libraries A-5
Symbolic link, using with

TAPEDEV 33-87
Symmetric multiprocessing,

description of 9-3
Sysmaster database

description 34-3
See also System monitoring

interface.
Index 27

sysmaster database
See also SMI table.
buildsmi.xxx file A-4
description 34-3
failure to build A-4
functionality of 34-3
list of topics covered by 34-5
SMI tables 34-5
space required to build 34-4
types of tables 34-3
warning 34-4
when created 34-4

System catalog tables
and dictionary cache 11-33
and oncheck 35-9
disk space allocation for 38-68
how tracked 38-69
location of 13-22
optimal storage of 13-36
sysfragments table 15-4, 38-22
tracking a new database 38-69
tracking a new table 38-70
validating with oncheck 27-5

System failure, defined 22-4
System monitoring interface (SMI)

See also SMI table.
accessing SMI tables 34-6
and locking 34-7
and SPL 34-7
and triggers 34-7
description 34-3
SMI tables map 34-30
tables

list of supported 34-8
sysadtinfo 34-9
sysaudit 34-10
syschkio 34-11
syschunks 34-11
sysconfig 34-13
sysdatabases 34-14
sysdbslocale 34-15
sysdbspaces 34-15
sysdri 34-17
sysextents 34-18
syslocks 34-18
syslogs 34-19
sysprofile 34-20
sysptprof 34-23
syssesprof 34-24

syssessions 34-26
sysseswts 34-28
systabnames 34-29
sysvpprof 34-30

using SELECT statements 34-6
using to monitor database

server 29-12
using to obtain onstat

information 34-33
viewing tables with dbaccess 34-6

System startup script, multiple
residency 6-9

System timer 9-17

T
Table

creating temporary 15-8
creating, what happens on

disk 38-68, 38-69
description of 13-23
disk-layout guidelines 13-36
displaying allocation

information 35-16
high-use 13-39
identifying its dbspace 38-22
isolating 13-37
migration. See Informix Migration

Guide.
monitoring with SMI 34-29
placing in a specific

dbspace 13-23
pseudotables 34-5
purpose of 13-23
recommendations for

storage 13-39
relationship to extent 13-23
remote, used with PDQ 15-23
SMI tables 34-5
storage on middle partition of

disk 13-39, 13-44
temporary

cleanup during shared-memory
initialization 13-25

effects of creating 38-72
estimating disk space for 13-31
message reporting

cleanup 36-16

storage of explicit 13-26
storage of implicit 13-27

Tape device
block size 33-46

Tape management 3-33
TAPEDEV parameter

setting 3-12
using a symbolic link 33-87

TBCONFIG environment
variable A-7

Tblspace
description of 13-27
displaying information with

onstat 35-67, 35-89
for table fragment 38-22
identifying its dbspace 38-22
monitoring active tblspaces 29-32
monitoring with SMI 34-23
number 38-21
number displayed 35-89
number elements 38-22
temporary tblspace during

initialization 8-10
types of pages contained in 13-27

Tblspace number
components of 38-22
description of 38-21
displaying with onstat -t 35-89
for table fragment 38-22
includes dbspace number 38-21
retrieving it from systables 38-21

Tblspace table
contents of 11-30
description of 11-30

Tblspace tblspace
bit-map page 38-23
description of 38-19
entries 38-20
location in a chunk 38-15
location in root dbspace 38-5
size 38-23
structure and function 38-19
tracking new tables 38-70

TCP/IP communication protocol
and Windows sockets 4-9
for client-server

communication 4-9
in hostname field 4-34
in servicename field 4-41
28 Administrator’s Guide for Informix Dynamic Server

listen port number 4-42
network software 4-19
using 4-21, 4-22, 4-23
using a wildcard 4-36
using the internet IP address 4-35
using the TCP listen port

number 4-42
TEMP TABLE clause, of CREATE

TABLE 15-8
Template for ONCONFIG file A-8
Temporary dbspace

and data replication 25-38, 26-7
and DBSPACETEMP 13-26
described 13-20

Temporary disk space
amount required for temporary

tables 13-31
operations requiring 13-25

Temporary table
and fragmentation 15-8
DBSPACETEMP parameter 33-19
during initialization 8-10
explicit 13-24
implicit 13-24
rules for use 33-19
where stored 13-26
with oninit utility 35-21

TERMINFO environment
variable 3-10

Testing environment 5-4
TEXT and BYTE data

absence of scanning or
compression 1-13

buffers 11-64
creating in a blobspace 11-65
descriptor 11-61, 11-64
descriptor, description of 38-37,

38-61
descriptor, time stamp associated

with 11-61
effect of Committed Read

isolation 11-62
effect of Dirty Read

isolation 11-62
effect of modifying on

storage 38-62
entering 1-13
how stored 38-59
how updated 38-62

illustration of blobspace
storage 11-65

monitoring in a dbspace 29-69
role of descriptor 38-62
role of descriptor in storage 38-61
role of time stamps 11-61
size limitations 38-62
storage on disk 38-61
when modified 38-62
when written 38-61
writing to a blobspace 11-63
writing to disk 11-64

TEXT data type
requires 4-bit bit map 38-26, 38-29

Text editor
setting performance configuration

parameters 12-13
setting shared memory

parameters 12-8, 12-11
setting virtual processor

parameters 10-4
Thread

access to resources 9-10
accessing shared buffers 11-37
and heaps 11-33
and stacks 11-32
concurrency control 11-35
context of 9-13
control block 9-13, 11-32
description of 9-5
dynamic allocation of 1-7
for client applications 9-5
for primary session 9-13
for recovery 9-7
how virtual processors

service 9-12
internal 9-7, 9-20
kernel asynchronous I/O 9-27
main_loop() 11-58
migrating 9-16
mirroring 9-7
monitoring 29-35
multiple concurrent 9-13
ON-Monitor 9-7
onstat information 35-67, 35-94
page cleaner 9-7, 11-46
relationship to a process 9-5
scheduling and

synchronizing 9-13

session 9-7, 9-20
sleeping 9-18, 11-45
supporting data replication 25-13
switching between 9-16
user 9-7
waking up 9-17
yielding 9-13

Thread control block
creation of 11-32
role in context switching 9-14

Time stamp
associated with TEXT and BYTE

data 11-61
blobpage pair 11-61
description of 11-60
location

blobspace blobpage 38-65,
38-66

dbspace blobpage 38-63
dbspace page 38-34

mentioned 11-46
on a blobpage 38-66
page-header and page-ending

pair 11-60, 38-35
role in

data consistency 11-60
flushing physical-log

buffer 11-50
Time-out condition 35-75
TLI. See Transport-layer interface.
Transaction

factors which prevent
closure 18-19

global
definition of 30-5
determining if implemented

consistently 31-4
identification number,

GTRID 31-8
tracking 30-28

heterogeneous commit 33-37
kill with onmode -Z 35-34
mixed result 30-25
monitoring 29-41
pending 35-92
piece of work, definition of 30-5
two-phase commit,

examples 30-8
Index 29

Transaction logging
buffered 16-9
definition of 16-8
unbuffered 16-9
when to use 16-10
See also Logging.

Transaction table
description of 11-30
tracking with onstat 11-30

Transport-layer interface
in nettype field 4-32

Trapping errors with onmode B-1
Triggers, effect of PDQ 15-22
Trusted clients, database server and

Windows NT domains 4-6
Trusted domain 4-6
Trusted domain, Windows NT 4-6
Tuning

large number of users 33-58
use of NETTYPE parameter 33-57

Two-phase commit
contrast with heterogeneous

commit 30-38
Two-phase commit protocol

automatic recovery 30-10
administrator’s role 30-10
mechanisms for coordinator

recovery 30-10
mechanisms for participant

recovery 30-14
race condition 30-17

configuration parameters
for 30-37

coordinator definition 30-5
coordinator recovery

mechanism 30-11
description of 30-3, 30-4
errors messages for 30-29
global transaction definition 30-5
global transaction identification

number 31-8
heuristic decisions

heuristic end-transaction 30-26
heuristic rollback 30-22
types of 30-21

independent action
definition of 30-18
resulting in error

condition 30-20

resulting in heuristic
decisions 30-21

results of 30-19
what initiates 30-19

logical-log records for 30-30
messages 30-6
participant recovery 30-14
participant, definition of 30-5
piece of work, definition of 30-5
post-decision phase 30-6, 30-9
precommit phase 30-6
presumed-abort

optimization 30-10, 30-17
requirements for flushing logical

log records 30-32
role of current server 30-5
use of

DEADLOCK_TIMEOUT 30-3
7

use of TXTIMEOUT 30-37
TXTIMEOUT parameter

and onmode -Z 30-27
description of 30-37, 33-90
in two-phase commit

protocol 30-37
role in automatic recovery 30-11,

30-15, 30-17
Types of applications 15-12
Types of buffer writes 11-51

U
Unbuffered disk access

compared to buffered 13-6
Unbuffered disk space

in data storage 13-3
Unbuffered logging

flushing the logical-log
buffer 11-55

Unbuffered transaction logging. See
Logging.

Unique ID 18-12
Units of storage 13-3
UNIX devices

creating a link to a pathname 14-9
ownership, permissions on

character-special 14-8

UNIX files
ownership, permissions on

cooked files 14-7
UNIX link command 14-9
UNIX operating system

directory for on-line files Intro-15
reading error messages Intro-14

UNIX shutdown script 3-32
UPDATE STATISTICS statement,

effect of PDQ 15-21
USEOSTIME parameter

description of 33-91
User accounts and Windows NT

domains 4-5
User impersonation 4-24
User session

monitoring 29-35
monitoring with SMI 34-26
status codes 35-90

User table
description of 11-31
maximum number of

entries 11-31
User thread

acquiring a buffer 11-43
description of 9-7
in critical sections 11-56
monitoring 11-31
tracking 11-31

Utilities
attaching to shared-

memory 11-12
gcore 3-27, 33-32, 33-34
oncheck 35-5
ondblog 35-18
oninit 35-20
onlog 35-23
onmode 35-28, 35-39
onparams 35-43
onstat 35-62
ontape 35-95
-V option 35-4

Utility
finderr Intro-14
Informix Find Error Intro-14
rofferr Intro-14
30 Administrator’s Guide for Informix Dynamic Server

V
-V option 35-4
VARCHAR data type

byte locks 11-29
implications for data row

storage 38-40
indexing considerations 38-59
requires 4-bit bit map 38-26, 38-29
storage considerations 38-37

Version, connecting to
different 4-60

Virtual portion (shared memory)
adding a segment 12-15
contents of 11-25, 11-26
global pool 11-34
setting configuration

parameters 12-10
size of 11-25
stacks 11-32
stored procedures cache 11-34

Virtual processor
access to shared memory 11-7
adding and dropping 9-11
add/remove with onmode 35-37
ADM class 9-17
ADT class 9-36
advantages 9-9
AIO class 9-27
AIO, how many 9-28
and context switching 9-10
and ready queue 9-17
as multithreaded process 9-5
attaching to shared memory 11-7
attaching to shared-

memory 11-12
binding to CPUs 9-12
classes of 9-7, 9-20
coordination of access to

resources 9-10
CPU class 9-20
description of 9-5
disk I/O 9-24
dropping (CPU) in on-line

mode 10-10

during initialization 8-8
how threads serviced 9-12
LIO class 9-24
LIO, how many 9-25
logical-log I/O 9-25
monitoring 29-33
moving a thread 9-9
MSC (miscellaneous) class 9-36
network 9-28, 9-29
number in AIO class 33-61
number in CPU class 33-62
OPT (optical) class 9-35
parallel processing 9-10
physical log I/O 9-26
PIO class 9-24
PIO, how many 9-26
priority aging 33-60
setting configuration

parameters 10-3
sharing processing 9-9
use of stack 9-15

VP class in NETTYPE
parameter 9-29

VP.servername.nnx file A-10

W
Wait queue

and buffer locks 11-36
description of 9-18

Waking up threads 9-17
Warning

buildsmi script 34-5
files on NIS systems 4-18
interpreting after running

oncheck -cc 27-6
when fragment skipped during

query processing 33-16
White space in ONCONFIG

file 33-6
Wildcard addressing

by a client application 4-38
example 4-37
in hostname field 4-36

Windows Internet Name Service,
mentioned 4-20

Windows NT
program groups for on-line

notes Intro-15
reading error messages Intro-14

Windows Sockets 4-9
WORM. See Optical devices.
Write types

chunk write 11-53
foreground write 11-52
LRU write 11-52

X
X/Open compliance

level Intro-16

Y
Yielding threads

and ready queue 9-17
at predetermined point 9-14
description of 9-13
on some condition 9-14
switching between 9-12

ypcat hosts command 4-18
ypcat services command 4-18

Symbols
.informix file 3-9
.netrc file 4-23

sqlhosts security options 4-49
.rhosts file 4-23

sqlhosts security options 4-49
Index 31

	Answers OnLine Web Site
	Table of Contents
	Introduction
	About This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Database

	New Features
	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Feature, Product, and Platform Icons

	Command-Line Conventions
	How to Read a Command-Line Diagram

	Additional Documentation
	On-Line Manuals
	Printed Manuals
	Error Message Files
	Documentation Notes, Release Notes, Machine Notes

	Compliance with Industry Standards
	Informix Welcomes Your Comments

	Introducing Informix Dynamic Server
	What Is Informix Dynamic Server?
	Client/Server Architecture
	Client Application Types
	Connecting Clients and Database Servers

	Scalability
	High Performance
	Unbuffered Disk Management
	Dynamic Shared-Memory Management
	Dynamic Thread Allocation
	Fragmentation and Parallelization

	Fault Tolerance and High Availability
	Dbspace and Logical-Log Backups of Transaction Rec...
	Fast Recovery
	Mirroring
	High-Availability Data Replication
	Point-in-Time Recovery

	Dynamic System Administration
	Distributed Data Queries
	Database Server Security

	Features Beyond the Scope of Dynamic Server
	No Bad-Sector Mapping
	No Scanning or Compression of TEXT and BYTE Data T...

	Overview of Database Server Administration
	Who Is the Database Server Administrator?
	Initial Tasks
	Routine Tasks
	Changing Database Server Operating Modes
	Backing Up Data and Logical-Log Files
	Monitoring Activity
	Checking for Consistency

	Configuration Tasks
	Managing Disk Space
	Managing Database-Logging Status
	Logical-Log Administration
	Physical-Log Administration
	Using Auditing
	Using Mirroring
	Using Data Replication
	Managing Shared Memory
	Managing Virtual Processors
	Managing Parallel Database Query

	Administration Tasks Summary

	Configuring the Database Server
	Planning for the Database Server
	Consider Your Priorities
	Consider Your Resources

	Configuring the Operating System
	Operating-System Administration Facilities
	Configuring Operating-System Resources

	Installing the Database Server
	Configuring the Database Server
	Set Environment Variables
	Other Environment Variables

	Prepare the ONCONFIG Configuration File
	Preparing the ONCONFIG FIle on UNIX
	Preparing the ONCONFIG FIle on Windows NT
	Required and Optional Parameters
	Overview of Configuration Parameters

	Allocate Disk Space
	Prepare the Connectivity Information
	Prepare the ON-Archive Configuration File
	Prepare for Global Language Support
	Evaluate Operating-System Parameters
	Start the Database Server and Initialize Disk Spac...
	Starting and Initializing on UNIX
	Starting and Initializing on Windows NT

	Create Dbspaces and Blobspaces
	Perform Administrative Tasks
	Prepare Operating-System Startup and Shutdown Scri...
	Make Arrangements for Tape Management
	Make Sure Users Have the Correct Environment Varia...
	Warn System Administrator About cron Jobs

	Client/�Server �Communications
	What Is �Client/�Server Architecture?
	What Is a Network Protocol?
	What Is a Network Programming Interface?
	 Windows�NT Network Domains

	What Is a Connection?
	What Is a Multiplexed Connection?

	What Connections Does the Database Server Support?...
	Network Connections
	Local Connections
	Shared-Memory Connections
	Stream-Pipe Connections
	Named-Pipe Connections
	Local Loopback Network Connections

	What Interface/Protocol Combinations Are Available...

	What Are Communications Support Services?
	What Is a Communications Support Module?
	How to Configure the DCE-GSS Communications Suppor...
	Installing and Configuring DCE Components for the ...
	Describing and Specifying the CSM

	Connectivity Files
	Network-Configuration Files
	TCP/IP Connectivity Files on UNIX
	TCP/IP Connectivity Files on Windows NT
	IPX/SPX Connectivity Files

	Network-Security Files
	The hosts.equiv File
	The .netrc File

	The $INFORMIXDIR/etc/concsm.cfg file
	The sqlhosts File or Registry
	The sqlhosts File
	The sqlhosts Registry
	sqlhosts File and Registry Fields
	The dbservername Field and Key Name Field
	The nettype and Protocol Field
	The hostname and host Field
	The servicename and Service Field
	The options Field

	ONCONFIG Parameters for Connectivity
	The DBSERVERNAME Configuration Parameter
	The DBSERVERALIASES �Configuration Parameter

	Environment Variables for Network Connections
	Examples of Client/Server Configurations
	Using a Shared-Memory Connection
	Using a Local Loopback �Connection
	Using a �Network Connection
	Using Multiple Connection Types
	Accessing Multiple Database Servers
	Using the Relay Module
	A Relay Module Configuration with Three Database S...

	Using a Post-6.0 Client Application with a 5.x Dat...

	What Is Multiple �Residency?
	Benefits of Multiple �Residency
	How Multiple Residency Works
	The Role of the ONCONFIG Environment Variable
	The Role of the SERVERNUM Configuration �Parameter...

	Using Multiple �Residency
	Planning for Multiple Residency
	Preparing for Multiple Residency
	Prepare a Configuration File
	Set the ONCONFIG Environment Variable
	Edit the New Configuration File
	Add Connection Information
	Update the sqlhosts File or Registry
	Initialize Disk Space
	Prepare Dbspace and Logical-Log Backup Environment...
	If You Use ON-Archive

	 Update the Operating-System Boot File
	Check Users’ INFORMIXSERVER Environment Variables

	Using instmgr.exe
	Adding an Instance of the Database Server
	Deleting an Instance of the Database Server

	Managing Database Server Operating Modes
	Database Server Operating Modes
	Changing Database Server Operating Modes
	From Off-Line to Quiescent
	From Off-Line to On-Line
	From Quiescent to On-Line
	Gracefully from On-Line to Quiescent
	Immediately from On-Line to Quiescent
	From Any Mode Immediately to Off-Line

	Initializing the Database Server
	Types of Initialization
	Initialization Commands
	Initialization Steps
	Process Configuration File
	Create Shared-Memory Portions
	Initialize Shared-Memory Structures
	Initialize Disk Space
	Start All Required Virtual Processors
	Make Necessary Conversions
	Initiate Fast Recovery
	Initiate a Checkpoint
	Document Configuration Changes
	Create the oncfg_servername.servernum File
	Drop Temporary Tblspaces
	Set Forced Residency If Specified
	Return Control to User
	Prepare SMI Tables

	After Initialization

	What Is Informix Dynamic Scalable Architecture?
	What Is a Virtual Processor?
	What Is a Thread?
	What Is a User Thread?

	Types of Virtual Processors
	Advantages of Virtual Processors
	Sharing Processing
	Saving Memory and Resources
	Processing in Parallel
	Adding and Dropping Virtual Processors in On-Line ...
	Binding Virtual Processors to CPUs

	How Virtual Processors Service Threads
	Control Structures
	Context Switching
	Stacks
	Queues
	Ready Queues
	Sleep Queues
	Wait Queues

	Multiple Virtual Processors on Windows NT
	Mutexes

	Virtual-Processor Classes
	CPU Virtual Processors
	How Many CPU Virtual Processors Do You Need?
	Running on a Multiprocessor Computer
	Running on a Single-Processor Computer
	Adding and Dropping CPU Virtual Processors in On-L...
	Preventing Priority Aging
	Using Processor Affinity

	Disk I/O Virtual Processors
	I/O Priorities
	Logical-Log I/O
	Physical-Log I/O
	Asynchronous I/O

	Network Virtual Processors
	Should Poll Threads Run on CPU or �Network Virtual...
	How Many Networking Virtual Processors Do You Need...
	Listen and Poll Threads for the Client/Server Conn...
	Starting Multiple Listen Threads

	Communications Support Module Virtual Processor
	Optical Virtual Processor
	Audit Virtual Processor
	Miscellaneous Virtual Processor

	Managing Virtual Processors
	Setting Virtual-Processor Configuration Parameters...
	Setting Virtual-Processor Configuration Parameters...
	Setting Virtual-Processor Configuration Parameters...

	Starting and Stopping Virtual �Processors
	Adding Virtual �Processors in �On�Line Mode
	Using onmode to Add Virtual �Processors in �On-Lin...
	Using ON-Monitor to Add Virtual Processors in �On�...
	Adding Network Virtual Processors

	Dropping CPU Virtual Processors in On-Line Mode

	Shared Memory
	What Is Shared Memory?
	How the Database Server Uses Shared Memory
	How the Database Server Allocates Shared Memory
	How Much Shared Memory Does the Database Server Ne...
	What Action Should You Take If SHMTOTAL Is Exceede...

	What Processes Attach to Shared Memory?
	How a Client Attaches to the Communications �Porti...
	Where the Client Attaches to the Communications �P...

	How Utilities Attach to Shared Memory
	How Virtual Processors Attach to Shared Memory
	Defining a Unique Key Value
	Specifying Where to Attach the First Shared-Memory...
	How Virtual Processors Attach Additional Shared-Me...
	The Shared-Memory Lower-Boundary Address

	Keeping Shared-Memory Segments Resident
	The Resident Portion of Shared Memory
	Shared-Memory Header
	Shared-Memory Buffer Pool
	Regular Buffers
	Logical-Log Buffer
	Physical-Log Buffer
	High-Availability Data-Replication Buffer

	The Virtual Portion of Shared Memory
	How the Database Server Manages the Virtual Portio...
	How to Specify the Size of the Virtual Portion of ...

	The Virtual Portion of Shared Memory
	Shared-Memory Internal Tables
	Big Buffers
	Session Data
	Thread Data
	Dictionary Cache
	Sorting Memory
	Stored Procedures Cache
	Global Pool

	The Communications Portion of Shared Memory
	Concurrency Control
	Shared-Memory Mutexes
	Shared-Memory Buffer Locks
	Types of Buffer Locks

	How Database Server Threads Access Shared Buffers
	LRU Queues
	LRU Queue Components
	Why Are Pages Ordered in Least-Recently Used Order...
	LRU Queues and Buffer-Pool Management
	How Many LRU Queues Should You Configure?
	How Many Cleaners Should You Allocate?
	Limiting the Number of Pages Added to the MLRU Que...
	When MLRU Cleaning Ends

	Configuring the Database Server to Read Ahead
	How a Database Server Thread Accesses a Buffer Pag...
	Identify the Page
	Determine the Level of Lock Access
	Try to Locate the Page in Shared Memory
	Locate a Buffer and Read Page from Disk
	Lock the Buffer If Necessary
	Release the Buffer Lock and Wake a Waiting Thread

	How the Database Server Flushes Data to Disk
	Events That Prompt Flushing of the Regular Buffers...
	Flushing Before-�Images First
	Flushing the Physical-Log Buffer
	Events That Prompt Flushing of the Physical-Log Bu...
	When the Physical-Log Buffer Becomes Full

	How the Database Server Synchronizes Buffer Flushi...
	Ensuring That Physical-Log Buffers Are Flushed Fir...

	How Write Types Describe Flushing Activity
	Foreground Write
	LRU Write
	Chunk Write

	Flushing the �Logical-Log Buffer
	When the Logical-Log Buffer Becomes Full
	After a Transaction Is Prepared or Terminated in a...
	When a Session That Uses Nonlogging Databases or U...
	When a Checkpoint Occurs
	When a Page Is Modified That Does Not Require a Be...

	How the Database Server Achieves Data �Consistency...
	Critical Sections
	Checkpoints
	Events That Initiate a Checkpoint
	Checkpoint Is Critical to Fast Recovery

	Time Stamps
	Time Stamps on Disk Pages
	Time Stamps on Blobpages
	Blob Time Stamps with Dirty Read and Committed Rea...

	Buffering TEXT and BYTE Data Types
	Writing TEXT and BYTE Data
	Blobpages Do Not Pass Through Shared Memory
	TEXT and BYTE Objects Are Created Before the Data ...
	Blobpage Buffers Are Created for the Duration of t...

	Managing Shared Memory
	Setting Operating-System Shared-Memory Configurati...
	Maximum Operating-System Shared-Memory Segment Siz...
	Maximum Number of Shared-Memory Identifiers
	Shared-Memory Lower-Boundary Address
	Maximum Amount of Shared Memory for One Process
	Semaphores

	Setting Database Server Shared-Memory Configuratio...
	Setting Parameters for Resident Shared Memory with...
	Setting Parameters for Resident Shared Memory with...
	Setting Parameters for Virtual Shared Memory with ...
	Setting Parameters for Virtual Shared Memory with ...
	Setting Parameters for Shared-Memory Performance O...
	Setting Parameters for Shared-Memory Performance O...

	Reinitializing Shared Memory
	Turning Residency On or Off for Resident Shared Me...
	Turning Residency On or Off in On�Line Mode
	Turning Residency On or Off for the Next Time You ...

	Adding a �Segment to the Virtual Portion of Shared...
	Forcing a Checkpoint

	Where Is Data Stored?
	Overview of Data Storage
	What Are the Physical Units of Storage?
	What Is a Chunk?
	Limits on Chunk Size and Number
	Unbuffered or Buffered Disk Access
	What Is an Offset?

	What Is a Page?
	What are Blobpages?
	How Big Should Blobpage Be?

	What Is an Extent?
	What Are Disabling I/O Errors?

	What Are the Logical Units of Storage?
	What Is a Dbspace?
	How Can You Control Where Data Is Stored?
	How Does Table Fragmentation Affect Data Storage?
	What Is the Root Dbspace?
	What Is a Temporary Dbspace?
	What Are the Advantages of Using Temporary Dbspace...

	What Is a Blobspace?
	What Is a Database?
	What Is a Table?
	What Is a Temporary Table?
	Where Are Temporary Tables Stored?

	What Is a Tblspace?
	What Is Extent Interleaving?

	How Much Disk Space Do You Need to Store Your Data...
	Calculate the Size of the Root Dbspace
	Physical and Logical Logs
	Temporary Tables
	Critical Data
	ON-Archive Catalog Data
	Control Information (Reserved Pages)
	Complete the Root �Dbspace Calculation

	Estimate Space That Databases Require

	Disk-Layout Guidelines
	Dbspace and Chunk Guidelines
	Strive to Associate Partitions with Chunks
	Mirror Critical Data Dbspaces
	Spread Your Temporary Storage Space Across Multipl...
	Move the Logical and Physical Logs from the Root D...
	Consider Account Backup-and-Restore Performance

	Table-Location Guidelines
	Isolate High-Use Tables
	Consider Mirroring
	Group Your Tables with Backup and Restore in Mind
	Place High-Use Tables on Middle Partition of Disk
	Optimize Table-Extent Sizes

	Sample Disk Layouts
	Sample Layout When Performance Is Highest Priority...
	Sample Layout When Availability Is Highest Priorit...

	What Is a Logical-Volume Manager?

	Managing Disk Space
	Allocating Disk Space
	Do You Need to Specify an �Offset?
	Specifying an Offset for the Initial Chunk of Root...
	Specifying an Offset for Additional Chunks
	Using Offsets to Create Multiple Chunks

	Allocating a File for Disk Space on UNIX
	Allocating a File for Disk Space on Windows NT
	Allocating Raw Disk Space on UNIX
	Creating a Link to Each Raw Device on UNIX

	Allocating Raw Disk Space on Windows NT

	Initializing Disk Space
	Initializing Disk Space with oninit
	Initializing Disk Space with ON-Monitor

	Creating a Dbspace
	Creating a Temporary Dbspace
	Creating a Dbspace with onspaces
	Creating a Dbspace with ON-Monitor

	Adding a Chunk to a Dbspace
	Adding a Chunk
	Adding a Chunk with onspaces
	Adding a Chunk with ON-Monitor

	Creating a Blobspace
	Determining Database Server Page Size
	Creating a Blobspace with onspaces
	Creating a Blobspace with ON-Monitor

	Adding a Chunk to a Blobspace
	Dropping a Chunk from a �Dbspace with onspaces
	Dropping a Chunk from a Blobspace
	Dropping a Dbspace or Blobspace
	Dropping a Dbspace or Blobspace with onspaces
	Dropping a Dbspace or Blobspace with ON-Monitor

	Optimizing Blobspace Blobpage Size
	Determining Blobspace Storage Efficiency
	Blobspace Storage Statistics
	Determining Blobpage Fullness with oncheck -pB
	Interpreting Blobpage Average Fullness
	Apply Efficiency Criteria to Output

	Overview of Table Fragmentation and PDQ
	What Is Fragmentation?
	Fragmentation Goals
	Whose Responsibility Is Fragmentation?
	Fragmentation Strategies
	Fragmenting Tables
	Fragmenting a Temporary Table
	 Fragmenting Table Indexes

	Using SQL Statements to Perform Fragmentation Task...

	What Is PDQ?
	High Degree of Parallelism

	When Should You Use PDQ?
	OLTP Applications
	Processing OLTP Queries

	Decision-Support Applications
	Processing Decision-Support Queries

	How Does the Database Server Allocate Resources wi...
	Parameters Used for Controlling PDQ
	PDQ Priority

	How Does the Database Server Use PDQ?
	SQL Operations That Take Advantage of PDQ
	Parallel Delete
	Parallel Inserts
	Parallel Index Builds

	SQL Operations That Do Not Use PDQ
	Update Statistics
	Stored Procedures and Triggers
	Correlated and Uncorrelated Subqueries
	Outer Index Joins

	Remote Tables

	What Is Logging?
	Which Database Server Processes Require Logging?
	What Database Server Activity Is Logged?
	Activity That Is Always Logged
	Activity Logged for Databases with Transaction Log...
	Are Blobs Logged?

	What Is Transaction Logging?
	The Database-Logging Status
	Unbuffered Transaction Logging
	Buffered Transaction Logging
	ANSI-Compliant Transaction Logging
	Databases with Different Log-Buffering Status

	When to Use Transaction Logging
	When to Buffer Transaction Logging
	Who Can Set or Change Logging Status?

	Managing Database-Logging Status
	About Changing Logging Status
	Modifying Database-Logging Status with ON�Archive
	Turning On Transaction Logging with ON�Archive
	Canceling a Logging Operation with ON-Archive
	Ending Logging with ON-Archive
	Changing Buffering Status with ON-Archive
	Making a Database ANSI Compliant with ON-Archive

	Modifying Database-Logging Status with ontape
	Turning On Transaction Logging with ontape
	Ending Logging with ontape
	Changing Buffering Status with ontape
	Making a Database ANSI Compliant with ontape

	Modifying Database Logging Status with ON�Monitor

	What Is the Logical Log?
	What Is the Logical Log?
	What Is a Logical-Log File?
	How Big Should the Logical Log Be?
	Performance Considerations
	Long-Transaction Consideration
	Logical-Log Size Guidelines
	Determining the Size of the Logical Log

	Preserving Log Space for ON�Archive Tasks
	Enabling the Logs-Full High-Water Mark
	Emergency Log Backup
	Building the System-Monitoring Interface
	Recovery
	Small Logs, Many Users
	Administrative Activity When Logs Need Backing Up

	What Should Be the Size and Number of Logical-Log ...
	Where Should Logical-Log Files Be Located?
	How Are Logical-Log Files Identified?
	What Are the Status Flags of Logical-Log Files?
	Point-In-Time Recovery
	Why Do Logical-Log Files Need to Be Backed Up?
	When Are Logical-Log Files Freed?
	When Does the Database Server Attempt to Free a Lo...
	What Happens If the Next Logical-Log File Is Not F...
	Avoiding Long Transactions
	Factors That Influence the Rate at Which Logical-L...
	Factors That Prevent Closure of Transactions
	Setting High-Water Marks

	What Are the Logical-Log Administration Tasks Requ...
	Switching Logical-Log Files to Activate Blobspaces...
	Switching Logical-Log Files to Activate New Blobsp...
	Backing Up Logical-Log Files to Free Blobpages
	Why Do You Have to Back Up Logical-Log Files to Fr...

	What Is the Logging Process?
	Dbspace Logging
	Read Page into Shared-Memory Buffer Pool
	Copy the Page Buffer into the Physical-Log Buffer
	Read Data into Buffer and Create Logical-Log Recor...
	Flush Physical-Log Buffer to the Physical Log
	Flush Page Buffer
	Flush Logical-Log Buffer

	Blobspace Logging

	Managing Logical-Log Files
	Adding a �Logical-Log File
	Using ON-Monitor to Add a Log File
	Using onparams to Add a Log File
	Adding a Log File with a New Size

	 Dropping a �Logical�Log File
	Using ON-Monitor to Drop a Logical-Log File
	Using onparams to Drop a Logical-Log File

	 Moving a Logical-Log File to Another Dbspace
	An Example of Moving Logical-Log Files

	Changing the Size of Logical-Log Files
	Changing Logical-Log �Configuration Parameters
	Changing LOGSIZE or LOGFILES
	Using ON-Monitor to Change LOGSIZE or LOGFILES
	Using a Text Editor to Change LOGSIZE or LOGFILES

	Changing LOGSMAX, LTXHWM, or LTXEHWM
	Changing LOGSMAX, LTXHWM, or LTXEHWM with ON-Monit...
	Editing the ONCONFIG File to Change LOGSMAX, LTXHW...

	Freeing a Logical-Log File
	Freeing a Log File with Status A
	Freeing a Log File with Status U
	Freeing a Log File with Status U-B
	Freeing a Log File with Status U-C or U-C-L
	Freeing a Log File with Status U�B�L

	 Switching to the Next Logical-Log File

	What Is Physical Logging?
	What Is Physical Logging?
	What Is the Purpose of Physical Logging?
	Fast Recovery Uses Physically Logged Pages
	Backup Uses Physically Logged Pages

	What Database Server Activity Is Physically Logged...
	Are Blobs Physically Logged?

	How Big Should the Physical Log Be?
	Can the Physical Log Become Full?

	Where Is the Physical Log Located?
	Details of Physical Logging
	Page Is Read into the Shared-Memory Buffer Pool
	A Copy of the Page Buffer Is Stored in the Physica...
	Change Is Reflected in the Data Buffer
	Physical-Log Buffer Is Flushed to the Physical Log...
	Page Buffer Is Flushed
	When a Checkpoint Occurs
	How the Physical Log Is Emptied

	Managing the Physical Log
	Changing the Physical-Log Location and Size
	Why Change Physical-Log Location and Size?
	Before You Make the Changes
	Using ON-Monitor to Change Physical-Log Location o...
	Using a Text Editor to Change Physical-Log Locatio...
	Using onparams to Change Physical-Log Location or ...

	What Is Fast Recovery?
	What Is Fast Recovery?
	When Is Fast Recovery Needed?
	When Does the Database Server Initiate Fast Recove...
	Fast Recovery and Buffered Logging
	Fast Recovery and No Logging

	Details of Fast Recovery
	Returning to the Last-Checkpoint State
	Finding the Checkpoint Record in the Logical Log
	Rolling Forward Logical�Log Records
	Rolling Back Incomplete Transactions

	What Is Mirroring?
	What Is Mirroring?
	What Are the Benefits of Mirroring?
	What Are the Costs of Mirroring?
	What Happens If You Do Not Mirror?
	What Should You Mirror?
	What Mirroring Alternatives Exist?

	The Mirroring Process
	What Happens When You Create a Mirrored Chunk?
	What Are Mirror Status Flags?
	What Is Recovery?
	What Happens During Processing?
	Disk Writes to Mirrored Chunks
	Disk Reads from Mirrored Chunks
	Detecting Media Failures
	Recovering a Chunk

	What Happens If You Stop Mirroring?
	What Is the Structure of a Mirrored Chunk?

	Using Mirroring
	Steps Required for Mirroring Data
	Enabling �Mirroring
	Enabling Mirroring with ON-Monitor
	Enabling Mirroring by Editing the ONCONFIG File

	Allocating Disk Space for Mirrored Data
	Starting Mirroring
	Mirroring the Root Dbspace During Initialization
	Setting MIRRORPATH and MIRROROFFSET with ON-Monito...
	Setting MIRRORPATH and MIRROROFFSET with a Text Ed...

	Starting Mirroring for Unmirrored Dbspaces
	Starting Mirroring for Unmirrored Dbspaces with ON...
	Starting Mirroring for Unmirrored Dbspaces with on...

	Starting Mirroring for New Dbspaces
	Starting Mirroring for New Dbspaces with ON-Monito...
	Starting Mirroring for New Dbspaces with onspaces

	Adding Mirrored Chunks
	Adding Mirrored Chunks with ON-Monitor
	Adding Mirrored Chunks with the onspaces Utility

	Changing the Mirror Status
	Taking Down a Mirrored Chunk
	Taking Down a Mirrored Chunk with ON-Monitor
	Taking Down a Mirrored Chunk with the onspaces Uti...

	Recovering a �Mirrored Chunk
	Recovering a Mirrored Chunk with ON-Monitor
	Recovering a Mirrored Chunk with onspaces

	Relinking a Chunk to a Device After a Disk Failure...
	 Ending Mirroring
	Ending Mirroring with ON-Monitor
	Ending Mirroring with onspaces

	What Is High-Availability Data Replication?
	What Is Data Replication?
	What Is High-Availability Data Replication?
	What Are Primary and Secondary Database Servers?
	How Is High-Availability Data Replication Differen...
	How Is High-Availability Data Replication Differen...

	How Does High-Availability Data Replication Work?
	How Does Data Initially Replicate?
	Reproducing Updates to the Primary Database Server...
	How Are the Log Records Sent?
	What Are the High-Availability Data-Replication Bu...
	When Are Log Records Sent?
	Synchronous Updating
	Asynchronous Updating

	What Threads Handle High-Availability Data Replica...
	Checkpoints Between Database Servers
	How Is Data Synchronization Tracked?

	HIgh-Availability Data-Replication Failures
	What Are High-Availability Data-Replication Failur...
	How Are High-Availability Data-Replication Failure...
	What Happens When a High-Availability Data-Replica...
	Considerations After High-Availability Data-Replic...
	Actions to Take If the Secondary Database Server F...
	Actions to Take If the Primary Database Server Fai...

	Redirection and Connectivity for �Data�Replication...
	Designing Clients for Redirection
	Automatic Redirection with DBPATH
	How Does the DBPATH Redirection Method Work?
	What Does the Administrator Need to Do?
	What Does the User Need to Do?

	Administrator-Controlled Redirection with the Conn...
	How Does the Connectivity Information-Redirection ...
	What Does the Administrator Need to Do?
	What Does the User Need to Do?

	User-Controlled Redirection with INFORMIXSERVER
	How Does the INFORMIXSERVER Redirection Method Wor...
	What Does the Administrator Need to Do?
	What Does the User Need to Do?

	Handling �Redirection Within an Application
	A Connection Loop and Database Server Type Check

	Comparison of Different Redirection Mechanisms

	Designing High-Availability Data-Replication Clien...
	Setting Lock Mode to Wait for Access to Primary Da...
	Designing Clients to Use the Secondary Database Se...
	No Data Modification Statements
	Locking and Isolation Level
	Using Temporary Dbspaces for Sorting and Temporary...

	Using High-Availability Data Replication
	Planning for High-Availability Data Replication
	Configuring High-Availability Data Replication
	Meeting Hardware and Operating-System Requirements...
	Meeting Database and Data Requirements
	Meeting Database Server Configuration Requirements...
	Version
	Dbspace and Chunk Configuration
	Mirroring
	Physical-Log Configuration
	Dbspace and Logical-Log Tape Backup Devices
	Logical-Log Configuration
	Shared-Memory Configuration
	High-Availability Data-Replication Parameters

	Configuring High-Availability Data-Replication Con...

	Starting High-Availability Data Replication for th...
	Performing Basic Administration Tasks
	Changing Database Server Configuration Parameters
	Dbspace and Logical-Log File Backups
	Changing the Logging Status of Databases
	Adding and Dropping Chunks, Dbspaces, and Blobspac...
	Using and Changing Mirroring of Chunks
	Managing the Physical Log
	Managing the Logical Log
	Managing Virtual Processors
	Managing Shared Memory

	Changing the Database Server Mode
	Changing the Database Server Type
	Changing the Type of the Primary Database Server
	Changing the Type of the Secondary Database Server...

	Restoring Data If Media Failure Occurs
	Restoring After Media Failure on the Primary Datab...
	Restoring After Media Failure on the Secondary Dat...

	Restarting High-Availability Data Replication Afte...
	Restarting After Critical Data Is �Damaged
	Critical Media Failure on the Primary Database Ser...
	Critical Media Failure on the Secondary Database S...
	Critical Media Failure on Both Database Servers

	Restarting If Critical Data Is Not Damaged
	Restarting After a Network Failure
	Restarting If the Secondary Database Server Fails
	Restarting If the Primary Database Server Fails

	What Is Consistency Checking?
	Performing Periodic Consistency Checking
	Verify Consistency
	oncheck -cr
	oncheck -cc
	oncheck -ce
	oncheck -cI
	oncheck -cD

	Monitor for Data Inconsistency
	Retain Consistent Level-0 Dbspace

	Dealing with Corruption
	Symptoms of Corruption
	Run oncheck First
	I/O Errors on a Chunk

	Collecting Diagnostic Information

	Situations to Avoid
	Situations to Avoid in Administering the Database ...

	Monitoring the Database Server
	Information That You Can Monitor
	Sources of Information for Monitoring the Database...
	What Is the Message Log?
	Why Read the Message Log?
	Changing the Destination for Message-Log Messages
	Monitoring the Message Log

	Event Alarm
	What Is the Console?
	Monitoring with ON-Monitor
	Monitoring with SMI Tables
	Monitoring with onstat and oncheck Utilities
	Monitoring with onperf
	Monitoring with the onstat Banner Line

	Monitoring Configuration Information
	Using Command-Line Utilities
	Using ON-Monitor

	Monitoring Checkpoint Information
	Using Command-Line Utilities
	Using ON-Monitor
	Using SMI Tables

	Monitoring Shared Memory
	Monitoring Shared-Memory Segments
	Monitoring Shared-Memory Profile
	Using Command-Line Utilities
	Using ON-Monitor
	Using SMI Tables

	Monitoring Buffers
	Using Command-Line Utilities
	Using ON-Monitor
	Using SMI Tables

	Monitoring Buffer-Pool Activity
	Using Command-Line Utilities
	Using SMI Tables

	Monitoring Latches
	Using Command-Line Utilities
	Using ON-Monitor
	Using SMI Tables

	Monitoring Locks
	Using Command-Line Utilities
	Using ON-Monitor
	Using SMI Tables

	Monitoring Active Tblspaces
	Using Command-Line Utilities

	Monitoring Virtual Processors
	Using Command-Line Utilities
	Using SMI Tables

	 Monitoring Sessions and Threads
	Using Command-Line Utilities
	Using ON-Monitor
	Using SMI Tables

	Monitoring PDQ Resources and Queries
	Monitoring Transactions
	Using Command-Line Utilities

	Monitoring �Databases
	Using ON-Monitor
	Using SMI Tables

	Monitoring Logging Activity
	Monitoring Logical-Log Files
	Monitoring the Logical Log for Fullness
	Using Command-Line Utilities
	Using ON-Monitor
	Using SMI Tables

	Monitoring the Physical-Log File
	Using Command-Line Utilities
	Using ON-Monitor

	Monitoring the Physical-Log and Logical-Log Buffer...
	Using Command-Line Utilities
	Using ON-Monitor
	Using SMI Tables

	Monitoring the Database Server for Disabling I/O E...
	Using the Message Log to Monitor Disabling I/O Err...
	Using Event Alarms to Monitor Disabling I/O Errors...

	Monitoring Disk Usage
	Monitoring Chunks
	Using Command-Line Utilities
	Using ON-Monitor
	Using SMI Tables

	Monitoring �Tblspaces and Extents
	Using Command-Line Utilities
	Using SMI Tables
	Using System Catalog Tables

	Monitoring TEXT and BYTE Data in a Blobspace
	Using Command-Line Utilities
	Using ON-Monitor

	Monitoring TEXT and BYTE Data in a Dbspace
	Using Command-Line Utilities

	Monitoring High-Availability Data-Replication Stat...
	Using Command-Line Utilities
	Using ON-Monitor
	Using SMI Tables

	Multiphase Commit Protocols
	Two-Phase Commit Protocol
	When Is the Two-Phase Commit Protocol Used?
	What Goals Does the Two-Phase Commit Protocol Achi...
	Two-Phase Commit Concepts
	Phases of the Two-Phase Commit Protocol
	Precommit Phase
	Postdecision Phase

	Examples of Two-Phase Commit Transactions
	How the Two-Phase Commit Protocol Handles �Failure...
	What Types of Failures Does Automatic Recovery Han...
	What Is the Administrator’s Role in Automatic Reco...
	 Automatic-Recovery Mechanisms for Coordinator Fai...
	Automatic-Recovery Mechanisms for Participant Fail...

	Presumed-Abort �Optimization
	How Does Presumed-Abort Optimization Affect Automa...
	Why Is an Optimization Realized?

	Independent Actions
	What Initiates Independent Action?
	Possible Results of Independent Action
	Independent Actions That Allow Successful Completi...
	Independent Actions That Result in an Error Condit...
	Independent Actions That Result in Heuristic Decis...

	The Heuristic Rollback Scenario
	Conditions That Result in a Heuristic Rollback
	What Happens When a Heuristic Rollback Occurs?

	The Heuristic End��Transaction Scenario
	When to Perform a Heuristic End Transaction
	How to Use onmode -Z
	What Happens When the Transaction Is Ended Heurist...

	Tracking a Global Transaction

	Two-Phase Commit Protocol Errors
	Two-Phase Commit and �Logical�Log Records
	Logical-Log Records When the Transaction Commits
	Logical-Log Records Written During a Heuristic Rol...
	Logical-Log Records Written After a Heuristic End ...

	Configuration Parameters Used in Two-Phase �Commit...
	Function of the DEADLOCK_TIMEOUT Parameter
	Function of the TXTIMEOUT Parameter

	Heterogeneous Commit Protocol
	Which Gateways Can Participate in a Heterogeneous ...
	Enabling and Disabling Heterogeneous Commit
	How Does Heterogeneous Commit Work
	Precommit Phase
	Gateway Commit Phase
	Heterogeneous Commit Optimization

	Implications of a Failed Heterogeneous Commit
	Database Server Coordinator Failure
	Participant Failure
	Interpreting Heterogeneous Commit Error Messages

	Recovering Manually from Failed Two�Phase Commit
	Procedure to Determine If Manual �Recovery Is Requ...
	Determine If a Transaction Was Implemented Inconsi...
	Global Transaction Killed Prematurely
	Heuristic End Transaction
	Heuristic Rollback

	Determine If the Distributed Database Contains Inc...
	Obtain Information from the Logical Log
	The Global Transaction �Identifier

	Decide If Action Is Needed to Correct the Situatio...

	Example of Manual Recovery

	ON�Monitor for UNIX
	Using ON-Monitor
	Help and Navigation Within ON-Monitor
	Executing Shell Commands from Within ON-Monitor

	ON-Monitor Screen Options
	Setting Configuration Parameters with �ON�Monitor

	Configuration �Parameters
	ONCONFIG File Conventions
	ONCONFIG Parameters
	ADTERR, ADTMODE, ADTPATH, and ADTSIZE
	AFF_NPROCS
	AFF_SPROC
	ALARMPROGRAM
	BAR_ACT_LOG, BAR_BSALIB_PATH, BAR_MAX_BACKUP, BAR_...
	 BUFFERS
	CKPTINTVL
	CLEANERS
	CONSOLE
	DATASKIP
	DBSERVERALIASES
	DBSERVERNAME
	DBSPACETEMP
	DEADLOCK_TIMEOUT
	DRAUTO
	DRINTERVAL
	DRLOSTFOUND
	DRTIMEOUT
	DS_MAX_QUERIES
	DS_MAX_SCANS
	DS_TOTAL_MEMORY
	DUMPCNT
	DUMPCORE
	DUMPDIR
	DUMPGCORE
	DUMPSHMEM
	FILLFACTOR
	HETERO_COMMIT
	LBU_PRESERVE
	LOCKS
	LOG_BACKUP_MODE
	 LOGBUFF
	LOGFILES
	LOGSIZE
	LOGSMAX
	LRUS
	LRU_MAX_DIRTY
	LRU_MIN_DIRTY
	LTAPEBLK
	LTAPEDEV
	LTAPESIZE
	LTXEHWM
	LTXHWM
	MAX_PDQPRIORITY
	MIRROR
	MIRROROFFSET
	MIRRORPATH
	MSGPATH
	MULTIPROCESSOR
	 NETTYPE
	NOAGE
	NUMAIOVPS
	NUMCPUVPS
	OFF_RECVRY_THREADS
	ON_RECVRY_THREADS
	ONDBSPACEDOWN
	OPCACHEMAX
	OPTCOMPIND
	PHYSBUFF
	PHYSDBS
	PHYSFILE
	RA_PAGES
	RA_THRESHOLD
	 RESIDENT
	RESTARTABLE_RESTORE
	ROOTNAME
	ROOTOFFSET
	ROOTPATH
	ROOTSIZE
	SERVERNUM
	SHMADD
	SHMBASE
	SHMTOTAL
	SHMVIRTSIZE
	SINGLE_CPU_VP
	STACKSIZE
	STAGEBLOB
	TAPEBLK
	TAPEDEV
	TAPESIZE
	TXTIMEOUT
	USEOSTIME

	The �sysmaster Database
	What Is the sysmaster Database?
	Using the System-Monitoring Interface
	What Are the SMI Tables?
	Accessing SMI Tables
	SELECT Statements
	Triggers and Event Alarms
	SPL and SMI Tables
	Locking and SMI Tables

	The System-Monitoring Interface Tables
	sysadtinfo
	sysaudit
	syschkio
	syschunks
	sysconfig
	sysdatabases
	sysdbslocale
	sysdbspaces
	sysdri
	sysextents
	syslocks
	syslogs
	sysprofile
	sysptprof
	syssesprof
	syssessions
	sysseswts
	systabnames
	sysvpprof

	The SMI Tables Map
	Using SMI Tables to Obtain onstat Information

	Utilities
	The -V Option
	Multibyte Characters
	oncheck: Check, Repair, or Display
	ondblog: Change Logging Mode
	oninit: Initialize Dynamic Server
	onlog: Display Logical-Log Contents
	onmode: Mode and Shared-Memory Changes
	onparams: Modify Log-Configuration Parameters
	onspaces: Manage Database Spaces
	onstat: Monitor Database Server �Operation
	ontape: Logging, Archives, and Restore

	Message-Log Messages
	How the Messages Are Ordered in This Chapter
	Message Categories
	Messages: A-B
	Messages: C
	Messages: D-E-F
	Messages: G-H-I
	Messages: J-K-L-M
	Messages: N-O-P
	Messages: Q-R-S
	Messages: T-U-V
	Messages: W-X-Y-Z
	Messages: Symbols

	Interpreting Logical-Log Records
	Reading Logical-Log Records
	Transactions That Drop a Table or Index
	Transactions That Are Rolled Back
	Checkpoints with Active Transactions
	Distributed Transactions

	Logical-Log Record Structure
	Logical-Log Record Header
	Logical-Log Record Types and Additional Columns

	Disk Structures and Storage
	Dbspace Structure and Storage
	Structure of the Root Dbspace
	Reserved Pages

	Structure of a Regular Dbspace
	Structure of an Additional Dbspace Chunk

	Structure of a Mirrored Chunk
	Structure of the Chunk Free-List Page
	Chunk Free-List Page Entries
	Creation of Free-List Pages

	Structure of the Tblspace �Tblspace
	Tblspace Tblspace Entries
	What Is the Tblspace Number?
	Tblspace Number Elements
	Tblspace Tblspace Size
	Tblspace Tblspace Bit-Map Page

	Structure of the Database Tblspace
	What Is the Database Tblspace Number?
	Database Tblspace Entries

	Structure of a Dbspace Bit-Map Page
	Types of Bit-Map Entries
	Two-Bit Bit-Map Pages
	Four-Bit Bit-Map Pages

	Structure and Allocation of an Extent
	Extent Structure
	Next-Extent Allocation

	Structure and Storage of a Dbspace Page
	Structure of a Dbspace Page
	Rowid in Nonfragmented Tables
	Rowid in Fragmented Tables
	Informix Recommendations on Use of Rowid
	Data-Row Format and Storage

	Structure of B-Tree Index Pages
	Definition of Terms in B-Tree Indexing
	Logical Storage of Indexes
	Physical Storage Format of Index Pages

	Blobspace Structure and Storage
	Structure of a �Blobspace
	TEXT and BYTE Data Storage and the Descriptor
	When Are TEXT or BYTE Objects Created?
	Are TEXT and BYTE Objects Modified?
	What Limits the Size of TEXT and BYTE Objects?

	Structure of a Dbspace Blobpage
	Blobspace Page Types
	What Is the Blobspace Free-Map Page?
	What Is the Blobspace Bit-Map Page?
	What Is the Blobpage?

	Structure of a Blobspace Blobpage
	Blobpage Structure
	What Is in the Blobpage Header?

	Database and Table Creation: What Happens on�Disk
	Creating a Database
	Disk-Space Allocation for System Catalog Tables
	System Catalog Tables Are Tracked

	Creating a Table
	Disk-Space Allocation
	Entry Is Added to Tblspace �Tblspace
	Entries Are Added to the System Catalog Tables
	What Happens on Disk When a Temporary Table Is Cre...

	Files That the Database Server Uses
	Trapping Errors
	Index

